Astronomical School’s Report, 2011, Volume 7, Issue 1, Pages 133–144

https://doi.org/10.18372/2411-6602.07.1133
Download PDF
UDC 523.4

Asymmetry of reflective properties of the hemispheres of Jupiter satellite Europa

Vid'machenko A.P., Morozhenko A.V., Klyanchin A.I., Shavlovskiy V.I., Ivanov Yu.S., Kostogryz N.M.

Main Astronomical Observatory NAS of Ukraine

Abstract

Rotation around the central planet of Europa is synchronous. Leading hemisphere is much brighter and less polluted by “no ice” material than the trailing one. The high albedo of the satellite may indicates that the ice on the surface is clean enough and is formed recently: 1,5–30 million years ago. Comparison of surface images of spacecrafts “Voyager” and “Galileo” with a low spatial resolution did not detect any significant changes during 20 years. But a detailed analysis of observational data with high resolution points to a number of features on the surface, which may indicate a change in the geological structures during this time. Spectral geometric albedo in the wavelength range 346–750 nm of leading and trailing hemispheres of Galilean satellites were defined using of our spectral observations in 2009 and 2010 and the observations of the other authors at different values of orbital and solar phase angles. The high geometric albedo in the red region of Io and Europa spectrum are confirmed; albedo of Io decreases sharply with decreasing of wavelength for λ<500 nm; albedo of Ganymede and Callisto — reduced smoothly; albedo of Europa have an intermediate gradient of reduction. Such behavior of the spectral variation of Europa surface albedo can be explained by deposition of sulfur from Io. Moreover, the sulfur absorption is more strongly on the trailing hemisphere. This indicates that the sulfur on the leading hemisphere is “processed” by meteoritic bombardment much faster and is gone to the sub-surface regolith layer.

Keywords: reflective properties of satellite surface; asymmetry of properties of Europa's hemispheres

References

  1. Vid’machenko A.P., Ivanov Yu.S., Morozhenko A.V. i dr. (2007). Spektropolyarimetr nazemnogo suprovodzhennya Kosmicheskogo eksperimenta “Planetnyy monitoring”. Kosmіchna nauka і tekhnologіya, 13(1), 63–70.
  2. Vid’machenko A.P., Morozhenko A.V., Klyanchin A.I. (2011). Features of morphology and geology of surface of Jupiter satellite Europe. Astronomical School’s Report, 7(1), 117–132. https://doi.org/10.18372/2411-6602.07.1117
  3. Allison M.L., Clifford M.S. (1987). Ice-covered water volcanism on Ganymede. J. Geophys. Res., 92, 7865–7876. https://doi.org/10.1029/jb092ib08p07865
  4. Anders E., Grevasse N. (1989). Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta., 53, 197–214. https://doi.org/10.1016/0016-7037(89)90286-x
  5. Calvin W.M., Clark R.N., Brown R.H., et al. (1995). Spectra of the icy galilean satellites from 0.2 to 5 μm – a compilation, new observations, and a recent summary. J. Geophys. Res., 100, 19041–19048. https://doi.org/10.1029/94je03349
  6. Carlson R.W. Anderson M.S., Mehlman R., et al. (2005). Distribution of hydrate on Europa: Further evidence for sulfuric acid hydrate. Icarus, 177(2), 461–471. https://doi.org/10.1016/j.icarus.2005.03.026
  7. Carlson R.W., Calvin W.M., Dalton J.B., et al. (2009). Europa's Surface Composition. Europa. Edited by R.T.Pappalardo, W.B.McKinnon, K.K.Khurana..
  8. Carlson R.W., Johnson R.E., Anderson M.S. (1999). Sulfuric acid on Europa and the radiolytic sulfur cycle. Science, 286, 97–99. https://doi.org/10.1126/science.286.5437.97
  9. Carlson R.W., Weissman P.R., Smythe W.D., et al. (1992). Near-Infrared mapping spectrometer experiment on Galileo. Space Sci. Rev., 60, 457–502.
  10. Cassen P., Reynolds R.T., Peale S.J. (1979). Is there liquid water on Europa? Geophys. Res. Lett., 6, 731–734. https://doi.org/10.1029/gl006i009p00731
  11. Cassen P.M., Peale S.J., Reynolds R.T. (1982). Structure and thermal evolution of the Galilean satellites. In Satellites of Jupiter, 93–128.
  12. Clark B.E., Helfenstein P., Veverka J., et al. (1998). Multispectral terrain analysis from Galileo's of Europa first images. Icarus, 135(1), 95–106. https://doi.org/10.1006/icar.1998.5968
  13. Clark R.N. (1981). The spectral reflectance of water-mineral mixtures at low temperatures. Journal of Geophysical Research, 86, 3074–3086. https://doi.org/10.1029/jb086ib04p03074
  14. Clark R.N., McCord T.B. (1980). The Galilean satellites – New near-infrared spectral reflectance measurements /0.65–2.5 microns/ and a 0.325-5 micron summary. Icarus, 41(1), 323–339. https://doi.org/10.1016/0019-1035(80)90217-1
  15. Cook A.F., Shoemaker E.M., Soderblom L.A., et al. (1982). Volcanism in ice on Europa. Bull. Am. Astron. Soc., 14, 736–737.
  16. Cooper J.F., Johnson R.E., Mauk B.H., et al. (2001). Energetic ion and electron irradiation of the icy Galilean satellites. Icarus, 149(1), 133–159. https://doi.org/10.1006/icar.2000.6498
  17. Crawford G.D., Stevenson D.J. (1998). Gas-driven water volcanism and the resurfacing of Europa. Icarus, 73(1), 66–79. https://doi.org/10.1016/0019-1035(88)90085-1
  18. Dalton J.B. (2003). Spectral behavior of hydrated sulfate salts: Implications for Europa mission spectrometer design. Astrobiology, 3, 771–784. https://doi.org/10.1089/153110703322736097
  19. Domingue D.L., Hapke B. (1992). Disk-resolved photometric analysis of Europan terrains. Icarus, 99(1), 70–81. https://doi.org/10.1016/0019-1035(92)90172-4
  20. Fagents S.A., Greeley R., Sullivan R.J., et al. (1999). A Cryomagmatic Origin for Low Albedo Features on Europa. 30th Annual Lunar and Planetary Science Conference. – March 15–29, 1999. Houston, TX. – Abstract no. 1296. .
  21. Fagents S.A., Kadel S.D., Greeley R., et al. (1998). Styles of cryovolcanism on Europa: Summary of evidence from the Galileo nominal mission. Lunar Planet. Sci. Conf. XXIX..
  22. Fanale F.P., Li Y.-H., Decarlo E., et al. (1998). Laboratory simulation of the chemical evolution of Europa's aqueous phase. Lunar Planet. Sci. Conf. XXIX..
  23. Fischer H.-J., Spohn T. (1990). Thermal-orbital histories of viscoelastic models of Io (J1). Icarus, 83(1), 39–65. https://doi.org/10.1016/0019-1035(90)90005-t
  24. Geissler P.E., Greenberg R., Hoppa G., et al. (1998). A recently active lineament on Europa? Lunar Planet. Sci. Conf. XXIX..
  25. Geissler P.E., Greenberg R., Hoppa G., et al. (1998). Evolution of lineaments on Europa: Clues from Galileo multispectral imaging observations. Icarus, 135(1), 107–126. https://doi.org/10.1006/icar.1998.5980
  26. Greeley R., Coon M., Sullivan R., Geissler P.E., et al. (1998). Terrestrial sea ice processes: Consid-erations for Europa. Icarus, 135(1), 25–40. https://doi.org/10.1006/icar.1998.5977
  27. Greeley R., Sullivan R., Klemaszewski J., et al. (1998). Europa: Initial Galileo Geological Observations. Icarus, 135(1), 4–24.
  28. Greeley R., Chyba Ch.F., Head J.W. III, et al. (2004). Geology of Europa. In: Jupiter. The planet, satellites and magnetosphere. Edited by Fran Bagenal, Timothy E. Dowling, William B. McKinnon. Cambridge planetary science, Vol. 1, Cambridge, UK: Cambridge University Press., 329–362.
  29. Greenberg R., Geissler P.E., Hoppa G., et al. (1998). Tectonic processes on Europa: Tidal stresses, mechanical response, and visible features. Icarus. 1998. – 135, № 1., 64–78. https://doi.org/10.1006/icar.1998.5986
  30. Grundy W.M., Schmitt B. (1998). The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. Journal of Geophysical Research, 25809–25822. https://doi.org/10.1029/98je00738
  31. Hansen G.B., McCord T.B. (2004). Amorphous and crystalline ice on the Galilean satellites: A balance between thermal and radiolytic processes. Journal of Geophysical Research, E01012. https://doi.org/10.1029/2003je002149
  32. Head J.W., Sherman N.D., Pappalardo R.T., et al. (1998). Cryovolcanism on Europa: Evidence for the emplacementof flows and related deposits in the EA region (5N, 305W) and interpreted eruption conditions. Lunar Planet. Sci. Conf. XXIX..
  33. Helfenstein P., Cook A.F. (1984). Active venting on Europa? Analysis of a transient bright surface feature. Lunar Planet. Sci. Conf. XV., 531–532.
  34. Helfenstein P., Currier N., Clark B.E., et al. (1998). Galileo obervations of Europa's opposition effect. Icarus, 135(1), 41–63.
  35. Hendrix A.R., Barth C.A., Hord C.W., et al. (1998). Disk-resolved Observations of the Ultraviolet Absorber on Callisto's Leading Hemisphere. 29th Annual Lunar and Planetary Science Conference. March 16–20, 1998. Houston, TX. – Abstract no. 1865. .
  36. Hosokawa S., Matsuoka T., Tamura K. (1994). Optical absorption spectra of liquid sulphur over a wide absorption range. J. Phys. Condens. Matter., 6, 5273–5282. https://doi.org/10.1088/0953-8984/6/28/005
  37. Johnson R.E., Carlson R.W., Cooper J.F., et al. (2004). Radiation Effects on the Surfaces of the Galilean Satellites. In: Jupiter. – F.Bagenal, W.McKinnon, Eds. – Cambridge University Press, Cambridge., 234–272.
  38. Johnson T. (1970). Albedo and spectral reflectivity of the galilean satellites of Jupiter. Bull. Am. Astron. Soc., 2, 235.
  39. Johnson T.V., Pilcher C.B. (1977). Satellite spectrophotometry and surface compositions. In: Planetary Satellites. – Ed. J.A.Burns. Univ. Ariz. Press, Tucson., 232–268.
  40. Kargel J.S. (1991). Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94(2), 368–390. https://doi.org/10.1016/0019-1035(91)90235-l
  41. Lane A.L., Nelson R.M., Matson D.L. (1981). Evidence for sulphur implantation in Europa's UV absorption band. Nature, 292, 38–39. https://doi.org/10.1038/292038a0
  42. Lucchitta B.K., Soderblom L.A., Ferguson H.M. (1982). Structures on Europa. In: Lunar and Planetary Science Conference, 12th, Houston, TX, March 16–20, 1981, Proceedings. Section 2. New York and Oxford, Pergamon Press., 1555–1567.
  43. Lunine J.L., Stevenson D.J. (1985). Thermodynamics of clathrate hydrate at low and high pressures with application to the outer Solar System. Astrophys.J. Suppl., 58, 493–531. https://doi.org/10.1086/191050
  44. Malin M.C., Pieri D.C. (1986). Europa. In: Satellites. – Edited by J.A. Bums and M.S. Matthews, Univ. of Ariz. Press, Tucson., 689–717.
  45. McCord T.B., Hansen G.B., Matson D.L., et al. (1999). Hydrated salt minerals on Europa's surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res., 104, 11827–11851. https://doi.org/10.1029/1999je900005
  46. McCord T.B., et al. (1998). Salts on Europa's surface detected by Galileo's Near Infrared Mapping Spectrometer. Science, 280, 1242–1245. https://doi.org/10.1126/science.280.5367.1242
  47. McCord T.B., Coradini A., Hibbitts C.A., et al. (2004). Cassini VIMS observations of the Galilean satellites including the VIMS calibration procedure. Icarus, 172(1), 104–126. https://doi.org/10.1016/j.icarus.2004.07.001
  48. McCord T.B., Hansen G.B., Combe J.-P., Hayne P. (2010). Hydrated minerals on Europa's surface: An improved look from the Galileo NIMS investigation. Icarus, 639–650. https://doi.org/10.1016/j.icarus.2010.05.026
  49. McCord T.B., Orlando T.M., Teeter G., et al. (2001). Thermal and radiation stability of the hydrated minerals epsomite, mirabilite, and natron under Europa environmental conditions. J. Geophys. Res., 106, 3311–3319. https://doi.org/10.1029/2000je001282
  50. McCord T.B., Teeter G., Hansen G.B., et al. (2002). Brines exposed to Europa surface conditions. J. Geophys. Res., 107, 4-1-4-6. https://doi.org/10.1029/2000je001453
  51. McCord T.B., Hansen G.B., Clark R.N., et al. (1998). Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. Journal of Geophysical Research, 8603–8626. https://doi.org/10.1029/98je00788
  52. McEwen A.S. (1986). Exogenic and endogenic albedo and color patterns on Europa. J. Geophys. Res., 91, 8077–8097. https://doi.org/10.1029/jb091ib08p08077
  53. McLean I.S., Becklin E.E., Bendiksen O., et al. (1998). Design and development of NIRSPEC: a near-infrared echelle spectrograph for the Keck II telescope. Proc. SPIE. Infrared Astronomical Instrumentation, Albert M. Fowler; Ed., 3354, 566–578. https://doi.org/10.1117/12.317283
  54. Meyer B., Oommen T.V., Jensen D. (1971). The color of liquid sulfur. J. Phys. Chem., 75, 912–917. https://doi.org/10.1021/j100677a012
  55. Meyer B., Stroyer-Hansen T., Oommen T.V. (1972). The visible spectrum of S3 and S4. J. Molec. Spectrosc., 42, 335–343.
  56. Nelson R.M., Lane A.L., Matson D.L., et al. (1987). Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers: Observations with the International Ultraviolet Explorer. Icarus, 72, 358–380. https://doi.org/10.1016/0019-1035(87)90180-1
  57. Noll K.S., Weaver H.A., Gonnella A.M. (1995). The albedo spectrum of Europa from 2200 angstrom to 3300 angstrom. J. Geophys. Res., 100, 19057–19059. https://doi.org/10.1029/94je03294
  58. Orlando T.M., McCord T.B., Grieves G.A. (2005). The chemical nature of Europa surface material and the relation to a subsurface ocean. Icarus, 177(3), 528–533. https://doi.org/10.1016/j.icarus.2005.05.009
  59. Pappalardo R.T., Belton M.J.S., Breneman H.H.M, et al. (1999). Does Europa have a subsurface ocean? Evaluation of the geological evidence. Journal of Gephysical research, 104(El0), 24015–24055..
  60. Pappalardo R.T., Sherman N.D., Head J.W., et al. (1998). Distribution of Mottled Terrain on Europa: A Possible Link to Nonsynchronous Rotation Stresses. 29th Annual Lunar and Planetary Science Conference, March 16–20.
  61. Phillips C.B., McEwen A.S., Geissler P.E., et al. (1997). New mosaics of Europa and mapping of endogenic units. Conference Paper. 28th Annual Lunar and Planetary Science Conference., 103.
  62. Pollack J.B., Witteborn F.C., Erickson E.F., et al. (1978). Near-infrared spectra of the Galilean satellites: Observations and compositional implications. Icarus, 271–303. https://doi.org/10.1016/0019-1035(78)90110-0
  63. Prockter L.M., Head J.W., Pappalardo R.T., et al. (1999). Geological mapping of central Agenor Linea, Europa (212–226). Lunar Planet. Sci. Conf., XXX..
  64. Shavlovskij V.I. (2005). Opposition effects of Jupiter's satellites Io and Europa. Kinematika i Fizika Nebesnykh Tel, Suppl, 5, 513–516.
  65. Shoemaker E.M. (1996). The age of Europa's surface. In: Europa Ocean Conference, Capistrano Conf. 5, San Juan Capistrano Res. Inst., San Juan Capistrano, Calif., 65–66.
  66. Spencer J.R., Calvin W.M., Person M.J. (1995). Charge-coupled-device spectra of the galilean satellites: Molecular-oxygen on Ganymede. J. Geophys. Res., 100, 19049–19056. https://doi.org/10.1029/95je01503
  67. Spencer J.R., Carlson R.W., Becker T.L., et al. (2004). Appendix 1: Maps and spectra of Jupiter and the Galilean satellites. In: Jupiter. The planet, satellites and magnetosphere. Edited by Fran Bagenal, Timothy E. Dowling, William B. McKinnon. Cambridge planetary science, Vol. 1, Cambridge, UK: Cambridge University Press., 689–698.
  68. Spencer J.R., Grundy W.M., Dumas Ch., et al. (2006). The nature of Europa's dark non-ice surface material: Spatially-resolved high spectral resolution spectroscopy from the Keck telescope. Icarus, 202–210. https://doi.org/10.1016/j.icarus.2005.12.024
  69. Spencer J.R., Grundy W.M., Dumas C., et al. (2005). The nature of Europa's non-ice surface components: High spatial and spectral resolution spectroscopy from the Keck telescope. Icarus, 182(1), 202–210. https://doi.org/10.1016/j.icarus.2005.12.024
  70. Verbiscer A., Helfenstein P. (1998). Reflectance spectroscopy of icy satellite surfaces. In Solar System Ices. – Ed. by B.Schmitt. – Kluwer Acad., Norwell, Mass., 157–197.
  71. Veverka J., Thomas P., Johnson T.V., et al. (1986). The physical characteristics of satellite surfaces. In Satellites. – Ed. by Bums J.A., Mathews M.S. – Univ. of Ariz. Press, Tucson., 342–402.
  72. Wamsteker W. (1972). Narrowband photometry of the galilean satellites. Comm. Lunar Planet. Lab. Univ. Arizona, Tucson., 167, 171–177.
  73. Wilson L., Head J.W. (1998). Europa cryovolcanism: Ascent and eruption of magma and its role in resurfacing. 29th Annual Lunar and Planetary Science Conference. – March 16–20, 1998. – Houston, TX. – Abstract No. 1138. .
  74. Wilson L., Head J.W., Pappalardo R.T. (1997). Eruption of lava flows on Europa: Theory and application to Thrace Macula. J. Geophys. Res., 102, 9263–9272. https://doi.org/10.1029/97je00412
  75. Wizinowich P., Acton D.S., Shelton C., et al. (2000). First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery. The Publications of the Astronomical Society of the Pacific, 315–319. https://doi.org/10.1086/316543
  76. Zahnle K., Dones L., Levison H.F. (1998). Cratering rates on the Galilean satellites. Icarus, 136(2), 202–222. https://doi.org/10.1006/icar.1998.6015
  77. Zahnle K., Alvarellos J., Dobrovolskis, et al. (2007). Primary, secondary, and sesquinary craters on Europa. Ices, Oceans, and Fire: Satellites of the Outer Solar System (Io attacks). Vol. LPT Contribution № 1357. Lunar and Planetary Institute, Boulder, CO., 155–156.

Download PDF