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SEQUENTIAL H2-OPTIMIZATION PROCEDURE FOR ROBUST FLIGHT 
CONTROL LAW'S PARAMETRIC SYNTHESIS 

Sequential iterative procedure of Flight Control Law (FCL) robust parametric 
optimization is proposed. The 1st step of this procedure is the application of the convex 
optimization procedure with quadratic performance index whose coefficient are chosen 
on the basis of airworthiness requirements. The next steps are made for enlargement of 
the stability domain in the space of variable parameters applying aforementioned 
procedure for composite performance index constructed from components, which 
depend on the influence of parametric disturbances. Practical example illustrates the 
efficiency of this procedure. 

l.Introduction 
The modern control theory permits to solve various types of problems of the aircraft control 

laws synthesis on the basis of the optimal linear-quadratic theory (H2-optimization) or the robust 
control theory (Ню-optimization).Nevertheless in some practical cases there is the great necessity to 
apply-the methods of the parametric optimization of control laws with given structure. The reasons 
of importance of parametric optimization usage are the following: 

- existing flight control laws (FCL) are produced on the basis of the great practical experience 
achieved in the flight testing as well as during the very long period of normal operation in the 
standard flight modes. 

- the standard procedures of the robust FCL optimization, based on the H a criteria ,are 
designed to achieve singular value loop shaping specification due to the following Hm -norm of the 
control system's transfer function matrix G(jo)) [ 1 ] = Super (G(j со)) , where cr(-) is the 

greatest singular value of matrix G(jco). Such criterion represents only dynamical properties of 
closed- loop control system and does not relate directly to the mentioned above requirements of 
airworthiness. 

Aforementioned reasons create the sufficient background for the formulation and solution of 
the parametric optimization of the existing control laws on the basis of the modern control theory 
and existing advanced software ,which is included in the MATLAB Toolboxes and the Simulink. 

2.The formulation of the parametric optimization task 
The formulation of this task includes the choice of the performance index (PI) for parameter 

optimization of the given structure and the choice of the appropriate method of its solution. As it 
was mentioned before the choice of the reasonable from the practical viewpoint PI have to be based 
on the operational criteria defined by the airworthiness and the flight safety. In this situation it is very 
useful to meet Aviation regulation requirements using, for instance, requirements FAR 25 for flight 
envelope , flight maneuver and gust conditions. There is the obvious requirements for limitations of 
the angular and linear accelerations in the longitudinal and lateral motions as well as limitations of 
the displacements of control surfaces. To meet all these requirements in the parametric optimization 
procedure is possible only on the basis of the state space approach and using the quadratic PI based 
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on the controllability gramian [2,3]. Let the aircraft dynamics of the aircraft is described by standard 
vector -matrix differential equation 

Y = CX+DU, 

where A and B are the matrices of the aircraft's stability and controllability derivatives respectively, 
the state vector for the lateral motion (LAM) has the form X = [j3, r, 4>, cp]' with the following 
components: sidesleep angle p,roll p and yaw r rates,roll <j> and yaw \\> angles and for longitudinal 
motion (LOM) it is X = [m,/?,w,9,#]'„ where u, h, w stand for the deviations of the horizontal 
velocity u, height h and vertical velocity w from their steady-state values,8,q are pitch angle and rate 
respectively; control vector for LAM U = [8a,8,]', ,where 8 0 ,8 r stand for ailerons and rudder 
displacements respectively, and the same vector for LOM has components: 8t- throttle control lever 
and 5e - elevator displacements; f is external disturbance (wind gust, vertical for LOM and lateral for 
LAM). 

Quadratic PI has traditional form of the quadratic cost function ( H 2 -norm): 
T 

J = j[X'QX +U'RU]dt, 
o 

where: X'=[p, p, r,<j>,v|>] is the state vector, U'=[8a,8r] is the control vector. 
Using definition of the specific aerodynamic lateral force [1], which causes the linear lateral 

acceleration 
fs=aij

xj+bikuk> (2) 
where xj is p for (LAM) and w for (LOM) and uk is 9r for (LAM) and Se for (LOM) it is possible to 
define contribution , which this force gives to the quadratic PI for the limitation of lateral linear 
acceleration, using the square of the expression (2) with some weight Qf. In this case the cross 
product of the fsA2 produces the cross product matrix N and the expression for a Lb-norm would 
have the form : 

J ^ z ' Q i i d t . (3) 

In the expression (3) Qi is the block matrix Qx and Z is the vector : Z ' = [X U\ ~Q N~ 

Q. 
As it was noticed before ,the calculation of the PI is proposed to do on the basis of the 

controllability gramian. For the state space description of the closed-loop control system in the form 
(1), whose description includes the state variables of the aircraft as well as control variables (outputs 
of controller) and may be obtained from (1) with the simple substitution of the A,B,C,D matrices by 
corresponding matrices of the closed loop system Ac, Bc, Cc, Dc; controllability gramian G is the 
matrix, which is defined by the solution of the Liapunov equation [2,3] : 

ACG + GAC' +BCBC' =0. 
Matrices Ac, Bc, Cc, Dc are calculated using known formulas for given matrices of aircraft and 

autopilot state space description. This operation is easily done in MATLAB by operator «feedback». 
In the accordance with the [2] H2-norm (cost function) in the form (3) could be expressed 

using controllability gramian G as follows : 

J = trace(CelGCel'). (4) 



It is necessary only to notice, that matrix Cci in (4) is the extended matrix Cc of closed loop 
system and it must have as many rows as the dimension of vector Z in (3) and each row of Cci is 
related to the corresponding component of vector Z. 

Finally it is necessary to notice, that variations of the -adjusted parameters during the 
optimization procedure could be done only in the stability domain. To guarantee the satisfaction of 
the stability conditions it is necessary to use the penalty function to avoid the violation of these 
conditions when optimization procedure would be executed. The PI with the penalty function has 
the following form: 

where J is determined by the expression (4), value mi is defined at the each i-th step of the 
optimization procedure as follows: mi =min(abs(real(eig(A c))) and the value m0 is the minimal 
possible value of the real part of the closed-loop sytem's eigenvalues , which could be determined by 
the long period eigenvalues for LOM and spiral eigenvalues for LAM. This penalty function not only 
guarantees the satisfaction of the stability conditions but provides the lower limit of the minimal real 
part of the eigenvalue, which is closest to the imaginary axis, restricting the time of the transient 
processes. 

Robust optimization procedure 
The following step in the control laws design is the optimization from the viewpoint of 

robustness. Using results [4,5] of application of convex parameter optimization method to the 
design of control systems with parameter uncertainty, it is possible to extend aforementioned 
optimization procedure for the determination of the control law's coefficients ,which guarantee the 
robustness of system under parameters perturbations .In this case it is necessary to use a composite 
PI which has the folowing form: 

Here J 0 is the PI ,which is defined by expression (3) for some «nominal» set of variable 
aircraft dynamics parameters, J d is the PI ,defined by (3) for parameters deviation from the 
«nominal» set to the closed vicinity of the stability boundary, \x, q are Lagrange weight factors. The 
matrix of the optimal gains, minimizing J0> used as the initial values for the optimization 
procedure of the composite PI defined by (6).This procedure permits to obtain adjustable control 
law coefficients,which guarantee the robustness of control system , alongside with the estimation of 
its accuracy and improving H x -norm of the closed loop system, which could be easily calculated 
after each execution of optimization procedure. For the optimization procedure the Nelder- Mead 
algorithm was used from considerations of its robust convergence for diverse types of minimized 
functions with large number of adjustable parameters, although the speed of convergence is not high. 
Further we'll call the optimization procedure, using criterion (6), as robust optimization to 
distinguish it from usual H 2 optimization, based on criterion (5). It is shown in [4] that for stable 
system criteria (5,6) are convex functions of variable parameters. 

Stability boundary of closed-loop system could be increased further using sequential applying 
of aforementioned optimization procedure. Let the time varying parameter of the aircraft dynamics 
ay could vary from to a™1® . We could choose ,for instance, minimal value of this parameter as 

the nominal one and define the largest possible value of atj from the stability viewpoint. Decreasing 

j 1 = J + 1 
{mi - ma ) 

(5) 

Jc ~ Jq +V-Jd +q!(mi -w0)2. (6) 
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slightly this value to acquire small stability margin, we can consider it as perturbed value a? . If 

a? = a™*, it is possible to run only one optimization procedure. If not , it is possible to choose 

previously defined a? as new nominal value and to find new increased perturbed value of aiy from 
the stability viewpoint. Using these new nominal and perturbed values it would be necessary to 
repeat optimization procedure, defining new values of FCL parameters for increased stability 
domain. This sequential procedure could be performed until certain step, when the stability domain 
could not be increased anymore. In practical cases 2-3 steps of procedure's repetition could cover 
necessary parameter's tolerances. 

3. Achieved results 

Application of aforementioned procedure to the robust parametric FCL optimization was made 
for control of the LAM - dynamics of short-range passenger aircraft in landing mode. Optimization 
of FCL for aircraft LOM channel was made in the same way, but results are not presented here. 
Corresponding control law of the lateral channel of autopilot is expressed in terms of Laplas 
transform as follows : 

5a(s) -
1 

(Ta.s +1) 
K, 

Kv • v(s) + Kp- p(s) + Kr • r(s) + K9 • <p(s) + Kv • VJ,{s) + (KV + - • y(s) 

8r(s)= 1 
(Ta-s + l) 

L<p 

K w 
T.-S + 1 

+ Krr)-r(s) 

where 5a, or stand for the deflections of aileron and rudder respectively, Ta,Tv stand for time 
constants of actuator and wash-out filter (in the rudder channel only ), v is the lateral velocity ( or 
sidesleep angle ) ;p,r are the roll and yaw rates; <p, y/ are the roll and yaw angles ; y is lateral 

displacement from the glideslope (measured by integrated GPS+INS), letters Krr are 

corresponding gains which have to be determined as a result of optimization procedure. Matrix Ax 

of stability derivatives of aircraft 's LAM dynamics in landing mode with «nominal» (unperturbed) 
parameters for state-space vector X = [v, p, r, if/, y]T is the following : 

-0.196 4.945 - 2 4 6 32.2 0 0 
-0.019 -3.223 0.8613 0 0 0 
0.009 -0 .29 -0 .66 0 0 0 

0 1 0 0 0 0 
0 0 1 0.131 0 0 
1 0 0 0 0 0 

All eigenvalues of matrix A] are located in left half-plane. Matrix A2 of perturbed parametrs 
differs from matrix Ax only by element a2l, which is the effective dihedral, i.e. rolling moment 
derivative coefficient with respect the sidesleep angle, which define the damping of both dutch roll 
and spiral modes. In matrix A2 this coefficient is equal -0.007 (2.7 times less in absolute value in 
comparison with the same element of Ax), that's why this matrix has eigenvalue in right half-plane, 
so LAM of aircraft itself with perturbed parameter a21 is unstable. Control derivatives matrix B is 
the following: 
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0 0.0137 0.0017 0 0 0 
0.1476 0.0069 -0.1006 0 0 0 

r 
B = 

After converting FCL (6) in the state-space form and obtaining state-space description of the 
closed loop system with aircraft's matrices A, (or A2) and B, defined by (5) and (6) , it is possible 
to apply aforementioned optimization procedure for parametric H2 -optimization and further 

robust optimization of FCL. The vector of FCL gains K after robust optimization was obtained in 
the following form: 

Some components of this vector are large , but it is possible to use conditional optimization 
procedure with restrictions on the input variables ,if it would be necessary to restrict some gains 
from the other possible viewpoints. 

The results of robust parameter optimization of LAM Control Law , when the effective 
dihedral an varies in the tolerances [-0.019, -0.007], are presented at the fig.l and fig.2 

=[0.71, -8.68, 0.054, 105, 2.7, 0.39, 0.028, -37.2,-31.8, -33.37]. 
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respectively (transient processes for system with nominal a2X = -0.019 and perturbed parameter a2] 

= -0.007). At these figures only 2 first state vector X = [v,p>r,(p,y/,yY components are 
represented: longitudianal velosity v and roll rate p. All other components are not shown her to the 
limitation of the volume of paper, but all these figures show, that they are similar for the perturbed 
and unperturbed systems . H2 - norm, which defines the accuracy of closed -loop system and 
accordance with airworthiness requirements [ 6 ] , decreases at only 10-20% in comparison with 
results of the pure H2 -optimization. The same difference is between the values of the Hm -norm. 
The input disturbance was selected as lateral wind gust, whose shape was defined by FAR-
requirements. This procedure could be extended to any other variable parameter, for instance, to the 
"weathercock stability coefficient" a 3 l . The similar results were obtained for LOM, when 
"longitudinal static stability coefficient" was changed in the wide range. 
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