Astronomical School’s Report, 2011, Volume 7, Issue 2, Pages 145–149

https://doi.org/10.18372/2411-6602.07.2145
Download PDF
UDC 523.6

Meteorites as a natural detectors of very heavy galactic cosmic ray nuclei: some aspects of the experimental track studies

Aleksandrov A.B.1, Bagulya A.V.1, Vladimirov M.S.1, Goncharova L.A.1, Ivliev A.I.2, Kalinina G.V.2, Kashkarov L.L.2, Konovalova N.S.1, Okateva N.M.1, Polukhina N.G.1, Roussetski A.S.1, Starkov N.I.1, Tsarev N.I.1

1Lebedev Physical Institute, Russian Academy of Sciences, Moscow
2Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow

Abstract

In this work performed in frame to OLIMPIYA project [5] there are presented new results of measurement of fluxes and of the spectra of superheavy nuclei composing cosmic rays. The method of detection and analysis of nucleus tracks found in the olivine crystals of meteorites was used. The experiment is based on the combined method including the multistage meteorite etching and nucleus track registration and measurement on completely automated PAVICOM setup [5]. The track parameters such as diameter, length and the etching velocity are investigated. On the first stage of the experiment there was held the calibration procedure for nuclei charge identification using the accelerated nuclei Xe and U. The etching length of nuclei (26<Z<92) was simulated on SRIM2006 and GEANT4 tools. Up to date, the data bank includes near 1000 registered long path tracks (L≥30 μm) with their parameters registered in 27 olivine crystals of 1–2 mm. These data give estimations for the relative values of the flux intensities of the galactic cosmic ray nuclei with 23 ≤ Z ≤ 28, Z ≤ 30, Z ≤ 40, Z ≤ 50, Z ≤ 60 and Z≥70.

Keywords: meteorites; galactic cosmic rays; heavy nuclei

References

  1. Ginzburg V.L. (1999). Usp. Fiz. Nauk., 169, 419.
  2. Strutinsky V.M. (1967). Nuclear Physics, A95, 420.
  3. Oganesyan Yu.Ts. (2001). Vestn. Ross. Akad. Nauk., 71, 590.
  4. Perelygin V.P., Stetsenko S.G. (1989). Pisma Zh. Exp. Teor. Fiz., 49, 257.
  5. Ginzburg V.L., Feinberg E.L., Polukhina N.G., Starkov N.I., Tsarev V.A. (2005). DAN, 402(4), 1–3.
  6. Fleischer R.L., Price P.B., Walker R.M., Maurette M. (1967). J. Geophys. Res., 72, 331. https://doi.org/10.1029/jz072i001p00331
  7. Aleksandrov A.B., Apacheva I.Yu., Feinberg E.L., Goncharova L.A., Konovalova N.S., Martynov A.G., Polukhina N.G., Rousettsskii A.S., Starkov N.I., Tsarev V.A. (2004). Nucl. Instr. Methods Phys. Res., A535, 542. https://doi.org/10.1016/s0168-9002(04)01727-9
  8. Durrani C., Bull R. (1990). Nuclear track detectors.
  9. Price P.B., Lal D., Tamhane A.S., Perelygin V.P. (1973). Earth Planet. Sci. Lett., 19, 377–395. https://doi.org/10.1016/0012-821x(73)90089-7
  10. Horn P., et al. (1967). Zeitschrift fur Naturforschung, 22a(11), 1793–1798.
  11. Ziegler J.F. The Stopping and Range of Ions in Matter. SRIM–2006.
  12. Allison J., et al. (n.d.). Geant4. Development and Applications. IEEE Transaction on Nuclear Science. – 53., 270–278.
  13. Agostinelli S., et al. (2003). Geant4 A Simulation Toolkit. Nuclear Instrument and Methods, 506, 250–303.
  14. Pellas P., Perron C. (1984). Nuclear Instrument and Methods in Physics Research, B1, 387–393.
  15. Perelygin V.P., Otgonsuren O., Stetsenko S.G., Pellas P., Perron C. (1976). Astrophys. J., 210, 258–264.
  16. Cameron A.G.W. (1974). Space Ssi. Rev., 15, 121.

Download PDF