MATHEMATICAL MODEL OF AN EDUCATIONAL PROGRAM QUALITY ASSESSMENT
DOI:
https://doi.org/10.18372/2306-1472.84.14956Keywords:
educational program, evaluation methods, higher education institutions, mathematical model, quality criteria, regression analysisAbstract
The purpose of this article is to substantiate the methods, principles and approaches to building a mathematical model for quantitative assessment of the educational program quality functioning, regardless of the subject area and specialty for which it has been developed. Methods: The article analyzes sixty-five educational programs developed in accordance with thirty-five specialties within fourteen subject areas. These programs operate in forty-nine higher education institutions in different regions of Ukraine. An interval scale has been developed, which allowed translating the qualitative characteristics (criteria) of the educational program into quantitative ones. Using the regression analysis method and software product PRIAM (planning, regression and model analysis) a mathematical model has been built, that allows not only to assess the quality of the educational program in more accurate and reliable way, but also to determine the level and duration of its accreditation. Results: to quantify the educational program quality, a mathematical model has been developed and its statistical characteristics have been analyzed. Informativeness, adequacy, accuracy and stability have been determined, and the diagrams of criteria (regressors) mutual influence on the educational program quality have been built. Discussion: a linear regression model based on a qualimetric approach and TQM principles has been proposed. The use of regression analysis methods allowed to identify the criteria (regressors) mutual influence, determine their priority and quantify the educational program quality as a whole. This approach allows to reasonably choose the optimal number of criteria, their mutual influence and priority. This further allows to more reliably and accurately determine the level of educational program accreditation, which is relevant for each higher education institution.
References
The verkhovna rada of Ukraine (2019). “Polozhennja” «Pro akredytaciju osvitnih program, za jakymy zdijsnjujet'sja pidgotovka zdobuvachiv vyshhoi' osvity”. Available at: http://zakon.rada.gov.ua/laws/show/z0880-19. (Accessed 20.07.20).
Draper N.R., Smith H. (1998). Applied Regression Analysis Third Edition. New York, John Wiley & Sons, Inc, 736 р. USA.
Radchenko S.G. (2011). Metodologija regressionnogo analiza. Kiev, Kornijčuk, 376 р. (In Russian).
Lapach S.N. (2016). Regressionnyj analiz. Processnyj podhod. Matematyčni mašyny i systemy. No. 1, pp. 129 – 138. (In Russian).
Greene W.H. (2016). Ecoonometric analysis. Fours Edition, Pearson Education Company, New Jersey, USA.
Lapach S.N., Radchenko S.G. (2012). Osnovnye problemy postroenija regressionnyh modelej. Matematyčni mašyny i systemy. No. 4, pp. 125 – 133. (In Russian).
Lapach S.N., Chubenko A.V. & Babich P.N. (2002). Statistika v nauke i biznese [Statistics in science and business]. Kiev, Morion, 640 р. Ukraine. (In Russian).
Radchenko S.G., Lapach S.N. (2019). Matematicheskoe modelirovanie obrabotki vysokprochnyh stalej. Mechanics and Advanced Technologies. No. 1 (85), pp. 101 – 110. (In Russian).
Shherbina S.A., Roma A.V. (2013). Ekonomiko-matematychne modeljuvannja osnovnyh pokaznykiv dijal'nosti pidpryjemstva malogo biznesu. Ekonomika i region. No. 5, pp. 176 – 181.nbuv.gov.ua/UJRN/econrig_2013_5_30 (In Ukrainian).
Mirnenko V.I., Poltorak M.F., Dulenko D.I. (2017). Metodyka matematyčnoho modeljuvannja prohnozuvannja stanu žorstkyx aerodromnyx pokryttiv. Sučasni informacijni texnolohiji u sferi bezpeky ta oborony. No. 1, pp. 96 – 100. Available at: http://nbuv.gov.ua/UJRN/sitsbo_2017_1_19 (Accessed 20.07.20). (In Ukrainian).
Zorenko Jaroslav. (2009). Metodyka rehresijnoho analizu dlja ocinky čynnykiv upravlinnja u systemi «oryhinal–vidbytok». Texnolohija i texnika drukarstva. рр. 47 – 52. doi: 10.20535/2077-7264.4(26).2009.57844. (In Ukrainian).
Karpenko B.O., Lapač S.M. (2020). Modeljuvannja točnosti druku 3D pryntera. Innovaciji molodi v mašynobuduvanni. No 2. pp. 424 – 434. (In Ukrainian).
Solovyh E.K., Volkov Ju.V., Vorona T.V. (2017). Opredelenie optimal'nyh rezhimov jelektrokontaktnogo pripekanija diskretnyh pokrytij pri vosstanovlenii i uprochnenii valov dvigatelej. Problemi tribologії. Hmel'nickij: HNU. No 1. pp. 79 – 89. (In Russian).
Ageev M.A., Dan'ko K.A., Dovzhuk S.A. (2017). Ocenka vlijanija parametrov processa gazotermicheskogo napylenija pokrytij na ih svojstva putem ispol'zovanija metodov matematicheskogo planirovanija. Vestnik Polockogo gosudarstvennogo universiteta. Serija B. Promyshlennost'. Prikladnye nauki. No 3, pp. 35 – 40.
Sjasʹka N., Jarova O. (2019). Zastosuvannja metodiv matematyčnoho modeljuvannja u pojednanni iz zasobamy novitnix informacijnyx texnolohij u xodi vyvčennja stereometriji majbutnimy včyteljamy matematyky. Nova pedahohična dumka. No 1 (97). pp. 114 – 117. (In Ukrainian)
Teodoro Vitor & Neves Rui. (2011). Mathematical modelling in science and mathematics education. Computer Physics Communications. 182. 8-10. 10.1016/j.cpc.2010.05.021.
Rejestr akredytacijnyh sprav. Available at: naqa.gov.ua/%d0%b0%d0%ba%d1%80%d0%b5%d0%b4%d0%b8%d1%82%d0%b0%d1%86%d1%96%d1%8f/. (Accessed 10.07.20). (In Ukrainian)
[
The verkhovna rada of Ukraine (2019). Kryterii' : Dodatok do Polozhennja pro akredytaciju osvitnih program, za jakymy zdijsnjujet'sja pidgotovka zdobuvachiv vyshhoi' osvity (paragraph 6 section I) Available at: http://zakon.rada.gov.ua/laws/show/z0880-19#n182. (Accessed 20.07.20). (In Ukrainian)
Lapach S.N., Radchenko S.G., Babich P.N. (1993). Planyrovanye, rehressyja y analyz modelej PRIAM (PRYAM). Kataloh prohrammnыe produktы Ukraynы. Kiev. pp. 24 – 27. Ukraina. (In Russian).
Himicheva G.I., Volivach A.P. (2020). Pobudova kvalimetrychnoi' modeli dlja ocinjuvannja jakosti osvitn'oi' program. Bulletin of engineering academy of Ukraine. No 1, pp. 152 – 158. (In Ukrainian).
Himicheva G.I., Volivach A.P. (2019). Assessment of the learning process risks at higher educational institutions in accordance with the DSTU ISO 31010:2013 requirements. Ocinjuvannja ryzykiv osvitn'ogo procesu ZVO zgidno z vymogamy DSTU ISO 31010:2013. New stages of develjpment of modern science in Ukraine and EU countries: monograph . edited by authors. – 3rd ed. – Riga, Latvia : «Baltija Publ». pp. 268 – 289. http://doi: 10.30525/978-9934-588-15-0-61.