Sources of solar energy and interplanetary magnetic field

В. Н. Криводубський

Abstract


The sources of energy of solar activity are analyzed. The primary source of solar energy is the core of the Sun, whereas a result of the reactions of thermonuclear fusion, energy is released in the form of -quanta and neutrino particlesthat propagate outward. When approaching the surface due to the fall in temperature and the increase in the opacity of the substance, the fully ionized solar plasma, from certain depths, passes into the state of partial ionization. As a result, a Schwarzschild criterion of the emergence of a convective energy transfer due to hydrodynamic motions begins to runat a distance of 0.3 solar radius from the surface. Above this boundary lies a layer of convective turbulence, in whichenergy is transferred mainly by a moving substance, and not by radiation. It is called the convective zone. Ultimately,the part of the radiant energy transferred to the surface gives the opportunity to observe the Sun in different wavelengthranges. While the second part of the upward energy, which is due to convective motions, will manifest itself at the photospheric level in the form of granulation movements of various scales accessible for observation. However, part ofthe flow of energy coming from the interior of the Sun, accumulates and is carried upwards in the “magnetic form”. Animportant specific property of this highly effective mechanism of magnetic energy transfer is its significant variationsin time, which are manifested in cyclic changes of the majority of phenomena generated by magnetic fields, called solaractivity. The specificity of this energy transfer is manifested in the non-stationary flare conversion of magnetic energyinto heat, as well as in the kinetic energy of accelerated particles and macroscopic (coronal) plasma emissions. The roleof the landfill, where the main processes responsible for cyclic manifestations of solar activity originate, is played by the convective zone. In the depths of the convective zone, as a result of the dynamo mechanism, some of the kinetic energy ofthe hydrodynamic motions (differential rotation and gyrotropic turbulent convection) is converted into magnetic energyduring the solar cycle, the reby strengthening the weak magnetic field of the Sun of relic origin. The global magneticfield generated in depths is transferred to the solar surface due to its magnetic buoyancy. Surface magnetic structureschange the state of the Sun’s atmosphere, cause an irregular part of the radiation and serve as a source of powerfulnon-stationary phenomena in the outer atmospheric layers (photosphere, chromosphere and corona). The modern conceptof such phenomena as hot solar corona, solar wind and interplanetary magnetic field that form space weather in theinterplanetary space is reviewed. The contribution of the “Kiev coronal school” of Vsekhsviatskij S.K. to the development of the concept of the dynamic corona of the Sun is noted.

Keywords


Sun; radiation; convection; magnetic energy; space weather; corona; solar wind; interplanetary magnetic fields

References


Вандакуров Ю.В. Конвекция на Солнце и 11-летний цикл. — М.: Наука, 1976. — 156 с.

Priest E.R. Solar Magnetohydrodynamics. — Dordrecct– Boston–London: D.Reidel Publishing Company, 1981.

Соловьев А.А., Киричек Е.А. Диффузная теория солнечного магнитного цикла. — Элиста–С.Петербург: Издательство Калмыцкого ГУ, 2004. — 181 с.

Miesch M.S. Large-scale dynamics of the convection zone and tachocline // Living Rev. Solar Phys. — 2005. — Vol. 2, No. 1. — P. 1–139.

Филиппов Б.П. Эруптивные процессы на Солнце. — М.: Физматлит, 2007. — 216 с.

Hathaway D.H. The solar cycle // Living Rev. Solar Phys. — 2015. — Vol. 12, No. 4. — P. 1–87.

Вайнштейн С.И., Зельдович Я.Б., Рузмайкин А.А. Турбулентное динамо в астрофизике. — М.: Наука, 1980. — 352 с.

Zeldovich Ya.B., Ruzmaikin A.A., Sokoloff D.D. Magnetic Fields in Astrophysics. — New York: Gordon and Breach, 1983.

Krause F., R¨adler K.-H. Mean Field Magnetohydrodynamics and Dynamo Theory. — Oxford: Pergamon Press, Ltd., 1980. — 271 p.

Krivodubskij V.N. Rotational anisotropy and magnetic quenching of gyrotropic turbulence in the solar convective zone // Astron. Reports. — 1998. — Vol. 42. — P. 122–126.

Krivodubskij V.N. The structure of the global solar magnetic field excited by the turbulent dynamo mechanism // Astron. Reports. — 2001. — Vol. 45. — P. 738–745.

Krivodubskij V.N. Turbulent dynamo near tachocline and reconstruction of azimuthal magnetic field in the solar convection zone // Astron. Nachrichten. — 2005. — Vol. 326, No. 1. — P. 61–74.

Krivodubskij V.N. Small scale alpha-squared effect in the solar convection zone // Kinematics and Physics of Celestial Bodies. — 2015. — Vol. 31, No. 2. — P. 55–64.

Charbonneau P. Dynamo models of the solar cycle // Living Rev. Solar Phys. — 2010. — Vol. 7, No. 3. — P. 1–91.

Солнечно-земные связи и космическая погода (под ред. Петруковича А.А.) // Зеленый Л.М., Веселовский И.С. (ред.) Плазменная гелиогеофизика. Том II. — М.: Физматлит. — 2008. — 560 с.

Кременецький I.О., Черемних О.К. Космiчна погода: механiзми i прояви. — Київ: Наукова думка, 2009. — 144 с.

Парновский А.С., Ермолаев Ю.И., Жук И.Т. Космическая погода: история исследования и прогнозирование // Космiчна наука i технологiя. — 2010. — Т. 16, № 1. — С. 90– 99.

Кузнецов В.Д. Солнечно-земная физика и ее приложения // УФН. — 2012. — Т. 182, № 3. — С. 327–326.

Кузнецов В.Д. Космическая погода и риски космической деятельности // Космическая техника и технологии. — 2014. — №3 (6). — С. 327–326.

Чижевский А.Л. Земное эхо солнечных бурь. — М.: Мысль, 1976. — 368 с.

Гибсон Э. Спокойное Солнце. — М.: Мир, 1977. — 408 с.

St¨ormer C. La Theorie corpusculaire des aurores boreales // L’Astronomie. — 1918. — Vol. 32. — P. 153–159; 200–205.

Chapman S., Ferraro V.C.F. // Terrest. Magn. and Atmosph. Elec. — 1931. — Vol. 77. — P. 171.

Chapman S. The viscosity and thermal conductivity of a completely ionized gas // Astrophys. J. — 1954. — Vol. 120. — P. 151.

Biermann L. ¨Uber die Ursache der chromosph¨arischen Turbulenz und des UV-Exzesses der Sonnenstrahlung // Zs. f. Ap. — 1948. — Vol. 25. — P. 161.

Biermann L. // Zs. f. Naturfororsch. — 1952. — Vol. 7a. — P. 127.

Parker E.N. Dynamics of the interplanetary gas and magnetic fields // Astrophys. J. — 1958. — Vol. 128. — P. 664–676.

Паркер Е.Н. Динамические процессы в межпланетной среде. — М.: Мир, 1965. — 364 с.

Гелиосфера (под ред Веселовского И.С., Ермолаева Ю.И.) // Зеленый Л.М., Веселовский И.С. (ред.) Плазменная гелиогеофизика. Том I. — М.: Физматлит. — 2008. — 560 с.

Всехсвятский С.К., Никольский Г.М., Пономарев Е.А., Чередниченко В.И. К вопросу о корпускулярном излучении Солнца // Астрон. журнал. — 1955. — Т. 32. — С. 165–17.

Пономарев Е.А. К теории солнечной короны: Диссертация на соискание ученой степени кандидата физ.-мат. наук. — Киев: Киевский университет, 1957. — 233 с.

Пудовкин М.И. Солнечный ветер // Соросовский образовательный журнал. — 1996. — № 12. — С. 87–94.

Хундхаузен А. Расширение короны и солнечный ветер. — М.: Мир, 1976.

Proelss G.W. Physics of the Earth’s Space Environment. — Berlin: Springer, 2004.

Gazis P.R. Solar cycle variation in the heliosphere // Rev. Geophys. — 1996. — Vol. 34, No. 3. — P. 379–402.

Sheeley N.R., Wang Y.-M., Hawley S.H., et al. Measurements of flow speeds in the corona between 2 and 30R⊙ // Astroph. J. — 1997. — Vol. 484, No. 1. — P. 472–478.

Wilcox J.M., Ness N.F. Extension of the photospheric magnetic field into interplanetary space // Astron. J. — 1965. — Vol. 70. — P. 333.

Forbush S.E. World-wide cosmic-ray variations, 1937–1952 // J. Geophys. Res. — 1954. — Vol. 59, No. 4. — P. 525–542.


Full Text: PDF

Refbacks

  • There are currently no refbacks.