HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE

Authors

  • Vitalii Korobov Institute of Hydromechanics of National Academy of Sciences

DOI:

https://doi.org/10.18372/2306-1472.71.11749

Keywords:

angular acceleration, angular velocity, drag-thrust, dynamic load, lift, oscillating wing

Abstract

Purpose: research of the hydrodynamic characteristics of a wing in a nonstationary stream. Methods: The experimental studies of the hydrodynamic load acting on the wing of 1.5 elongation, wich harmonically oscillated respect to the transversal axis in the frequency range of 0.2-2.5 Hz. The flow speed in the hydrodynamic tunnel ranged of 0.2-1.5 m/s. Results: The instantaneous values of the coefficients of lift and drag / thrust on the pitch angle at unsteady flow depends on the Strouhal number.Discussion: with increasing oscillation frequency coefficients of hydrodynamic force components significantly higher than the data for the stationary blowing out of the wing.

Author Biography

Vitalii Korobov, Institute of Hydromechanics of National Academy of Sciences

Vitalii Korobov. Ph.D., Senior Researcher

Department of Hydrobionics and Boundary Layer Control,

Institute of Hydromechanics of National Academy of Sciences, Kyiv, Ukraine.

Education: Kharkiv Aviation Institute, Ukraine.

Research area: aero-hydrodynamics, boundary layer control, unsteady fluid mechanics.

References

Nekrasov A.I. (1947) Teoriya kryla v nestatsionarnom potoke [The theory of the wing in unsteady flow]. Moscow-Leningrad, USSR Acad. Scien. Publ., 258 p. (In Russian).

Belotserkovsky S.M., Skripach B.K., Tabachnikov V.G. (1971) Krylo v nestatsionarnom potoke gaza [The wing in unsteady flow of gas]. Moscow, Nauka Publ., 767 p. (In Russian).

Rozhdestvensky K.V., Ryzhov V.A. (1985) Matematicheskiye modeli v teorii mashushchego kryla [Mathematical models in the theory of flapping wings]. Leningrad, Shipbuild. Instit. Publ, 89 p. (In Russian).

Münch С, Ausoni Ph, Farhat M, Avellan F (2007) 2D oscillating hydrofoil. Proc. 2nd IAHR Intern. Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems. Scien. Bulletin of the “Politehnica” University of Timisoara, Romania, Transactions on Mechanics, vol. 52 (66), pp. 229-234.

Fenercioglu I., Zaloglu B, Young J., Ashraf M.A., Lai J.C.S., Platzer M.F. (2015) Flow Structures Around an Oscillating - Wing Power Generator. AIAA J., vol. 53, No. 11, pp. 3316-3326.

Drofelnik J, Campobasso M. S. (2016) Comparative turbulent three-dimensional Navier–Stokes hydrodynamic analysis and performance assessment of oscillating wings for renewable energy applications. International Journal of Marine Energy, vol. 16, pp. 100-115.

Gorelov D. N. (1980) Eksperimental'noye issledovaniye tyagi mashushchego kryla [Experimental study of flapping wing thrust]. Kiev, Bionics, Naukova Dumka Publ., No 14, p. 42-45 (In Russian).

De Lourier, J.D., Harris, J.M. (1982) Experimental study of oscillating – wing propulsion. J. Aircraft, No 5, pp. 368-373.

Glushko V.N., Kayan V.P., Kochin V.A (1992) Ob optimizatsii propul'sivnykh kharakteristik mashushchego dvizhitelya [On the optimization of propulsion characteristics flapping propulsion]. Kiev, Bionics, Naukova Dumka Publ., No 25, pp. 75-80 (In Russian).

Mc.Croskey W.J., Carr L.W., Mc.Alister K.W. (1976) Dynamic stall experiments on oscilletig airfols. AIAA J., vol.14, No 1, pp. 57-63.

Kim D, Strom B, Mandre Sh, Breuer K. (2017) Energy harvesting performance and flow structure of an oscillating hydrofoil with finite span. J. Fluids and Structures, vol. 70, pp. 314-326.

Grebeshov E.P., Saghoyan O.A. (1976) Gidrodinamicheskiye kharakteristiki koleblyushchegosya kryla, vypolnyayushchego funktsii nesushchego elementa i dvizhitelya [Hydrodynamic characteristics of oscillating wing performing the functions of the carrier element and the propeller]. Moscow, Proc. TsAGI, No 1725, pp. 3-30 (In Russian).

Tabachnikov V.G. (1974) Statsionarnyye kharakteristiki kryl'yev na malykh skorostyakh vo vsem diapazone uglov ataki [Stationary characteristics of wings at low speed over the entire range of angles of attack]. Moscow, Proc. TsAGI, No 1621, pp. 79-93 (in Russian).

Mackowski A.W., Williamson C.H.K. (2015) Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching. J. Fluid Mechanics, vol. 765, pp. 524 – 543.

Published

2017-07-14

How to Cite

Korobov, V. (2017). HYDRODYNAMICS OF OSCILLATING WING ON THE PITCH ANGLE. Proceedings of the National Aviation University, 71(2), 70–75. https://doi.org/10.18372/2306-1472.71.11749

Issue

Section

MODERN AVIATION AND SPACE TEHNOLOGY