


on the controllability gramian [2,3]. Let the aircraft dynamics of the aircraft is described by standard

vector -matrix differential equation

ﬁ:AX+BU+BlF,
dt

(1)
Y=CX +DU,

where A and B are the matrices of the aircraft’s stability and controllability derivatives respectively,
the state vector for the lateral motion (LAM) has the form X = [B p.r. b, cp]’ with the following

components: sidesleep angle 8,roll p and yaw r rates,roll ¢ and yaw y angles and for longitudinal
motion (LOM) itis X = [u,h,w,e,q]’,, where u, h, w stand for the deviations of the horizontal
velocity u, height h and vertical velocity w from their steady-state values,0,q are pitch angle and rate
respectively; control vector for LAM U = [Sa,S,] ,,where 6,,8, stand for ailerons and rudder

a»=y
displacements respectively, and the same vector for LOM has components: &t~ throttle control lever
and de - elevator displacements; f is external disturbance (wind gust, vertical for LOM and lateral for
LAM ).
Quadratic PI has traditional form of the quadratic cost function ( # , -norm):

T
J = [[X0X +URUM,

where: X'=[p, p, r,¢,w] is the state vector, U'=[5a,5r] is the control vector.

Using definition of the specific aerodynamic lateral force [1], which causes the linear lateral
acceleration |

f _azjxj +bzkuk: (2)

where xj is p for (LAM) and w for (LOM) and uk is ér for (LAM) and &e for (LOM) it is possible to
define contribution , which this force gives to the quadratic PI for the limitation of lateral linear
acceleration, using the square of the expression (2) with some weight Qf In this case the cross
product of the fs"2 produces the cross product matrix N and the expression for a Hy-norm would
have the form :

J= ?z’ledt- (3)

Q N} and Z is the vector : Z'=[X U]
N Q

As it was noticed before ,the calculation of the PI is proposed tc do on the basis of the
controllability gramian. For the state space description of the closed-loop control system in the form
(1), whose description includes the state variables of the aircraft as well as control variables (outputs
of controller) and may be obtained from (1) with the simple substitution of the A,B,C,D matrices by

corresponding matrices of the closed loop system A.,B.,C_,D,; controllability gramian G is the

In the expression (3) Q,is the block matrix @, = [

matrix ,which is defined by the solution of the Llapunov equatlon [2,31:
A.G+GA, +B.B, =0.

Matrices A., B., C., D. are calculated using known formulas for given matrices of aircraft and
autopilot state space description. This operation is easily done in MATLAB by operator «feedback».

In the accordance with the [2] Hy-norm (cost function) in the form (3) could be expressed
using controllability gramian G as follows :

J = trace(CqGCy ) (4)
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slightly this value to acquire small stability margin, we can consider it as perturbed value af . If

al =a;™, it is possible to run only one optimization procedure. If not , it is possible to choose

3

previously defined a; as new nominal value and to find new increased perturbed value of a; from

the stability viewpoint. Using these new nominal and perturbed values it would be necessary to
repeat optimization procedure, defining new values of FCL parameters for increased stability
domain. This sequential procedure could be performed until certain step, when the stability domain
could not be increased anymore. In practical cases 2-3 steps of procedure’s repetition could cover
~ necessary parameter’s tolerances.

3. Achieved results

Application of aforementioned procedure to the robust parametric FCL optimization was made
for control of the LAM - dynamics of short-range passenger aircraft in landing mode. Optimization
of FCL for aircraft LOM channel was made in the same way, but results are not presented here.
Corresponding control law of the lateral channel of autopilot is expressed in terms of Laplas
transform as follows :

r K.
Sa(s):m}_[fv V() + K, p()+ K, - r(s)+ K- 0(s)+ Ky - w(s)+ (K, +-§1).y(s)]

8r(s) = Ky -wis)+ (%!’-;if +K,,)- r(s)} ,

1
(7, s+ 1)[ S+
where da,dr stand for the deflections of aileron and rudder respectively, 7,,7, stand for time

constants of actuator and wash-out filter (in the rudder channel only ), v is the lateral velocity ( or
sidesleep angle G) ; p,r are the roll and yaw rates; @,y are the roll and yaw angles ; y is lateral

displacement from the glideslope (measured by integrated GPS+INS), letters KV:---, K rr are

corresponding gains which have to be determined as a result of optimization procedure. Matrix 4,
of stability derivatives of aircraft ‘s LAM dynamics in landing mode with  «nominal» (unperturbed)

parameters for state-space vector X = [v, Do, y]T is the following :

-0.196 4945 -246 322 0 O
-0.019 -3223 08613 0 0 0

4 | 0009 -029 -066 0 0 O
‘ 0 1 0 0 00
0 0 1 0131 0 0

|1 0 0 0 00

All eigenvalues of matrix A, are located in left half-plane. Matrix 4, of perturbed parametrs
differs from matrix 4, only by element a,,, which is the effective dihedral, i.e. rolling moment

derivative coefficient with respect the sidesleep angle, which define the damping of both dutch roll
and spiral modes. In matrix A, this coefficient is equal -0.007 (2.7 times less in absolute value in

comparison with the same element of A4,), that’s why this matrix has eigenvalue in right half-plane,
so LAM of aircraft itself with perturbed parameter a,, is unstable. Control derivatives matrix B is

the following:
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[ 0o 00137 00017 0 0 O]
0.1476 00069 —-0.1006 0 O 0

After converting FCL (6) in the state-space form and obtaining state-space description of the
closed loop system with aircraft’s matrices 4, (or 4,) and B, defined by (5) and (6) , 1t is possible
to apply aforementioned optimization procedure for parametric H, —optimization and further

robust optimization of FCL. The vector of FCL gains K after robust optimization was obtained in
the following form:

B= [k, K, K.K,.K,.K,K,.K,.K, K| =

iy?

=[0.71, -8.68, 0.054, 105, 2.7, 0.39, 0028, -37.2,-31.8, -33.37}.

Some components of this vector are large , but it is possible to use conditional optimization
procedure with restrictions on the input variables ,if it would be necessary to restrict some gains
from the other possible viewpoints.

The results of robust parameter optimization of LAM Control Law , when the effective
dihedral a,, varies in the tolerances [-0.019, -0.007], are presented at the fig.1 and fig.2
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respectively (transient processes for system with nominal @, =-0.019 and perturbed parameter a,,

= -0.007). At these figures only 2 first state vector X = [v, Do, y]T components are
represented: longitudianal velosity v and roll rate p. All other components are not shown her to the
limitation of the volume of paper, but all these figures show, that they are similar for the perturbed
and unperturbed systems . H, - norm, which defines the accuracy of closed -loop system and
accordance with airworthiness requirements [ 6 ], decreases at only 10-20% in companson with
resufts of the pure H,-optimization. The same difference is between the values of the X -norm.
The input disturbance was selected as lateral wind gust, whose shape was defined by FAR-
requirements. This procedure could be extended to any other variable parameter, for instance, to the
"weathercock stability coefficient” a,,. The similar results were obtained for LOM, when
"longitudinal static stability coefficient" was changed in the wide range.
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