Regularity of acoustic radiation at ascending load on a pair of friction from a composite material

Authors

  • С. Ф. Філоненко Національний авіаційний університет
  • О. П. Космач Національний авіаційний університет
  • Т. М. Косицька Національний авіаційний університет

DOI:

https://doi.org/10.18372/2306-1472.55.5422

Keywords:

acoustic emission, amplitude, composite material, energy, friction, increment, law, level, load, parameter, signal, variation

Abstract

In this article the simulation the results of acoustic emission signals formed by friction surfaces with composite materials at load increasing were showed. The results showed that at increase of axial load increases the amplitude of the resulting parameters of acoustic emission signals, such as the average amplitude, its standard deviation and variance. Thus were obtained the basic changes of amplitude parameters generated signals. Was determined that the variation of the percentage increase in the average amplitude, its standard deviation and variance were  the same type of character, with well approximate by linear functions. The results showed that with growing of axial load the percent increase in average amplitude of the resulting acoustic emission signals. Also, an analysis of the energy parameters of acoustic emission with increasing axial load on the friction pair with composite materials was conducted. The simulation results showed that the percentage increase in the average level of energy and its standard deviation are approximate by linear functions. At the same time the greatest percentage increase with increasing axial load on the friction pair is observed in the dispersion of the average energy of the resulting acoustic emission signals. The results showed that at experimental study of the acoustic emission signals with increasing axial load on the friction pair with composite materials greatest growth is expected in the average amplitude of the resulting AE signals. The growth of its standard deviation and variance will be not significant. At the same time, the greatest growth is expected in the dispersion of the average energy of acoustic emission signals

Author Biographies

С. Ф. Філоненко, Національний авіаційний університет

Філоненко Сергій Федорович. Доктор технічних наук. Профeсор.

Директор Інституту інформаційно-діагностичних систем, Національний авіаційний університет, Київ, Україна.

Освіта: Київський політехнічний інститут, Київ, Україна (1977).

Напрям наукової діяльності: діагностика технологічних процесів та об’єктів, автоматизовані діагностичні системи

О. П. Космач, Національний авіаційний університет

Космач Олександр Павлович. Молодший науковий співробітник.

Національний авіаційний університет, Київ, Україна.

Освіта: Чернігівський державний технологічний університет, Чернігів, Україна (2008).

Напрям наукової діяльності: діагностика технологічних процесів та об’єктів, автоматизовані діагностичні системи

Т. М. Косицька, Національний авіаційний університет

Косицька Тетяна Миколаївна. Кандидат хімічних наук. Старший науковий співробітник.

Національний авіаційний університет, Київ, Україна.

Освіта: Київський політехнічний інститут, Київ, Україна (1981).

Напрям наукової діяльності: фізико-хімічні процеси в матеріалах та їх діагностика

References

Ибатуллин И.Д. Кинетика усталостной повреждаемости и разрушения поверхностных слоев / И.Д. Ибатуллин. – Самара: Самарский государственный технологический университет, 2008. – 387 с.

Использование акустической эмиссии для анализа процессов изнашивания при трении ско-льжения / В.Е. Рубцов, Е.А. Колубаев, А.В. Ко-лубаев, В.Л. Попов // Письма в ЖТФ. –2013. – Т.39. – Вып. 4. – C. 79–86.

Моделі сигналів акустичної емісії при руйнуванні поверхневих шарів пар тертя / В.П. Бабак, С.Ф. Філоненко, В.М. Стадниченко, А.П. Стахова // Проблеми тертя та зношування. – 2007. – № 47. – С. 5–18.

Філоненко С.Ф. Вплив швидкості наванта-ження на амплітудні та енергетичні параметри сигналів акустичної емісії при руйнуванні компо-зиційних матеріалів поперечною силою / С.Ф. Фі-лоненко, О.П. Космач, Т.М. Косицька // Технологические системы. – 2012. – № 1 (58). – С. 46–51.

Філоненко С.Ф. Закономірності зміни амплітудно-енергетичних параметрів сигналів акустичної емісії при зміні розмірів елементів композиційного матеріалу / С.Ф. Філоненко, О.П. Космач // Вісник Національного авіаційного університету. – 2012. – № 4. – С. 66–73.

Філоненко С.Ф. Закономірності зміни часових параметрів сигналів акустичної емісії при руйнуванні композиційного матеріалу / С.Ф. Фі-лоненко, О.П. Космач // Вісник Чернігівського державного технологічного університету. – 2012. – № 2 (57).  С. 114–122.

Филоненко С.Ф. Моделирование сигналов акустической эмиссии при изменении объема материала, вступившего в пластическую деформацію/ С.Ф. Филоненко, А.П. Стахова, В.Г. Крав-ченко // Технологические системы. – 2008. – № 1 (41). – С. 22–27.

Braun, O.M.; Manini, N.; Tosatti, E. 2008. Role of lubricant molecular shape in microscopic friction. Physical review. Vol. 78: 195402-1–195402-10.

Braun, O.M.; Tosatti, E. 2011. Kinetics and dynamics of frictional stick-slip in mesoscopic boundary lubrication. Philosophical magazine. Vol. 91: 3253–3275.

Cao, D. 2010. Investigation of acoustic emission and surface treatment to improve tool matereals and metal forming process. Dissertation The Degree Doctor of Philosophy in Materials Engineering. University of Dayton (Dayton, Ohio). 116 p.

Dobrzanski, L.A.; Pakuła, D.; Krizb, A.; Sokovic, M. 2006. Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics. Journal of materials processing technology. Vol. 175: 179–185.

Ferrer, C.; Salas, F.; Pascual, M.; Orozco, J. 2010. Discrete acoustic emission waves during stick–slip friction between steel samples. Tribology International. Vol. 43, N 1: 1–6.

Hong, E.; Kaplin, B.; You, T.; Suh, M.; Kim, Y.S.; Choe, H. 2011. Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear. Vol. 270: 591–597.

Liao, C.; Suo, S.; Wang, Y.; Huang, W.; Liu, Y. 2012. Study on stick-slip friction of reciprocating o-ring seals using acoustic emission techniques. Tribology transactions. Vol. 55, N 1: 43–51.

Filonenko, S.; Kalita, V.; Kosmach, A. 2012. Destruction of composite material by shear load and formation of acoustic radiation. Aviation. Vol. 16, N 1: 5–13.

Filonenko, S.F.; Stahova, A.P.; Kositskaya, T.N. 2008. Modeling of the acoustic emission signals for the case of material’s surface layers distraction in the process of friction. Proceedings of the National Aviation University. N 2: 24–28.

References

Ibatullin I.D. 2008. Kinetics of fatigue failure rate and destruction of surface layers. Samara, Samara State Technological University press. 387 p. (in Russian).

Rubtsov, V.E.; Kolubaev, A.V.; Popov, V.L. 2013. The use of acoustic emission analysis for the wear in sliding friction. Letters to ZHTF. Vol. 4: 79–86 (in Russian).

Babak, V.P.; Filonenko, S.F.; Stadnychenko, V.M.; Stakhova, A.P. 2007. Models of acoustic emission signals in the destruction of the surface layers of friction pairs. Problems of friction and wear. Vol. 47: 5–18 (in Ukrainian).

Filonenko, S.F.; Kosmach, O.P.; Kositskaya, T.M. 2012. Effect of loading rate on the amplitude and energy parameters of acoustic emission signals in the destruction of composite shear force. Technological systems. N 1 (58): 46–51 (in Ukrainian).

Filonenko, S.F.; Kosmach, O.P. 2012. Laws of change in amplitude and energy parameters of acoustic emission signals at change of dimensions of the composite material. Proceedings of National Аviation University. N 4: 66–73 (in Ukrainian).

Fіlonenko, S.F.; Kosmach, O.P. 2012. Laws of change of time signal parameters of acoustic emission at destruction of composite material. Proceedings of Chernihiv State Technological University. N 2 (57): 114–122 (in Ukrainian).

Filonenko, S.F.; Stakhova, A.P.; Kravchenko, V.G. 2008. Modeling of acoustic emission signals at the amount of material that came in plastic deformation. Technological systems. 2008. N 1 (41): 22–27 (in Russian).

Braun, O.M.; Manini, N.; Tosatti, E. 2008. Role of lubricant molecular shape in microscopic friction. Physical review. Vol. 78: 195402-1–195402-10.

Braun, O.M.; Tosatti, E. 2011. Kinetics and dynamics of frictional stick-slip in mesoscopic boundary lubrication. Philosophical magazine. Vol. 91: 3253–3275.

Cao, D. 2010. Investigation of acoustic emission and surface treatment to improve tool matereals and metal forming process. Dissertation The Degree Doctor of Philosophy in Materials Engineering. University of Dayton (Dayton, Ohio). 116 p.

Dobrzanski, L.A.; Pakuła, D.; Krizb, A.; Sokovic, M. 2006. Tribological properties of the PVD and CVD coatings deposited onto the nitride tool ceramics. Journal of materials processing technology. Vol. 175: 179–185.

Ferrer, C.; Salas, F.; Pascual, M.; Orozco, J. 2010. Discrete acoustic emission waves during stick–slip friction between steel samples. Tribology International. Vol. 43, N 1: 1–6.

Hong, E.; Kaplin, B.; You, T.; Suh, M.; Kim, Y.S.; Choe, H. 2011. Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear. Vol. 270: 591–597.

Liao, C.; Suo, S.; Wang, Y.; Huang, W.; Liu, Y. 2012. Study on stick-slip friction of reciprocating o-ring seals using acoustic emission techniques. Tribology transactions. Vol. 55, N 1: 43–51.

Filonenko, S.; Kalita, V.; Kosmach, A. 2012. Destruction of composite material by shear load and formation of acoustic radiation. Aviation. Vol. 16, N 1: 5–13.

Filonenko, S.F.; Stahova, A.P.; Kositskaya, T.N. 2008. Modeling of the acoustic emission signals for the case of material’s surface layers distraction in the process of friction. Proceedings of the National Aviation University. N 2: 24–28.

Published

11-05-2013

How to Cite

Філоненко, С. Ф., Космач, О. П., & Косицька, Т. М. (2013). Regularity of acoustic radiation at ascending load on a pair of friction from a composite material. Proceedings of National Aviation University, 55(2), 79–89. https://doi.org/10.18372/2306-1472.55.5422

Issue

Section

MODERN AVIATION AND SPACE TEHNOLOGY