46 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2015. N 2(63): 46-53

INFORMATION TECHNOLOGY

UDC 004.056.52/004.432(045)

Vasyl Melnyk'
Katerina Melnyk®
Oksana Zhyharevych®

STATIC ANALYSIS OF SOURCE CODE MODELED FOR JAVA-PROGRAMS
CONTAINING APPLICATIONS WITH ANDROID SECURITY

Lutsk National Technical University
75, Lvivska st., Lutsk, 43018, Ukraine
E-mails:'melnyk_v_m@yahoo.com; “ekaterinamelnik@gmail.com; *oz_lutsk@mail.ru

Abstract. A static analysis techniques were combined with model-based deductive verification using solvers of the
static model theory (SMT) to create a framework that, given an aspect of analysis of the source code, automatically
generated with an analyzer outputting a conclusion information about this aspect. The analyzer is generated by
trandating of a program collecting semantic to outlined formula in first order over a few multiple submitted theories.
The underscore can be looked as some set of holes or contexts corresponding to the uninterpreted APIs invoked in the
program. As the program makes an import of the packages and uses classes methods of these packages, it isimporting
the semantics of API invocations in first order assertion. The analyzer is using these assertions as models and their first
logic order formula incor porates the specification behavior (its negation) of the described programs. A solver of SMT-
LIB formula is treated as the combined formula for “ constrain” and “ solve” it. The “ solved” form can be used for
logic errors (security) identification Android-based Java-programs. The properties of Android security are represented

as constraint and analysis aims to show the respecting for these constraints.
Keywords: Android security; Java-program; static analysis; static model theory; program code.

1. Introduction

Software systems stencily manage mission-critical
activities in organizations which rely on dependable,
situation award and delivered in time classified or
sensitive information. Information streams in such
organizations are usually machined by common-
built, with open source code, and traditionally
cooperated security software. Such programs may be
unlicensed with malicious code or vulnerability
containing, which can be used for insider or outsider
to seize a confidential data, reclassify documents,
make some destroyed actions, and modify valuable
information. So, the reliability and correct work of
described above software to drive these systems
have become important issues for today.
Program-independed errors in software systems
like overflows of buffer or null dereferences can be
used by malicious applications to make unsecured
holes, through which unsecured confidential data
can be captured. Most of these bugs are detected too
late, when destructive effects are already appeared
[1] complicating the task of runtime preceding
mechanisms of fault handling for ensuring data
recovery. A more important is the lack of peculiar
tools for logical dependencies of program-depended

errors detecting in applications. A testing of a well-
known incident list resulting from software glitches
opens that logical application-depended errors were
the causes in [2,3] works. A lot of these logical
faults were hard and difficult to reveal (opposite to
simple errors) with using observed testing methods
[4] alone.

In this paper we combine the static analysis
techniques with model-based deductive verification
using solvers of the static model theory (SMT) to
create a framework that, given an aspect of analysis
of the source code, automatically generated with an
analyzer outputting the conclusion information about
this aspect. The analyzer is generated by program
translation for collecting semantic to outlined
formula in first logic order over a few multiple
submitted theories. The underscore can be looked as
some set of holes or contexts corresponding to the
uninterpreted APIs invoked in the program. As the
program makes an import of the packages and uses
classes’ methods of those packages, it is importing
the semantics of API invocations in first order
assertion. The analyzer is using these assertions as
models and their first logic order formula
incorporates the specification behavior (its negation)

Copyright © 2015 National Aviation University
http://www.nau.edu.ua

V. Melnyk, K. Melnyk, O. Zhyharevych. Static analysis of source code modeled for java-programs containing applications... 47

of the described programs. A solver of SMT-LIB
formula is treated as the combined formula for
“constrain” and “solve” it. The “solved” form can be
used for logic errors (security) identification of
Android-based Java-programs. The properties of
Android security are represented as constraint and
analysis aims to show the respecting for these
constraints

2. Related works

Software verification and validation techniques for
software can be divided in three categories. The first
one includes informal methods such as testing and
monitoring. These techniques are scaling well by the
most used technique in practice to validate software
systems. The testing accounts for forty to sixty
percent for efforts of developments [4, 5]. The
traditional methods for software program testing [6],
however, do not allow for formal specification and
verification of high logical properties that need to
satisfy the system. In the area of security critical
software where exponential goes up in the number
of possible situations to be dealt is inevitable,
traditional testing methods can be with difficulty
used to provide some confidence level. The second
category of methods for software verification and
validation includes traditional formal methods such
as verification model and providing of theorems are
sometimes too heavy and rarely can be used in
practice without considerable manual work.
Checking of the model includes an automatic
approach for verification more successful while
dealing with finite state systems. It suffers not only
from infamous state explosions problem but it also
need the model performance for program software.
Third method category for program software
verification and validation is settled on static
analysis techniques and abstract interpretation [7,8].
The static analysis refers to automatic displaying
behavior technique for programs during the time of
compiling. While static analysis tools have touched
with a great practical success, and have been
integrated with state of the newer compilers, such
tools can reveal only small and simple errors due to
the lack of their deductive strength. So, traditional
tools of static analysis cannot reveal a deadlock
presence or the violation of common exclusion in
concurred programs. The abstract interpretation is a
technique for the program semantic collection,
comparison and combination. It successfully has
been used for inferring of program runtime
properties that may be wused for program

optimization. On the next the most successful
approaches for program analysis are reviewed. In the
last years a lot of work has been made in the area of
software static analysis. Some tools of static
analysis, such as described in articles [9-14] are
making lightweight analysis of data flow. In the [15]
conference article the data flow analysis is provided
for wverification, described in "metalanguage",
designed for checking “automata” encoding. Astree
is a static program analyzer directed to confirm the
runtime error absence in the installed programs, and
can handle only "safe" C-subset rather than all
C-language. It concerns only for separate runtime
errors but general program properties. In [16] the
linear relation analysis is used to reveal invariant
linear inequalities numerical program variables.
Their methods have been used for verify (analyze
delays) in synchronous programs written in "Lustre-
language". A few technique approaches have been
considered to provide an approximate answer to the
validation problem as enlargement, convex
approximations and factoring of Cartesian [17].
These approximations are realized with using of part
of polyhedral library. In the article [18] the predicate
abstraction is used to analyze hybrid systems. In this
method the finite abstraction of hybrid automated
system is creating with priory using initial predicates
taken of the user.

3. Android platform

Android is the software to develop mobile devices. It
includes an operating system, key applications and
middle-connection software. The main feature of the
Android is that an application can use elements of
other programs. To rich this, the system has to start the
process when any of the other programs part is need.
Android has no any single point of entrance like
function main(). They have essential components,
which the system can instantiate and start if necessary.
There are four main component types: activity,
services, audio receivers and connect providers.
Android has an aim to active the first three
components. For activities and services, the intent is
the pair: <action name, data>, to display the previous
action, which receiver has to except and data to
process. In the framework of the represented program
analysis this aimed object is keyword used to make
data flow analysis and call of analysis function.
Android-architecture provides created applications
with phone functions and protects users to minimize
mistake consequences and harmful software. As it was
said, in Android an application may exchange its data

48 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2015. N 2(63): 46-53

and functionality with other software, and these
accesses have to be controlled carefully to provide the
security. Android permissions are rights given to
programs to perform such functions like photocopy,
GPS using and phone call making. When applications
are installing, they accept the unique identifier UID,
and every application always runs under its name with
the particle appointed device. Application UID is using

for protection its data exchange with other
applications.
4. Model architecture

Fig. 1 shows architecture of static analysis

proposed on the model basis. The abstract collecting
semantic of Java-program are represented as
"marked" coercions. "Marked" can be considered as
a set of holes and contexts corresponding to no
interpreted APIs, i.e. APl from library with
unknown semantics. As program imports the
packages and uses classes’ methods in imported
packages, the semantics of API invocations are
importing here as first order assertions (constraints).
These assertions are models used to "unmark"
constraints of the abstract collecting semantics i.e.
for "fill in" uninterpreted APIs "holes". Aspects of
analysis are specifying as constraints.

Analysis
specification

0

Abstract
Java source h First order Procedure
code gollecting i for decision
R nantics logic formula

o

Checkig |:> MODEL
permissions

Fig. 1. Model architecture

The solving of the basic constraint is done by
using of decision procedures combination provided
by (Yices) constraint solver [19]. The key steps
involved in the workframe of the analysis are 1)
permission verification of the Android APIs,
invoked in the Java code, based on Manifest.xml.
The verification results of permission are using for
model APIs modification, 2) generate abstract
collecting semantics constraints from the Java code,
3) import models of uninterpreted methods and
objects as assertions into already generated
constraints; uninterpreted methods and/or objects
have to be annotated by the developer; annotation is

necessary from the moment since the particular
method can be changed of the programmer and
importing its “conventional” model from a model
library may result the analysis unsoundness, 4)
generate an analyzer by adding “aspect” constraints
of the appropriate analysis, 5) Analyze by the
constraint solving.

A. Verification of the permission

Android permissions can be separated into
different security levels [20, 21], which are defined
in the Mainifest.xml file. The framework examines
this file and reveals permission information. The
necessary list of permissions should be formed from
analyzing of APIs invoked in the program and can
be compared with permission information P taken
from file Mainifest.xml. The android API calls can
be mapped with necessary permission list used in
[22]. If the every permission is provided we
conclude that application has no permission
violations. Otherwise, API calls which have no
provided appropriate permissions will be considered
as with return of -1 in the following analysis.

B. Constraints, solvers of SMT-LIB formula,
satisfiability

Constraints are special formulas in first logic order
[23], and a constraint system itself specifies the
syntax and constraints semantics. The solver of the
constraint implements a checking algorithm to verify
the satisfiability/consistency of constraint sets using
constraint theory, i.e., revealing if there exists a
variable assignment that satisfies the constraints. A
solver uses constraint theory axioms together with
simplification rules as rewritten rules for the
constraints transforming to a normal form which is
called the "solved" form. The last constraint which
results from the computation will be named the
answer.

C. SMT-LIB formulas and Yices

Satisfiability Modulo Theories (SMT) libraries
(SMT-LIB) [24] provide a framework for the first
order formulas satisfiability checking in agreement
with some background logical theories. SMT
provides background theories standard description
used in SMT systems. It gives a common input and
output languages for SMT formula solvers. "Yices"
described in [19] is effective SMT-LIB formula
solver, that decides the arbitrary formulas
satisfiability —containing uninterpreted function
symbols with equality, linear real and integer

V. Melnyk, K. Melnyk, O. Zhyharevych. Static analysis of source code modeled for java-programs containing applications... 49

arithmetic, scalar types, recursive data types, tipples,
records, extensional arrays, fixed bit-vectors, lambda
expressions, and quantifiers.

5. Java programs inferring collecting semantics

We have to perform intraprocedural and
interprocedural analysis to analyze deep logical
properties of Java-based programs. Using data flow
analysis of the source code in intraprocedural
analysis, in a series of steps is built a constraint
system for capturing its collecting semantics. In the
way of the interprocedural analysis the call graph
has to be built and some external rules have to be
defined for relating the different API invocations
and detecting if the analyzed code breaks these rules.

In the analysis framework the following
sequence of steps (SSA) has to be followed to check
if the program satisfies an analysis aspect defined of
the user. 1) The dataflow analysis of the Java source
code has to be performed and its collecting semantic
has to be generated, 2) The static single assignment
[25] graph of the program, based on the dataflow
analysis results, has to be generated, 3) The SSA
graph has to be convert to the SMT-LIB formulas
(see below), 4) On the last step the models of
uninterpreted API invocations have to be imported
as first order assertions.

The above steps can be illustrated in the
following code:

1 class udhpcd

24

3 int getSocket (int listen_mode)
{

5 it fd=0;

6 if(listen_mode =—=2) {

8 fd =listen_socket();

9 b

10 else {

12 fd =raw_socket() ;

13 }

14 3}

15}

In the program shown above listen_mode is the
input of the user, listen socket() is a return method
with positive integer, raw_socket() is a method,
providing of operated system, due to return specific
positive integer. Provided data flow analysis of the
source code is shown in fig 2. The integer number in
the graph of the data flow indicates the code line
number of each statement.

fd=0
5 “-..__*
6
listen_mode = =‘2/ Q_mode 1=2
7
10
listen mode ==2
| listen_mode ! =2
8 _
listen mode ==2 11
fd=listen_socket() listen_mode ! =2
9 fd=raw_socket()
12
y listen_mty
13
T 14

Fig. 2. Flow of Data

After line 12 the variable value fd can be as
return value of listen socket() or raw_socket(),
because the above program has two branches.
During the compilation time we can’t determine,
what way the control will pass. So, we consider that
fd value is { listen_mode = 2 A fd = listen_socket();
listen mode # 2 A fd = raw_socket()}, where the
semicolon present disjunction. To build SMT-LIB
logic formulas for capturing the collection program
semantics, we have to convert the program to static
single assignment graph as shown in fig. 3.

fd1=0

1isten_m0de=‘=2/ Nﬁten_mode =2

fd2=listen socket fd3=raw_socket

N, T

fd4=gifd2, {d3}

Fig. 3. Static Single Assignment for the program

From SSA graph shown on fig. 3, we make an
assertion for every each. If first graph fdl = 0, we
can create (assert (= fdl 0)). The node "fd4 = Phi
{ fd3, fd2 }" is a @-function, we built a disjunction
(or (= 1fd4 fd3) (= fd4 fd2)). Here are two labeled
edges, so, two implications have to be formed: (=>
(= listen mode 2)(= fd2 listen socket)) and (=>
(distinct listen_mode 2) (= fd3 raw_socket)). The APIs

50 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2015. N 2(63): 46-53

semantics are incorporated and if API has no
permission provided we confirm that API returns -1.
Else an assertion, characterizing API from site of the
model library is imported. For example, for
listen_socket and raw_socket, the assertion (assert (and
(> listen_socket 1) (= raw_socket 1))) is imported.

The main program condition considered above is
fd > 1. Verifying, if this condition holds is
considered an aspect of the analysis for this
program, which is included SMT-LIB formula, to
characterize the collecting semantics of the program
by adding the conjunct (< fd4 1). The combined
SMT-LIB formula was unsatisfyable by the solver in
[19], which indicates that the program satisfies the
specification.

Now, the algorithm for SSA graph program
converting to SMT-LIB formulas that captures it’s
collecting semantics, will be described down. Let G
= (N, €) be the SSA program graph. In this graph,
every node represents a statement in the program.
The if and loop conditions can be represented here
as an edge graph labels, and SMT-LIB formulas can
be generated to capture the program collecting
semantics using algorithm 1 that formalizes the
described above intuition.

Algorithm 1 to convert SSA algorithm into SMT
algorithm

forne Ndo
if nis a simple assignment statement VAR = EXP
then
Create an assertion (assert (= VAR EXP)) in

SMT;
end if
if nis a assignment statement with API call
VAR =API
then

Create an assertion (assert (= VAR API));
end if
if nis a @ function statement then
Let v be the variable in this statement and
the set W be
the values of this @
function;
Create a disjunction V= Wi, where wi € W;
end if
if nis a function call statement FUN()
then
Create an assertion (assert (= FUN
FUN_SUMMARY));

end if

foree E do
if eis labeled then
Let n be the node directed by this edge;
Create a conjunction of implication
formula e — n;
end if
end for
if The API permission is provided
then
Provide the API model as (assert (= API
API specification value));
else
Set the API model as -1 (assert (= API -1);
end if
Provide the function summary as the function
return value after the function
analyzed (assert (=FUN SUMMARY
FUN return value)).
end for

6. Experiments and limitations

The source code from Android Bluetooth
ChatServices application was analyzed above. This
program builds a Bluetooth network platform to
allow for device to exchange data with other devices
of Bluetooth. It has three main functionalities: 1)
searching of Bluetooth devices, 2) pair and connect
the devices 3) transfer data between these devices.
The application uses such API calls as:

BluetoothAdapter.getDefaultAdapter(),

BluetoothAdapter.getRemoteDevice(address),

BluetoothSocket and

BluetoothChatService.

These API models are provided here which are
based on the Android Development Documentation.
For this application we simply consider, that
application can set up the Bluetooth service and can
connect to any discovered devices. So, we set up
BluetoothChatService to return non-null object, and
in the SMT-specification we model the value of
API-function as not returned -1. The source code
analyzed satisfied specification. For this, a few
Android-free source codes of the applications were
been downloaded and run the static analysis tool to
the source code described above. Some possible
program vulnerabilities were been detected from the
analysis, are under-mentioned.

Android SMSPopup: 1) in class
SmsReceiverService.java there is a false null
checker for statement. The branch

if(message.isSms() && message.getMessageClass()
== MessageClass.CLASS 0) will be never reached,

V. Melnyk, K. Melnyk, O. Zhyharevych. Static analysis of source code modeled for java-programs containing applications... 51

2) in class SmsPopupUtilsjava the method
getUnreadSmsCount(Context context) will be never
called, 3) there is a system command call
Runtime.getRuntime().exec(commandLine.toArray(
new String [0])).getInputStream()), this statement
may provide a command injection error.

openGPSracker: 1) in class Constants.java on
line 98, there is a hardcoded password, 2) The
function serializeWaypoints() in GpxCreator.java
fails to perform a null checker for variable mediaUri
(line 440), 3) The expression if(startimmidiatly &&
mLoggingState == Constants.STOPPED) (line 563)
in GPSLoggerService.java is evaluated as true every
time, the branch else will be never reached.

OpenSudoku: 1) method update() in
IMNumpad.java (line 208 and 229) fails to perform
a null checker for statement, 2) the method
saveToFile() in FileExportTask. Returns of Java in a
catch block (line 156) may lead to a lost error of the
return value.

In the application Android SMSPopup the
command injection error has been detected. The
command statement is an array that comes from
other function which possibly providing a wrong
statement. In openGPStracker it is revealed more
permissions than necessary; that may lead to the
problem of overprivileged permission. There are
also detected that the application openGPStracker is
with hardcoded password.

A. Limitations

In the intraprocedural analysis, the constraint system
includes all the possible variable values and this may
result in false positives. There are necessary more
sharp abstract interpretation methods to provide
some more precise analysis. In the interprocedural
analysis the summary based functions are modeled
and this abstraction loses precision and gives out
false negatives. Another problem of described above
analysis tool is that it needs developers for external
XML files creation to specify the right program
properties; these files are difficult to build.

7. Conclusions

All Android programs can communicate to each
other through system provided mechanisms such as
files, activities, services, broadcast receivers and
providers for communications. If developers use one
of these techniques they have to be sure, that they
communicate with the right entity, because
permissions can be easily violate here inadvertently.
The analysis program framework described in this

paper can help developers to reveal programming
errors and the statistic of the permission violations.
Developers have to understand what permissions
have to be set up correctly and what basic
knowledge has to be need in the logic and limited
solving. The task to help users to set up easily
constraints and logical errors in programs can be
accepted for the future work.

References

[1] YUW. D. A software fault prevention approach in
coding and root cause analysis. Bell Labs Technical
Journal. 1998. Vol. 3, no. 2, pp. 3-21 [Online].
Available: http://dx.doi.org/10.1002/bltj.2101

[2] Software horror stories:
http://www.cs.tau.ac.il/~nachumd/verify/horror.html.

[3] Forum on risks to the public in computers and
related systems: http://catless.ncl.ac.uk/Risks/19.88.html.

[4] Beizer B. Software testing techniques (2-nd
ed.). New York, NY, USA: Van Nostrand Reinhold
Co., 1990.

[5] Woldman K. |. A dual programming approach
to software testing. Master’s thesis, Santa Clara
University, 1992.

[6] Collard J.-F. Burnstein| Practical Software
Testing. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2002.

[71 NidsonF., NidsonH.R, C. Hankin
Principles of Program Analysis. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 1999.

[8] Cousot P., Cousot R. “Abstract interpretation:
a unified lattice model for static analysis of
programs by construction or approximation of
fixpoints.” in Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of
programming languages. ser. POPL °77. New York,
NY, USA: ACM, 1977. — P. 238-252. [Online].
Available: http://doi.acm.org/10.1145/512950.512973

[9] Holzmann G. J. “Software analysis and model
checking,” in CAV, 2002. — P. 1-16.

[10] Evans D., Guttag J., Horning J., and Tan Y.,
“Lclint: A tool for using specifications to check
code.” in ACM SIGSOFT Software Engineering
Notes. vol. 19, no. 5. ACM, 1994. — P. 87-96.

[11] Anderson P., Reps T.W., Teitelbaum T.,
Zarins M. «Tool support for fine-grained software
inspection.» IEEE Software, vol. 20, no. 4. 2003. —
P. 42-50.

[12] Evans D., Guttag J., Horning J., and Y. Tan,
“Lclint: A tool for using specifications to check
code.” in ACM SIGSOFT Software Engineering
Notes. vol. 19, no. 5. ACM, 1994. — P. 87-96.

52 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2015. N 2(63): 46-53

[13] Das M., Lerner S, Seigle M. “Esp: Path-
sensitive program verification in polynomial time.”
in PLDI, 2002. — P. 57-68.

[14] Martin F. “PAG — an efficient program
analyzer generator.” International Journal on
Software Tools for Technology Transfer. vol. 2,
no. 1, 1998. — P. 46-67.

[15] Hallem S, Chelf B., Xie Y., Engler D.
«A system and language for building system-
specific, static analyses.» In Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
Language Design and Implementation. ACM Press,
2002. — P. 69-82.

[16] Halbwachs N., Proy Y.-E., Roumanoff P.
“Verification of real-time systems using linear
relation analysis.” in FORMAL METHODS IN
SYSTEM DESIGN. 1997. — P. 157-185.

[17] Halbwachs N., Merchat D., Parentvigouroux C.
“Cartesian factoring of polyhedra in linear relation
analysis.” In Static Analysis Symposium. SAS03.
Springer Verlag, 2003. — P. 355-365.

[18] Alur R, Dang T. Ivancic F.
“Counterexample-guided predicate abstraction of
hybrid systems.” Theor. Comput. Sci., vol. 354,
no. 2, 2006. — P. 250-271.

[19] Dutertre B., Moura L. D. “The yices smt
solver.” Tech. Rep., 2006.

[20] Burns J. “Developing Secure Mobile
Applications for Android: An Introduction to
Making Secure Android Applications.” iSec
Partners, Tech. Rep., Oct. [Online]. Available:
http://www.isecpartners.com/files/iSEC\Securing\
Android\Apps.pdf

[21] Shin W., Kiyomoto S., Fukushima K., and
Tanaka T. “Towards formal analysis of the
permission-based security model for android.” in
Proceedings of the 2009 Fifth International
Conference on Wireless and Mobile
Communications. ser. ICWMC ’09. Washington,
DC, USA: IEEE Computer Society, 2009. — P. 87-92.
[Online]. Available: http:/dx.doi.org/10.1109/ICWMC.2009.21

[22] SH.D.S Adrienne Porter Felt, Erika Chin,
D. Wagner “Android permissions demystified.” in
ACM Conference on Computer and Communication
Security. 2011.

[23] Frhwirth T., Abdennadher S “Principles of
constraint systems and constraint solvers.” 2005.

[24] Barrett C., Sump A, Tindli C. “The
Satisfiability Modulo Theories Library (SMT-LIB).”
www.SMT-LIB.org, 2010.

[25] Cytron R, Ferrante J., Rosen BK., Wegman MWN,,
Zadeck F.K. “Efficiently computing static single
assignment form and the control dependence graph.”
ACM transactions on programming languages and
systems. Vol. 13, 1991. — P. 451-490.

Received 25 November 2014.

B. M. Meﬂbﬂmcl, K. B. MeJI])HI/IKZ, 0. K.)Kl/ll”{«lpﬁBl/I‘{s. CTaTHCTHYHMIA aHAJII3 BUXITHOrO KOy 3MO/€e1LOBAHUIA
JUISl java-nporpam, siki MicTATh 1ogaTKu 3 6e3nexoro Android

123 Iy npkuit HALioHANBHYH TeXHIUMHH yHiBepcuTeT, By JIbBiBCHKa, 75, Jyupk, 43018, Yipaina

E-mails: 'melnyk_v_m@yahoo.com; *ekaterinamelnik@gmail.com; *oz_lutsk@mail.ru

31ifiCHEHO MO€JAHAHHS METOMIB CTaTHYHOTO aHaNi3y 3 MOIEJUII0 NEeIyKTUBHOI NMEpEeBIpKM I BUKOPUCTAHHSM pillIeHb
teopii cratmanoi moxeni (TCM) mis CTBOpEHHS OCHOBH, sIKa, BPaXOBYIOUHM AacIleKT aHaji3y BHXIZHOTO KOIY,
ABTOMATHYHO CTBOPIOETHCS 32 JIOMOMOTOI aHaji3aropa, KOTpHW BUBOJMTH KiHIEBY iH(GOPMAIIO MPO Iei acrekT.
AHani3atop reHepyerbCsl HUIIXOM IEpeKiIay MporpaMu Juisi 300py CEMaHTHKH 3 METOI BHKJIaAeHHS (opMmyn B
nepioMy HaONM)KEHHI Ha OCHOBI KUIBKOX IpeAcTaBleHMX Teopiil. OCKiIbkM mporpama 3aiHCHIOE IMIOPT IAKeTiB i
BHKOPHCTOBYE KIJIACOBI METOIM HWX IIAaKeTiB, BOHA IMIIOPTYye CeMaHTHUKy BHKIWKIB APl B HaOmmkeHHI mepmioro
NOPSIKY. AHali3aTop, BUKOPHUCTOBYIOUM Ili HAOMMKCHHS SK MOJENI Ta iX (OPMYNIH TEPIIOr0o MOPSIAKY, 3alydae
noBeAiHKy cnenndikanii (fforo HeraTuBHICTH) onmcanoi mporpamu. Pimenns SMT-LIB dopmyn posrisgaerses siK
KoMOiHOBaHa (opMyna aiasd Toro, moO IiX «OOMeXyBaTH» Ta «po3B’s3yBaTH». DopMa «pO3B’s3KY» MOXeE
BUKOPHCTOBYBAaTUCS s igeHTH(]ikamil goriuaux moMmuiiok (Oesneku) Java-nporpam Ha 6a3i Android. BnacruBocti
6e3nexn Android mpeacTaBiIeHO sIK 0OMEXyBaJIbHI aHATITHYHI i1, 00 MOKa3aTH BaXKIIUBICTH IUX OOMEKEHb.
KarouoBi cioBa: Android-6esneka; Java-mporpama; mnporpamMHMi KOA; CTaTMYHMN aHajli3; cTaTW4Ha Teopis
MOZEIOBaHHS

V. Melnyk, K. Melnyk, O. Zhyharevych. Static analysis of source code modeled for java-programs containing applications... 53

B. M. Mebank', K. B. Meabunr?, O. K.)KnrapeBnlﬁ CraTucTuyecKkuii aHAJIN3 UCXOHOTO KO0 CMOIETMPOBAHHBIH

IJISl java-mporpamMm coep:kaliux NpujioxeHus c dezonacHoctsio android

123 'lyupkuit HanioHATBHII TexHiYHKA yHIBepeuTeT, By, JIbBiBCHKa, 75, JIymek, 43018, Vipaina

E-mails:'melnyk_v_m@yahoo.com; *ekaterinamelnik@gmail.com; *oz_lutsk@mail.ru
[IpoBeneHO COMOCTABICHHE METOMOB CTATUYECKOTO aHAIN3a C MOJAETHIO JCAYKTUBHON MPOBEPKU M HCIOIH30BAHUS
peurenuit Teopum cratudeckoir momenu (TCM) mns co3maHus OCHOBaHHS, KOTOpas, YYHTBHIBas AacleKT aHaIu3a
HCXOJHOTO KOJIa, aBTOMATUYECKH CO3/IAETCS C MOMOIIBI0 aHAIM3aTOPa, BEIBOJIAIIETO KOHEUHYIO HH(POPMAIIHIO 00 3TOM
acrexTe. AHamU3aTOp TeHEPUPYETCs IMTyTeM MepeBo/ia MPOTPaMMBI IIsi cOopa CEMaHTHKH C IIETBI0 U3I0KEHUS HOopMyTT
B TIEPBOM NPHUOIIDKEHHHA Ha OCHOBAaHMH HECKOJIBKHX IPEICTABICHHBIX TEOPHA. Tak Kak MporpamMma JIeiaeT UMIIOPT
MAKETOB M UCIOJIB3YET KIaCCOBBIE METOMBI STUX MAKETOB, OHA UMIIOPTUPYET CEMaHTHKY BbI30BOB API B npubmmkennn
MEPBOTO MOpPsiIKa. AHAU3aTOp, MCHONB3YSl 3TH NPUONMKEHHS KaK MOJENH Ta MX (OPMYJbl HEpPBOro MOpsIKa,
BKJIIOYAeT MoBeJeHue crenudukaimuy (ero OTpULATeIbHOCTh) OMMCAaHHOM mporpaMmbl. Pemennss SMT-LIB dopmyn
paccMarpuBaeTCsl Kak CKOMOWHHpOBaHa (opMysia s TOro, 4roObl MX «OTPAaHUYHMBATR» M «pemarb». Dopma
«PEIICHUS» MOXKET HCIOJB30BAThCSA YIS MACHTU(UKAIMKM JIOTHUYSCKUX OIMOOK (Oe3omacHoCTH) Java-porpaMm Ha
6aze Android. CgoiictBa 6e3omacHoctn Android mpencraBiieHbl KaKk OTpaHMYMBAIOIINE aHAUIUTUYECKUE LIENIH, YTOObI
MMOKa3aTh BAXXHOCTh ATHX OTPaHHYCHHU.
KuaroueBsie ciioBa: Android-6e3omacHocTh; Java-porpamma; MporpaMMHBIA KO, CTATHYCCKHHA aHAIIN3; CTATHYeCKas
TEOPHsI MOJICITHPOBAHUS

Melnyk Vasyl. PhD in physics and mathematics. Assistant professor.

Computer Engineering Department, Lutsk National Technical University, Lutsk, Ukraine.
Education: Prekarpatian Stephanyk University, [vano-Frankivsk, Ukraine (1995).
Research area: computing, programming and sockets.

Publications: 34.

E-mail: melnyk v_m@yahoo.com

Melnyk Kateryna. PhD in technique. Assistant professor,

Computer Engineering Department, Lutsk National Technical University, Lutsk, Ukraine.
Education: Lesya Ukrainka Eastern European National University, Lutsk, Ukraine (1998).
Research area: computational intelligence systems.

Publications: 29.

E-mail: ekaterinamelnik@gmail.com

Zhyharevych Oksana. Assistant professor.

Computer Engineering Department, Lutsk National Technical University, Lutsk, Ukraine.
Education: Lutsk Biotechnical Institute of International Science and Technology, Lutsk, Ukraine.
Research area: computer programming, simulation-based semantics.

Publications: 20.

E-mail: oz lutsk@mail.ru

