RPAS DATA TRANSMISSION VIA GROUND NETWORK

Authors

  • Andrii Grekhov National Aviation University
  • Vasyl Kondratiuk National Aviation University
  • Svitlana Ilnytska Wenzhou University

DOI:

https://doi.org/10.18372/2306-1472.84.14949

Keywords:

Remotely Piloted Air System (RPAS), Unmanned Aerial Vehicle (UAV), communication channel, line-of-sight (LOS), beyond-line-of-sight (BLOS), ground network, data traffic, Transaction Size, Time Between Transactions, Bit Error Rate, Packet Fail Chance

Abstract

First built RPAS communication channel models including ground network was created, the dependencies of channel’s average utilization on the transaction size with various statistical distribution laws for the time between transactions were analyzed. Communication links with different bandwidths were investigated, the influence of the bit error rate and the packet fail chance on the communication channel utilization were studied. The results indicate that the most preferable for data transmission is LogNormal distribution law. Data transmission over a line-of-sight RPAS communication channel and over terrestrial network (beyond-line-of-sight) was compared for the first time.

Author Biographies

Andrii Grekhov, National Aviation University

Doctor of Physical and Mathematical Sciences, Professor, National Aviation University.Education: Kyiv State T. Shevchenko University (1973). Research area: surveillance, ADS-B systems, telecommunications, computer modeling.

Vasyl Kondratiuk, National Aviation University

Director of Research and Training Centre "Aerospace Centre", National Aviation University. Education: Kyiv Polytechnic Institute (1985) Research area: global navigation satellite systems, unmanned aerial vehicles, aviation, performance-based navigation (PBN), experimental techniques.

Svitlana Ilnytska, Wenzhou University

Ph.D, Senior Researcher in the Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University (China). Education: National Aviation University (2007) Research area: computer modelling, integrated satellite-inertial navigation systems, unmanned aerial vehicles, global navigation satellite systems, aviation, performance-based navigation (PBN), UAV communication channels, space-air-ground integrated systems, experimental techniques.

References

Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys and Tutorials, 18(2). https://doi.org/10.1109/COMST.2015.2495297

Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on Unmanned Aerial Vehicle Networks for Civil Applications: A Communications Viewpoint. In IEEE Communications Surveys and Tutorials (Vol. 18, Issue 4). https://doi.org/10.1109/COMST.2016.2560343

Motlagh, H.N., Taleb, T., & Arouk, O. (2016). Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive Survey and Future Perspectives. IEEE Internet of Things Journal, 3(6), pp. 899–922. https://doi.org/10.1109/JIOT.2016.2612119

Sharma, V., & Kumar, R. (2017). Cooperative frameworks and network models for flying ad hoc networks: a survey. Concurrency and Computation: Practice and Experience, 29(4). https://doi.org/10.1002/cpe.3931

Khuwaja, A. A., Chen, Y., Zhao, N., Alouini, M. S., & Dobbins, P. (2018). A survey of channel modeling for UAV communications. IEEE Communications Surveys and Tutorials, 20(4), pp. 2804–2821. https://doi.org/10.1109/COMST.2018.2856587

Khawaja, W., Guvenc, I., Matolak, D. W., Fiebig, U., & Schneckenburger, N. (2019). A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles. IEEE Communications Surveys & Tutorials, 21(3), pp. 2361–2391. https://doi.org/10.1109/COMST.2019.2915069

Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D., & Yanikomeroglu, H. (2018). Airborne communication networks: A survey. In IEEE Journal on Selected Areas in Communications (Vol. 36, Issue 9, pp. 1907–1926). https://doi.org/10.1109/JSAC.2018.2864423

Li, B., Fei, Z., & Zhang, Y. (2019). UAV Communications for 5G and Beyond: Recent Advances and Future Trends. IEEE Internet of Things Journal, 6(2), pp. 2241–2263. https://doi.org/10.1109/JIOT.2018.2887086

Vinogradov, E., Sallouha, H., De Bast, S., Azari, M. M., & Pollin, S. (2018). Tutorial on UAVs: A blue sky view on wireless communication. In Journal of Mobile Multimedia (Vol. 14, Issue 4, pp. 395–468). https://doi.org/10.13052/jmm1550-4646.1443

Mozaffari, M., Saad, W., Bennis, M., Nam, Y. H., & Debbah, M. (2019). A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Communications Surveys and Tutorials, 21(3), pp. 2334–2360. https://doi.org/10.1109/COMST.2019.2902862

Sharma, V. (2019). Advances in Drone Communications, State-of-the-Art and Architectures. Drones, 3(1), 21 p. https://doi.org/10.3390/drones3010021

Khan, M. A., Qureshi, I. M., & Khanzada, F. (2019). A Hybrid Communication Scheme for Efficient and Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones, 3(1), 16 p. https://doi.org/10.3390/drones3010016

Yan, C., Fu, L., Zhang, J., & Wang, J. (2019). A Comprehensive Survey on UAV Communication Channel Modeling. IEEE Access, 7, pp. 107769– 107792. https://doi.org/10.1109/ACCESS.2019.2933173

Bing, L. (2017). Study on Modeling of Communication Channel of UAV. Procedia Comput. Sci., 107(C), pp. 550–557. https://doi.org/10.1016/j.procs.2017.03.129

Fotouhi, A., Qiang, H., Ding, M., Hassan, M., Giordano, L. G., Garcia-Rodriguez, A., & Yuan, J. (2019). Survey on UAV Cellular Communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Communications Surveys Tutorials, 21(4), pp. 3417– 3442. https://doi.org/10.1109/COMST.2019.2906228

Marchese, M., Moheddine, A., & Patrone, F. (2019). IoT and UAV integration in 5G hybrid terrestrial-satellite networks. Sensors (Switzerland), 19(17), 3704 p. https://doi.org/10.3390/s19173704

Grekhov, A., Kondratiuk, V., Ermakov, A., & Chernyuk, E. (2017). Influence of Transmitter Nonlinearities on Data Transmission from Remotely Piloted Air System. Proceedings of the National Aviation University, 3, pp. 33–41.

Grekhov, V. Kondratiuk, S. Ilnytska, A. (2018). Nonlinearities Impact on Satellite RPAS Communication in Clusters. Global Journal Of Research In Engineering. Available at:

https://engineeringresearch.org/index.php/GJRE/article/view/1805.

Grekhov, A., Kondratiuk, V., & Ilnitska, S. (2019). RPAS Satellite Communication Channel Based on IEEE 802.11b Standard. Transport and Aerospace Engineering, 7(1), pp. 32–40. https://doi.org/10.2478/tae-2019-0004.

Grekhov, A., Kondratiuk, V., Ilnytska, S., Vyshnyakova, Y., Kondratiuk, M., & Trykoz, V. (2019). Satellite Traffic Simulation for RPAS Swarms. 2019 IEEE 5th International Conference Actual Problems of Unmanned Aerial Vehicles Developments, APUAVD 2019 - Proceedings, pp. 265–269. https://doi.org/10.1109/APUAVD47061.2019.8943881

Grekhov, A. M. (2019). Recent Advances in Satellite Aeronautical Communications Modeling. IGI Global. https://doi.org/10.4018/978-1-5225-8214-4

Federal Aviation Administration (FAA) Releases Aerospace Forecast Fiscal Years (FY) 2018-2038. (2018). Available at: https://www.faa.gov/news/updates/?newsId=89870

SESAR JU. European Drones Outlook Study. (2016). Available at: https://www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf

Sekander, S., Tabassum, H., & Hossain, E. (2017). Multi-tier Drone Architecture for 5G/B5G Cellular Networks: Challenges, Trends, and Prospects. CoRR, abs/1711.08407. Available at: http://arxiv.org/abs/1711.08407

Genc, H., Zu, Y., Chin, T.-W., Halpern, M., & Reddi, V. J. (2017). Flying IoT: Toward Low-Power Vision in the Sky. IEEE Micro, 37(6), pp. 40– 51. https://doi.org/10.1109/ACCESS.2018.2819189

Ding, G., Wu, Q., Zhang, L., Lin, Y., Tsiftsis, T. A., & Yao, Y. (2018). An Amateur Drone Surveillance System Based on the Cognitive Internet of Things. IEEE Communications Magazine, 56(1), pp. 29–35. https://doi.org/10.1109/MCOM.2017.1700452

Locke, J. (2019). IoT Drones: How the Use Cases for Drones are Changing. IoT Drones: How the Use Cases for Drones Are Changing. Available at: https://www.digi.com/blog/post/iot-drones-how-use-cases-for-drones-are-changing

Marchese, M., Moheddine, A., & Patrone, F. (2019). IoT and UAV integration in 5G hybrid terrestrial-satellite networks. Sensors (Switzerland), 19(17), 3704 p. https://doi.org/10.3390/s19173704

Vikranth, D. R. (2017). UAV Swarm Co-Ordination and Control Using Grossberg Neural Network. International Journal of Computer Science Trends and Technology (IJCST), 5(4), pp. 1–7. Available at: http://www.ijcstjournal.org/volume-5/issue-4/IJCST-V5I4P1.pdf

Cui, Q., Liu, P., Wang, J., & Yu, J. (2017). Brief analysis of drone swarms communication. 2017 IEEE International Conference on Unmanned Systems (ICUS), pp. 463-466.

Zeng, T., Mozaffari, M., Semiari, O., Saad, W., Bennis, M., & Debbah, M. (2018). Wireless Communications and Control for Swarms of Cellular-Connected UAVs. 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 719–723. https://doi.org/10.1109/ACSSC.2018.8645472

Campion, M., Ranganathan, P., & Faruque, S. (2018). A Review and Future Directions of UAV Swarm Communication Architectures. 2018 IEEE International Conference on Electro/Information Technology (EIT), pp. 903–908. https://doi.org/10.1109/EIT.2018.8500274

Campion, M., Ranganathan, P., & Faruque, S. (2019). UAV swarm communication and control architectures: a review. Journal of Unmanned Vehicle Systems, 7(2), pp. 93–106. https://doi.org/10.1139/juvs-2018-0009

Zeng, Y., & Zhang, R. (2017). Energy-Efficient UAV Communication with Trajectory Optimization. IEEE Transactions on Wireless Communications, 16(6). https://doi.org/10.1109/TWC.2017.2688328

Published

21-10-2020

How to Cite

Grekhov, A., Kondratiuk, V., & Ilnytska, S. (2020). RPAS DATA TRANSMISSION VIA GROUND NETWORK. Proceedings of National Aviation University, 84(3), 19–26. https://doi.org/10.18372/2306-1472.84.14949

Issue

Section

AEROSPACE SYSTEMS FOR MONITORING AND CONTROL

Most read articles by the same author(s)

1 2 > >>