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Abstract. Numerical modeling dynamic behavior of a pipe containing inner nonhomogeneous flows of a boiling fluid
has been carried out. The system vibrations at different values of the parameters of the flow nonhomogeneity and its
velocity are observed. The possibility of forming stable and unstable flows depending on the character of
nonhomogeneity and the velocity of fluid clots has been found.
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1. Introduction

The pipe-line of a heat-exchanger containing
nonhomogeneous mobile masses of a boiling fluid,
vapour and their mixture is one of the main elements
of modern heat and nuclear power plants. In its
segments possessing an initial camber or taking a
curvilinear shape due to their dynamic bending, the
centrifugal inertia forces playing the role of active
forces and acting in the osculating plane are
generated. They are proportional to the pipe
curvature, the mass of the moving fluid element and
the square of its velocity [1]. In the case of non-
steady processes of boiling these forces change in
time and lead to the pipe-line vibration.

As experimental studies carried out in connection
with analysis of boiling fluid motions in glass tubes
heated on the outside testify, at some
thermodynamical states and values of geometrical
and mechanical parameters of the system there
appear the cases of the so-called slug flows. They
reside in the fact that in the tube heat-exchanging
systems the regimes of fluid boiling are possible,
when the generated vapour-water mixture is not
homogeneous but consists of some fluid and vapour
segments alternating and moving at high velocities.
As the mixture flows, the process of boiling
continues, thus the lengths of the tube segments
filled with a fluid (called fluid clots) are decreasing
and the lengths of cavities filled with a vapour (gas
slugs) are increasing. In this case their velocities
considerably increase.

The observations carried out on heated glass
tubes show that the lengths of fluid clots change
approximately from 10 internal diameters of the pipe

on their formation to a zero on a complete
evaporation, and the volume of a fluid, as it
evaporates, increases by tenfold. On boiling the
volume of gas cavities can change from a zero to 50
diameters of the pipe and then, as a result of clot
evaporation, they mix.

The motion of a liquid clot inside a curvilinear
channel is accompanied by the action of a
centrifugal inertial force on its walls in the direction
opposite to the orientation of a principal normal.
Besides, as each element of a fluid also takes part in
the slewing motion together with a pipe on its
vibrations, additional gyroscopic  forces of
interaction between the fluid and pipe walls are
generated. If stiffness of the curved pipe is relatively
small, then its interaction with the moving fluid clot
can cause noticeable dynamical effects. There are
some cases, for example, when due the vibrations by
these effects, the holes appear (wear through) in the
walls in the sites of the tube contacting with the
elements of supporting structures. As a result, the
whole heat exchanger unit gets out of order and
radioactive heat-transfer agents can find their way
into the atmosphere.

For different relations between the lengths of
fluid clots and the cavities filled with vapour
(vapour slugs), the functioning of such mechanical
systems can be accompanied by complex dynamical
effects attributed to the possibility of participating
the system bodies in several forms of these motions
and the presence of gyroscopic interaction between
them, like the possibility of static (divergent) loss of
stationary motion stability, the appearance of
unstable oscillatory motions (of a flutter-type) and
parametric resonances [2, 3].
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The above-mentioned types of the loss of
stability are realized depending on the relations
between geometrical and inertial parameters of the
system, the velocity of clots as well as the presence
or absence of an initial camber, so, if a pipe is
curved in its original state, its motion can have the
pattern of forced and be accompanied by ordinary
resonances. If the initial camber is absent, self-
sustained vibrations associated with parametric
resonances can be excited in it. They are attributed
to the fact that as an nonhomogeneous fluid flows
inside the pipe, the internal characteristics of all the
system vary all the time that might be an additional
cause of the vibrations excitation.

One of the first tasks that triggered off the
development of this problem was the task of
elimination of considerable vibrations of the Trans-
Arabic oil pipe-line [4]. Considering its simplified
circuit design, the authors [2, 5] obtained equations
for a straight pipe-line dynamics and showed the
possibility of losing its stability on attaining critical
velocities by the flow.

The paper studies the influence of an initial
camber of a pipe, the size of fluid clots and vapour
cavities and the velocity of their flow on the
character of dynamic loss of a pipe system stability.

2. Statement of the problem

Consider the problem concerning transverse
vibrations of an elastic pipe having an initial camber.
A nonhomogeneous fluid flows inside the pipe. Let's
assume that its nonhomogeneity might be caused,
for example, by changing its modular state
associated with its heating, boiling and conversion
into vapour-and-water mixture. If typical dimensions
of liquid clots and vapour cavities dividing them
exceed typical dimensions of the pipe-line, for
example the diameter of its channel (see Figure 1),
one must take into account discontinuities in
parameters of density and inner flow velocity. In this
case as the pipe-line vibrates, the fluid particles have
an accelerated flow both along and transverse the
pipe axis, thus forming a dynamical load on the pipe.
To calculate inertial forces acting on the pipe
elements we assign the law of the fluid clot flow and
the vapour-filled cavities motion in its channel
proceeding from the condition of preserving the
overall vapour-water mixture flow mass rate at the
inlet and outlet. Let’s form the model of changing
the flow parameters of motion assuming that the

clots of length @, enter the channel at a velocity of

V,. At the inlet a gap between two neighbouring
clots is equal to zero. On motion caused by boiling
the length of a clot varies as @ =3067M and
decreases at the rate of a=da/dt=—kae™. As a
result, the lengths of the spaces (cavities) between
clots increase at the rate of b=dp/dt=ckge™ .

The volume of vapour in a space is considered to be
C times as much as that of a fluid from which it was

formed, therefore the relation p;=cp, 1is

performed between the densities of the fluid and the
vapour.

As the volume the space of a cavity increases, the
velocity V,,, of the | +1-th clot increases relative to

camber. A nonhomogeneous fluid flows inside the
pipe. Let's assume that its nonhomogeneity might be
caused, for example, by changing its modular state
associated with its heating, boiling and conversion
into vapour-and-water mixture. If typical dimensions
of liquid clots and vapour cavities dividing them
exceed typical dimensions of the pipe-line, for
example the diameter of its channel (fig. 1), one
must take into account discontinuities in parameters
of density and inner flow velocity. In this case as the
pipe-line vibrates, the fluid particles have an
accelerated flow both along and transverse the pipe
axis, thus forming a dynamical load on the pipe. To
calculate inertial forces acting on the pipe elements
we assign the law of the fluid clot flow and the
vapour-filled cavities motion in its channel
proceeding from the condition of preserving the
overall vapour-water mixture flow mass rate at the
inlet and outlet. Let’s form the model of changing
the flow parameters of motion assuming that the

clots of length @, enter the channel at a velocity of
V,. At the inlet a gap between two neighbouring
clots is equal to zero. On motion caused by boiling
the length of a clot varies as &, :aoe"“ and

decreases at the rate of a=da, /dt=-ka,e™".
As a result, the lengths of the spaces (cavities)
between clots increase at the rate of
b=db,/dt=cka,e™" . The volume of vapour in

a space is considered to be C times as much as that
of a fluid from which it was formed, therefore the
relation p; =cp, 1is performed between the

densities of the fluid and the vapour (fig. 1).
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Fig. 1. The diagram of fluid clot flows and changes in internal flows velocity

As the volume the space of a cavity increases, the
velocity V,, of the i+1-th clot increases relative to
=V/(c—1)a. The velocity of
vapour in the cavity between clots is assumed to be
distributed linearly (see Figure 1). We investigate
the influence of the pipe initial camber on the
character of excited vibrations and their stability.

In studying the dynamical interaction between an
elastic pipe and an inner flow T.B. Benjamin [6]
showed that viscous friction forces occurring during
flow appeared to be relatively small. As these forces
are directed along the axis line of a pipe, they may
be neglected in investigation of its transverse
vibration. Thus, we consider the fluid to be perfect
and while investigating its influence on the
dynamics of the tube we will take into consideration
only its inertial properties. In this connection stating
the problem on vibrations of a pipe with an inner
nonhomogeneous flow, we'll consider the motion of
a fluid element along a vibrating and dynamically
bending pipe-line. Calculate its acceleration in the
direction perpendicular to the pipe axis and
determine the inertial force acting on the fluid
element and transferring to the pipe walls.

Let a fluid element of the mass IM moves along
the vibrating pipe at predetermined velocity V(X)

the previous one as V |,

(see Figure 1). Considering its motion in the
transverse direction, we write the equation
mdzyf/dtz—N:O. Here y; is the
displacement of the fluid element together with the
pipe in the direction of the Oy axis, N the force
with which the pipe acts upon the element. In this
equation we must turn from the function Y;(t),
determining the fluid element coordinate, to the
deflection function Yy(X,t)+Y,(X) of the pipe with an

initial camber Y,(X) at the point X, where the

element is located. To do so, we should take into
consideration that the fluid element takes a new
position in the pipe at each instant of time, therefore
its velocity in a vertical direction is determined not
only by the velocity of the pipe point in which the
element is located, but also by the fact that the
element moves to a neighbouring point in the pipe
with another coordinate Y and velocity Y

dy; dy (9dy,  dy)ox .
R L RV A

Differentiating once more both members of (1)
with respect to t, one finds the vertical component
of absolute acceleration of the fluid element in the
vibrating pipe with an initial camber

dzyf e . ’ 2
W-y+23/V+Vy’V +y' V24 2
+YV2+yV + YV +V YV

This formula can be correlated with the formula
of the Coriolis theorem [7] for absolute acceleration

of a particle, where y is the bulk acceleration,

2yV y'V2?  the

centripetal acceleration, Y’ the angular velocity of

is the Coriolis acceleration,

the pipe element, V the relative velocity of the fluid
element.

When constructing the equation of transverse
vibration of a tubular rod with an inner flow of an
nonhomogeneous fluid, we model it by the FEiler-
Bernoulli beam and neglect the internal friction
forces and the beam friction on interacting with the
environment. Such equation of plane transverse
vibrations of the pipe can be presented as:

EJyY +pa +pia =0.. (3)
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Here EJ is the pipe bending stiffness; p, the
tube linear density; p; the linear density of the inner
flow; @,, a;, are the accelerations along the axis
Oy of the tube and fluid elements respectively.

Using formulas g =d?y/dt’, a, =d?y, /dt?

and taking into account (2) and (3), we write the
equation of pipe vibrations in the sections containing
the fluid as follows

BEIYW +p VY +(p +p;) Y+
+2Vp; y+hW=_pf %\/z_pf %)V

In the sections containing the vapour spaces,
p =p, and equation (4) takes the form

E'J yIV +va2 )/J'_(pt +pv) y+2vpv y+

“4)

VY +p VY =YV -p YV - (5)
_pv%)vv,'
The distinguishing feature of the assigned

problem described by equations (4) and (5) resides
in the fact that when the fluid clots flow, either
equation 4 or 5 is alternately used for one and the
same points of the pipe. Thus, the chosen
mechanical system belongs to the systems with
variable parameters (with approximately periodical
coefficients and right member). Due to this fact on
varying the velocity V  both ordinary and
parametrical resonance vibrations, typical of such
systems, can be excited as the result of the
dynamical loss of stability. For the case considered,
the problem of studying parametric vibrations is
complicated by the presence in equation (4) the
component 2p, YV describing the internal force

referring to the gyroscopic type. Their presence
considerably complicates the mode of the pipe
motion because its elements start vibrating at
different phases.

The second peculiarity of the process studied is
that due to the change of inertial properties of the
pipe, as fluid clots travel in it, the notions of the
frequency spectrum and modes of free vibrations do
not exist for it, and natural frequencies in the
vicinity of which resonances could be realized are
lost. Therefore it’s rather difficult to predict a
dynamical loss of stability in such systems. And,
finally, the difficulty in studying the dynamical
system involved increases even more at the cost of
the discrete character of the clot flow resulting in the

fact that the coefficients of the united set of
equations (4) and (5) actually become discontinuous.

The above peculiarities involve difficulties in using
analytical methods for studying the dynamic instability
of pipes with inner flows, based on the Liapunov and
Floquet approaches [8]. Thus this investigation uses the
method of direct numerical modelling the system
motion at chosen initial disturbances and the assigned
velocity V' of the flow.

3. Investigation procedure

Let's consider two problems, namely the problems
on motion of a nonhomogeneous flow in a straight
pipe and in the pipe with an initial camber. To
analyze the possibility of self excitation of the
straight pipe-line vibrations with the inner flow of a
nonhomogeneous fluid, let’s impart the system some
small initial perturbations in the form of a preset
deflection and perform numerical modelling of its
dynamical behaviour at various lengths of the clots
and different values of the velocity V, at the inlet. If

the vibrations of the perturbed pipe-line decay, then
its initial state is considered to be stable. When the
amplitude of vibrations and divergent deflection
increase indefinitely, the system is considered to be
dynamically unstable. The fluid velocity V,, at

which periodic motion is established in the system,
is thought to be critical.

If dynamics of the tube with initial camber
should be investigated, it is not necessary to
introduce the additional perturbations into the
system, as far as the constitutive equations are
nonhomogeneous in advance.

When boundary conditions are being preset, it is
considered that the pipe-line represents a multispan
beam with equal lengths of spans and hinged
supports. The system vibrations are modelled by the
least power-intensive modes having skew symmetry
relative to the support cross-sections. Then it is
assumed that the vibrations of neighbor sections of
the pipe have opposite phases and in studying them
we arbitrarily separate one span of the pipe applying
boundary zero conditions to deflections and bending
moments at its support points

y0)=yL)=0, Y(0)=y'(L)=0. (6)

If the tube is assumed to have preliminary
camber Y, (X), the initial conditions are chosen in
the form as follows

y(%0)=0, y(x0)=0.
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If the tube is preliminary straight, the initial
conditions are chosen as the initial static
perturbation

y(%,0)=wsinwx/L, y(x0)=

Here the coefficient W, is considered to be very small.

For numerical integration of the equations at the
preset boundary conditions (6) and initial
perturbations, let's use the Houbolt implicit finite
difference = method  characterized by  the
approximation of pinpoint accuracy and stability [9].
In this case for the time t, the time derivatives in
equations (4) and (5) are substituted by finite
differences in the form of:

oo | TR0 —18y (X +
yeh _ylt - L‘g %-(X) _2yt—3(x):| foat

) 2% =5y () +
t)=9l, = AL 7
YD y| L’4yt—2(x)_yt—3(x)} / @

Here the following designations are used:
¥I=YXD), Y(0=YXt-A), ¥%,()=y(xt—-2Ab),
Vi s(X)=y(X,t—3At), At is the time numeric
integration step.

Taking into account the above relations,
equations (4), (5) can be written down as:
d'y dy, 2 +pr)
EJWL +pr2 |t + AL |t
L HpV, dy| 5(pt+pf ‘ 3
" 3At dx!t At? Yiea
4P +pr) (P +ps)
- tAtz = y|t—2At+ Atzf |t wt (8)
6p;V; ﬂ| 3PV dy| N
At dxtM T AL dxlta
2p: Vi d .
3T 3fAtf d§|t—3At_pfvfz%]"t_pf%)vf‘t'
d d 2(p, +
y|t+PvVv2 Y|t+ (pgﬁpV) Y|+
11 11pV, |
3At dxt
S +py) 4(P +Pv)
==ar \t—m e Vet
(pt + pv y| vav ﬂ| _
At2 t— 3At At d X t—-At
3p Vv, dy| +2pvvvﬂ| B
At t—2At 3At dXt—3At

_pvvvz%,|t_ Py Yo Vi[i—=Pv Yo

Considering the states Y;,_(X), Y_,(X), Y_3(X)
of the system at times t—At, t—2At, t—3At to be
known one can find the state Y, (X) of the system at

time 1t wusing (8) with appropriate boundary
conditions and then turn to determining the system
states at times t+At, t+2At, etc. Inasmuch as
equations (8) represent the four layer difference
scheme and we have only two initial conditions, the
first step of the calculational processes is performed
with the use of the three layer Newmark difference
scheme.

Equations (8) with boundary conditions (6) are
solved using the method of the transfer matrix. To
do this, the fourth order equations (8) were
transformed to the system of the first order
equations. For the fist equations of (8) it looks like

dy, _, dy, dy, _
a2 Tax e ax
E]d_))/ﬂt =V, Yo =P V¥ —
2p+p) M o S@+e)
At MT3ar A e
4@ +pr) ®+pr)
A t2 M,t—Z + A t2 MJ—3 + (9)

oM M PV
AT BH AT BT e

—vafz%lt_Pf W |t :

Let's write this system in a general form
dy/dx=A(x) ¥+ T (X). (10)

Here y= y(s) is the 4-dimensional vector of the
unknown functions; X the independent variable
changing within the limits of 0<X<L; A(X) the

known discontinuous matrix-function of the

independent variable X; f(x) the preset vector of

right members determined by the known solution
functions at previous steps in time.

The solution to (9) must be subset to boundary
conditions (6) in the interval bounds, which are
predetermined at the beginning X=0 and at the end
X=L of the integration interval.

We represent them in the general form as

By(0)=0,Dy(L)=

where matrices B and D measure 2x4 .

(11
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For constructing the solution ¥(X), let's choose
such 2 components Y;(X) among Y (X)-(i :1,_4)
components, any values Y;(0) of which don't violate
the first equation (11) at zero values of the other
components. After renumbering the unknown values
y(X)-(i=1,4) in such a way that the index | could
take on the values | =1,_2, the solution to problems
(10) and (11) can be given as

Y(X) =Y (x)C+ ¥,
where Y, is the solution to the Cauchy problem for
system (10) at zero initial conditions, Y(X) is the
matrix 4x2 in size of particular solutions Y;(X) to
the homogeneous matrix differential equation

dY/dx=A(x)Y (12)

with initial conditions ;;(0) = &/ (i =14, :1,_2) for
independently modified variables, and with initial
conditions chosen from the first equation of system
(11) for the other variables Y, (0) (j = 3,4) )

Here &/ is the Kronecker symbol.

As Y(X) is the solution to the homogeneous
equation (12), then on choosing initial conditions for
the predetermined vectors, we pay special attention
to their linear independence. This is achieved by
assuming the matrix of initial conditions Y(0) to
have the unit elements Y,(0)=1, Yy,(0)=1. In
doing so any pair of vectors Y;(0) are mutually
orthogonal that provides their linear independence.

The vector of the constants C=(G,GC,) is
chosen so that the equality

DY(L)C+Dy,(L)=0,
following from the second conditions of system (11)

could be satisfied.
The construction of the matrix — function Y(X)

and the vector-function Y,(X) is made by integrating

equations (10) and (12) by the fourth order Runge-
Kutta method. The peculiarity of wusing such
approach is that due to the presence of large factors
in the coefficients of the system (8), it is rigid and
there are rapidly growing functions among its
particular solutions. Therefore in constructing the
matrix of its fundamental solutions, the method of
discrete  orthogonalization by  Godunov is

additionally used which makes it possible to obtain a
stable computational process by orthogonalizing the
vector-solutions to the Cauchy problems in the finite
number of argument change interval points. Its
essence is in the fact that the integration interval is
divided into sections, and the numerical integration
of the initial differential equation is carried out on
each of these sections in the same way as in using
the method of transfer matrix. The lengths of the
sections are such that the particular solutions to a
homogeneous equation within the limits of one
section could remain linearly independent. When
passing from one section to another, the matrix of
the solutions is subject to linear transformation so
that the vectors of particular solutions of the
homogeneous and nonhomogeneous equations
become orthogonal. Thus it is possible to preserve
the linear independence of the equation solutions in
the whole interval of integration. To avoid excessive
increase of the numerical values of the
nonhomogeneous equation solutions, the
normalization factor is introduced at the section
boundaries.

4. Results and discussions

The calculation algorithms and computer programs
for carrying out numeric modelling pipe vibrations
at various values of their geometrical parameters
were developed on the basis of the above outlined
procedure.

To study the influence of the initial camber on
the character of vibrations of a pipe system, the
cases, when in the initial state the pipe was straight

(Yo(X)=0) and when its centre line was curved

according to the law yO(X):4—I6()sinnTX
the

considered. For first problem non-trivial
solutions may appear as a result of either divergent
or flutter bifurcations. The results of the calculations
for the above cases are given in Table 1, where L is
the length of the pipe, h the thickness of its wall,
a, the length of the clots at the inlet, K the

parameter determining the velocity of fluid
evaporation. It was assumed for all the pipes that

E=2-10"Pa; p=( (R~ (R-h)")p;

Wwere

kg
= — 2 N =
=n (R-h)*p,; p,, =1000 o

R=0,015m; c=10.
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At chosen values of the parameters -eight
problems were solved (see Table 1) differing in the
lengths of the clots at the inlet @, and the value kK
determining the velocity of evaporation of the
boiling fluid. Here the value of &, were L/8 and

L/4 , and the values of K were chosen so that during

the flow in the pipe channel a fluid clot could
decrease its length by 1540 %.

For each problem at a fixed value of V,,
dynamics of the pipe at a time interval equal the
time of arrival of three hundred and more clots was
studied. It was assumed that the pipe was given

some initial excitation in the form of a low initial
velocity. If then the vibrations were decaying, the
initial state was considered to be stable, but if the
amplitude of vibrations increased the initial state
was unstable. To find resonance flows, the velocity
V, was varied and modelling the flow was repeated

at a new value of V. The least value of V, at which

the amplitude of vibrations began to increase
without limit was considered to be critical. The step
AV, of variation V, was AV,=0,2 m/s. In the
vicinity of a critical state the calculations were made
specific with the step AV, =0,1 m/s.

Table 1. Velocities values and periods of forced vibrations of a straight-line pipe

Valuea cof dynamical parameters
e [Lm| hm a, ks
V,=Llmfs ||F,_ =12 m;:| V, =20 mjs V,=40mis | 7, =875 m/s
L 3 0.003 L3 0.1 I =0244s I =0245¢ I =02162s T =0280: | T =1301s
I =0368¢ I =0352¢s I =0031s I =00l6s | I.=0007s
Vy=18mfs [ |I,_=19ms V, =20 myfs I, =40 mys I, =80 myls
2 3 0.003 L3 0.5 I =02¢s I =0242¢ I =02¢s =022z | I =0783¢
T =0347+¢ I =0320¢s I =0031s I =0016s | I,=0008s
F,=3mfs p;ﬁ=5_1mj.f:| P, =10m/s F, =20 myfs =40 mfs
3. 5 0.003 Lj4 0.3 I =0246s I =0247s I =023s T =0262s | 7 =0208x
I =023s I =0243s I =0123s I =0063s | I_=0031s
I, =69 mjs F, :,=??j'i,|":| =10 mfs I, =20 mys P, =40 mfs
4, 5 0.003 i ! T =02455 I =0245¢ I =023s I =02625 | 7. =0297s
I =018%s I =017%s T =0123s I =0063s | I_=0031s
Fo=03mis | |I,_ =06ms I, =4 mfs I, =10 mys I, =23 myfs
5 B 0.001 L 0.1 I =0623s I =063s =073 I =0783s | I_=1518s
I =02s T =166s I =023s I =01s T, =0045
Mo=12mfs | |I7_ =13 mf:| I, =4 ms I, =10 mys I, =20mys
6 B 0.001 L3 0.3 I =061s I =0613s I =066s I =0763s | I_=1323s
I =083+ r=071s I =025z I =01s I =005:
7, =3 ms Vo=44mfs [, =43mis|| V,=10mis | F,=20ms
7 g 0.001 i 0.5 I =066s I =067z I =069z I =0768s | T_=1253s
T =0667= T =0454¢ T =0444¢ I =021z I =01s
Vy=3ms V, =4 mfs V,=61mfs |, =62 ms[ To=10ms
B ] 0.001 Lid 1 I =06843¢ I =0633s T =0668s T =0705s | I =078z
T =0667= I =03z I =0328: I =0323s I =01s

For the predetermined values of velocities, the
values of periods T, of arrival of clots in to the pipe
channel (see Table 1) were calculated, which could
be compared with the values of the time T, between

two neighbouring maximum values of the pipe
middle point displacement along axis Oy .

Note that for problems 3 (V, =5m/s, \, =5,1m/s),
7(V,=3m/s)and 8 (V, =3 m/s) value T, is equal to
period T, but for problems 3 (V,=10m/s,
V, =20m/s), 4 (V, =10 m/s), 8 (V, =6,1m/s) value
T, is approximately a multiple of T;.
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As the results of investigation of dynamics of
pipes with an initial camber (see Table 2) show,
interaction of forced and parametric vibrations has
not led to the displacement of critical velocities

values. Values T, of the curved pipe have not
practically been changed. The above- mentioned
peculiarities for values T, of straight pipe vibrations

are also characteristic for the pipe with an initial
camber. Figure 2 gives vibration graphs for the point
X=L/2 of the pipe centre line along axis Oy for

problem 8 (see Table 2). The associated states of a

flow (the arrangement of clots and their velocities)
for the instant of time, when a clot arriving at the
channel at the velocity of V, reaches its full length
a, and starts separating from its main flow at the
point X = 0, are shown in Fig. 3.

The associated states of a flow (the arrangement of
clots and their velocities) for the instant of time, when a
clot arriving at the channel at the velocity of V,, reaches
its full length @, and starts separating from its main

flow at the point X= 0, are shown in Fig. 3.

Table 2. Velocities values and periods of forced vibrations of a pipe with camber

Values of dynamical par.;me_ters
e ([Lm| hm a, ks
I, =11myfs V. =12 mfs F, =20 mys IV, =40 mfs V,=875 mfs
L 5 0.003 L 0.1 I =02¢s F =024+ I =0261¢= I =0287¢ I =132s
I =0568 s I =032¢ I =0031s I =0016s I =0007=
,=18mis [ |I,_=19 mj.f;;| 7, =20 mys F, =40 mis 77, =80 mis
1 5 0.003 I 0.5 I =024+ I =0247s I =023 I =0203¢ I =078z
I =0347 s I =0320; I =0031s I =0016s I =0008 =
V, =3 mfs p;ﬂ:j_lmj.f:| V=10 mfs F, =20 mjs V, = 40 mys
3. 5 0.003 L 0.3 I =0244¢ =026+ I =02s I =0238+¢ I =020s
I =023s I =0245¢ I =0123¢ I =0063s I =0031+s
I, =69m/s I, .= 1mfs I, =10 mfs I, =20 ms I, =40 mjs
4. 5 0.003 L4 1 I =02465 I =0247s I =025 I =0238+s I =0207¢
I =018s I =017%:s I =0123¢ I =0063s I =0031+s
F, =05 mys V,. =048 ms V, =4 m's I, =10 mfs IV, =23 mfs
5 B 0.001 L3 0.1 I =06245 I =063s I =073:s I =073 I =1332s
I=02s I =166 I =023s I =01z I =004¢s
V=12 mys V. =13 mf:| V, =4 mfs IV, =10 mfs I, =20ms
6. B 0.001 L 0.5 I =0613= I =0614= I =066s I =0768z I =1326=
I =083+ I=077s I =023s I =01s I =005s
I, =3 ms F,=44mfs . =43mjs I, =10 mfs I, =20ms
7 8 0.001 L/ 0.5 I =0663s I =068s I =06383¢= I =0763¢ I =1268+=
I =0667 s I =0454s I =0444¢ I =02¢ I =01s
V=3mis I =4mfs Vo=61mjs | [V,_=62mjs|| T,=10mfs
8. B 0.001 L4 1 I =063s I =063s I =0665s I =0605s I =07¢s
I =0667 s I =05¢s I =0328¢ I =0323: Ir=01s

One can notice that at V, =3,3 m/s (see Figure

2) the vibrations are decayed with additional beats.
With further increasing the velocity V, =6 my/s the

pipe vibrations are stable in nature and take the
mode of beats. In the critical case V, , =6,2 m/s

0,cr
the pipe loses its stability in the mode of flutter, but

not according to the linear law and with additional
vibrations. In the posteritical state (V, >V, ) the
elastic system remains unstable and in doing so it
begins to vibrate with less frequency. Figure 4
illustrates the modes of the cambered tube plane
vibrations which take place for problem 8 during

time T, . The pipe was found to vibrate according to
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the combination of the first and the second modes of
natural vibrations of a pipe without a fluid flow.

In conclusion one may note a peculiarity
characteristic of the dynamical process under
discussion. The case is that when vibrational
motions of a pipe are excited by inner mobile clots, a
joint action of two affecting mechanisms is shown
up, each of them having its own nature. First, we
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observe here only a dynamical action of inertial
centrifugal forces on an elastic pipe, which in this
case play the role of active forces. The action of
these forces determines the presence of right
member in the constitutive equations and their
nonhomogeneity. Second, the effects characteristic
of a parametric mechanism of vibration excitations
are shown up here.
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Fig. 2. The forms of vibrations in time of a central cross-section of a pipe with mobile boiling away clots

(L=8m a=L/4). (a) V,=3,3nYs;(b) V,=6nys; (c) \,=6,2nys; (d) \,=10nys
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Fig. 3. The diagrams of distributing fluid clot velocities
@ V,=3,3ms; (b) V,=6nys; (c) V, =6,2nys; (d) V, =10 m/s

5. Conclusions

The purpose of this paper is to carry out the
numerical modelling of self-excited vibrations of
tubular rods containing inner flows of
nonhomogeneous boiling fluid. Straight rods and the
rods having initial camber have been considered.
The model of dynamics of flow with allowance
made for a discontinuous character of the parameters
of its density, as well as the fluid clots flow mode in
the process of their heating and evaporations is
suggested. The action of inertial forces of positional
and gyroscopical types is taken into account. The
analysis of the results obtained makes it possible to
make the following conclusions:

1. Unstable equilibrium states accompanied by
self-excitation of vibrations and flutter type loss of
stability can arise in a pipe from the action of inertial
forces of a nonhomogeneous non-stationary inner
flows on the pipe walls. In a number of cases the
divergent conditions of losing the straight-line
stability were realized in supercritical states.

2. The mechanism of losing straight shape of a
pipe results from the action of centrifugal and
Coriolis’ inner flow inertial forces which can be
classified as positional and gyroscopical ones.

3. The nonhomogeneity of an inner fluid flow
manifests itself both in the nonhomogeneity of
centrifugal inertial forces acting on a pipe in the
transverse direction and in the change with time of
the system general mass geometry. In this

connection purely dynamical and parametrical
excitations of vibrations take place.

4. Gyroscopic inertial forces caused by the
interaction between slewing movement of pipe
elements and linear flows of fluid masses have a
marked influence on the dynamic process character.
They lead to the system loss of a general motion
phase and to essential complication of the modes of
the pipe transverse vibrations.

5. The calculations testify that in the general case
the transverse motions of a pipe constitute non-
stationary vibrations in which one can distinguish a
conventional period T, . As a rule this period doesn't

appear to be comparable to the period of arriving
fluid clots in the pipe channel although in some
cases these values were almost equal or multiple.
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€. 10. ToabaroB. MaTeMaTH4YHe MOJAEJIOBAHHS KOJIUBAaHb, 10 CaMO30yIAKYIOThHCS TAa MICTATH PyXoMi
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[IpencraBnena 3ajavya Mpo YHMCENBFHE MOJEIIOBAHHS JWHAMIYHOI IMOBEAIHKM NPSMOJIIHIMHOIO TpyOuW, IO MICTUTBH
BHYTPILIHI HEOJHOPIIHI MOTOKH KUIUIAYil piguHu. OCKUIBKY aHANITHYHE PIilIeHHS 1€l Tpo0sieMH MOB'sI3aHe 31 3MIHOIO
reoMeTpii Mac CHUCTEMH i pO3pHUBOM KOe(]ili€HTIB PiBHAHB, MPEICTABIAETHCS CKIATHUM, OYB PO3POOIICHUH METOX
KOMI'TOTEPHOTO MOJICITIOBaHHS AWHAMIKK TpyOW, SKWUH TIPYHTYeThCS HAa OJHOYACHOMY BHKOPHCTaHHI METOIIB
YHCETHHOTO IHTETPYBaHHSI 3a YacOM i METOXy MOYATKOBHX MapaMeTPiB CIIIBHO 3 IMPOIEIypOrd OPTOTOHATI3AMii IO
MpOCTOpoBOi 3MiHHOI .Bynm BHsBIeHI pi3HI BUAM KONMBaHb TPYOHM, a TaKOXK MOXIIMBICTH BCTAHOBJICHHS CTIHKHX 1
HECTIMKHX PeXHUMIB PyXy 3aJIeKHO BiJl XapaKTepy HEOIHOPIAHOCTI Ta MIBHIKOCTI PyXy PIAMHHUX 3TYCTKIiB.
Kuro4oBi cjioBa: BHYTpIlIHI MOTOKH; JMHAMIKAa; 3TyCTKHA PIJAWHU; KOJIMBAaHHS, HCOIHOPITHA PIIMHA; IEPIOH;
TEIJI0O00OMIHHUK; Tpy0a 3 OYaTKOBOIO OIYKIIICTIO; (h1aTep, WIBUAKICTb.
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MOJABUKHbBIE CTYCTKH 3aKUNAIOLIEH JKUIKOCTH

HannonanbHbIi aBUaliMOHHBINH YHHBEpcUTeT, pocn. Kocmonasta Komaposa, 1, Kues, Ykpauna, 03680

E-mail: tolbatov_e@mail.ru
[IpencraBnena 3amada O YHCICHHOM MOJCIHPOBAHUM JTUHAMUYECKOTO TIOBEACHUS TNPSMOJIMHEHHONW TpYOBI,
CoJleprKalleil BHYTPEHHUE HEOAHOPOJHBIE MOTOKM KHIISIIEH >KUIAKOCTH. Tak Kak aHaJUTHUYECKOE PELIEHHE 3TOM
MpoOJIeMBI, CBA3aHHOE C W3MEHEHHEM TEOMETPHH MacC CHCTEeMBl W pa3pblBOM K03()(HUIIMEHTOB ypaBHEHWIA,
MIPENCTABISETCSA 3aTPyIHUTEIBHBIM, OBUT pa3pab0oTaH METOX KOMITBIOTEPHOTO MOJCTUPOBAHHS AWHAMHUKH —TPYyOBI,
KOTOPBII OCHOBBIBAETCSI Ha OJHOBPEMEHHOM HCIIOJIb30BAHUM METOJOB YHCJIEHHOTO MHTETPUPOBAHUS MO BPEMEHU U
METO/la HayaJbHbIX IAPAMETPOB COBMECTHO C INPOLEIYypOHl OPTOrOHAIM3ALMU [0 NMPOCTPAHCTBEHHON IEPEMEHHOM.
Boumn oOHapyXeHBI pa3NUYHBIE BUABI KOJIICOaHWI TPyObl, a Tak)Ke BO3MOXXHOCTH YCTAaHOBJICHHS YCTOHUYMBBIX WU
HeyCTOﬁ'-IHBbIX pe)KI/IMOB JOBWXKCHUSA B 3aBUCHUMOCTH OT xapaKTepa HeO}IHOpO)IHOCTI/I nu CKOpOCTI/l JOBHWXKCHUA
KUOKOCTHBIX CFyCTKOB.
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