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Abstract. The article considers computer simulation of dynamics of elastic tube serpentines with internal flows of
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1. Introduction

Tube rods in the shape of screw cylindrical spirals
(Fig.1) interacting with internal movable (liquid)
medium have gained wide application in technology
as manifolds of heat exchangers in nuclear and heat
power stations, in hydraulic systems of air- and
spacecrafts, in pump units, etc.

vapour

liquid

Fig. 1. Design scheme of a tube spiral with moving

evaporating clots of liquid

The spiral shape of the tubes allows both the en-
largement of the heat acceptance surface and the
intensification of the heat acceptance, to compensate
to essential temperature deformations of the struc-
ture. Liquid inside a tube, on being heated, begins to
boil and transforms into water-vapour mixture. In
response to the interaction between the internal flow
of boiling liquid and the curvilinear tube, compli-
cated static and dynamic effects are generated,
which appear under the influence of forces acting on
the tube from the flow side and which are accompa-

nied by exchange of the potential and kinetic ener-
gies, as well as by static or dynamic loss of stability.

The forces initiating the effects incorporate the
tangential forces of viscous friction dependent on the
liquid viscosity and its velocity, as well as the
centrifugal inertia forces normal to the rod axial line.
The intensity of the latter is proportional to the
moving liquid element mass, square of its velocity
and curvature of the tube segment. Moreover, the
Coriolis inertia forces are generated as a conse-
quence of interaction of rotational and linear mo-
tions. On exposure to these forces, the tube struc-
tures begin to be involved into dynamic processes,
analogous to the phenomena proceeding in elon-
gated structures subject to action of moving loads
and masses. The peculiarities of the dynamic behav-
ior of this type of structure are connected with the
effects, that in these cases the elements of moving
masses take part in several types of motion simulta-
neously and are exposed to the action of inertia
forces which depend upon the element position, and
gyroscopic inertia forces conditioned by interplay of
rotation and linear components of motion. As this
takes place, the modes of the elastic system vibra-
tions become more complicated, inasmuch as the
phases of vibrations of its elements diversify, modes
of its periodical motions cease to be steady, the node
points begin to move and the vibration mode as-
sumes the shape of a running wave, following mo-
tion of movable masses. Note also, that permanent
varying of the considered elastic system mass ge-
ometry occurs at the flowing of the boiling fluid in-
side its channel, which is accompanied by change of
its frequency spectrum. For this reason, in this case
two sources of vibration generation come into being.
The first one is connected with parametric genera-
tion, provoked by periodic variation of the system
parameters (its mass geometry). The second source
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is excitation of purely forced vibrations, induced by
action of the inertia forces of movable fluid masses,
which play the role of active forces in this case. By
virtue of the fact that, owing to the absence of the
spectrum of natural frequencies, the elastic system
loses the mode of natural vibrations and the possi-
bility to study it by the methods of spectral analysis
is excluded. The most suitable methods for its inves-
tigation turn out to be the numerical methods of its
immediate computer simulation.

The questions of analysis of dynamic behavior of
rectilinear tubes with internal continuous flows were
studied in [1-4]. Influence of elastic foundation on
the tube flutter was investigated in [5]. Below the
analysis of tube serpentine vibrations excited by
nonstationary discontinuous internal flows, simulat-
ing boiling fluid is performed.

2. Differential equations of the spiral tube motion

To describe the dynamics of the tubular serpentine,
it is convenient to use jointly internal and external
geometries, applying the first to individualize the
points of the curvilinear tubular rod and moving
liquid clots, and the second to describe its geometry
in the deformed state.

The internal geometry of the rod is specified by
the coordinate, measured as the length of the axial
line from the initial to the current point, and a

moving right-handed coordinate system (u,v, W), the

orientation of which at every point of the tube axial
line is rigidly connected with the examined cross-
section. The origin of this system lies at the center of
gravity of the cross-section area, the U and Vv axes
are directed along the principal central axes of
inertia of the cross-section area, and the w axis is
directed along the tangent to the elastic line. In this
case the coordinate S is a concomitant one. The
external geometry of the rod determinates the
location of each of its points and the entire elastic
line in the fixed inertial coordinate system OXxyz.

The Frenet natural trihedron of the elastic line of
the rod with unit vectors of the principal normal N,
binormal b and tangent T is introduced.

The equations of bending an elastic tubular rod with
distributed forces f and moments m are written in
the form of the system of equilibrium equations [6].

%—Z +o, XF+ f=0;

d—M+co XM+1TxF+m=0
ds x

; (1

equations of elasticity

Mu = A(p_ pO)9 MV = B(q_q))a
M, =C(r —r), 2
A=El, B=El, C=Gl,,
and equations of kinematics
dr 1 dn_ 1 1

—=—n; -—7T+=b;

ds R ds R T

db_ 1,.9%__ 3)
ds T ds

where F, M are the vectors of the internal forces and
moments with components F,, F,, F, and M,
M , M, respectively; R is the radius of curvature;
T is the torsion radius; p = Xi + yj+ zk is the radius
vector of the points of the axial line; A, B, C are
the parameters of the flexural and torsional stiffness;
p, q, r are the curvatures and torsion of the axial
line in a deformed state; p,, q,, I, are the similar

values of the undeformed spiral; E is the elasticity
module of the rod material; G is the shear module;
l,, |, are the inertial moments of the rod cross-
section; | is the polar inertia moment; o, is the

w

Darboux vector which equals

o] =lb+ l+ﬂ’r
R T ds

In deduction of equations (1) it is taken into
account that they are written out in the (U, v,w)

coordinate system, which changes from a point to
point, so the total derivatives dF/ds and dM/ds
are calculated through the use of the equalities
d—de—F+(x) XF, d—Mzd—M+m XM,
ds ds 7 ds ds 7
which stem from the Euler’s equalities known in

classical mechanics. Here dF /ds and dl\N/I/dS are
the local derivatives. So the vectors F, M, dﬁ/ ds,

dl\N/[/dS and @, have the components F,, F, , F,,
M M M dF,/ds, dF,/ds, dF,/ds,

dM,/ds, dM, /ds, dM,/ds and p, q, T
correspondingly.

If the axial line of the rod is preset by the
equalities
x=X(s), y=y(s), z=2(s) )

its geometrical characteristics can be determined via
the formulae
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1 1 XI yl ZI
—=J Y+ (@), = =Ry 7|,
R T V.4 V4 V.4
X'y z
1. 1 1 dy
=—smy, q=—cosy, =—+—. 5
p=sing, q=—cosy, =+ < (5)

Here % is the angle between the n unit vector

and the u axis, the superindex prime denotes
differentiation with respect to S.

It is useful also to remember, that the equations
of kinematics are not independent, inasmuch as they
have six first integrals

|1,'|=1, n|=1,1:-n=0,17><n=b (6)

issuing from the condition of the Frenet basis
orthonormality.

It is further assumed that with the selected system
parameters, the tubular coil will accomplish small
vibrations that can be described by linear differential
equations. These equations can be relations (1)
linearized in the vicinity of an initial undeformed
state. One can write them in scalar form, having
eliminated the vector b from them by means of
first-integral formulas:

JAF,/ds=F,Ar + AF 1, — F,Aq—AF,q, — Af,,
0AF, /os=—-F Ar - AFr, + F,Ap+AF, p, —Af,,
0AF, /ds=F Aq+AF,q,—F,Ap-AF, p, —Af,,
dAp/ds=(AF, —Cq,Ar + Br,Aq)/ A,
0Ag/ds=(-AF, - Ar,Ap+Cp,Ar)/B,

JAr /ds=(-Bp,Aq+ Ag,Ap)/C,

dAT, /ds= Anxm+ n(p,Ap+0,Aq)/
We+a |
aAry/as:Anym+ n,(p,Ap+q,AQ)/
Weira |
aArz/as=Anzm+

M (mAP+GAD/ B+ G

0AN, /0s=—AT\/p; + 0, —T,(P,Ap+Q,AQ)/

I\ P +0; +(Ar —0Ay/9s)(t,n, —T,n,) +
+(r, —9y/9s)x (At n,+ T An, —At,n, —T,An,),

(7

0AN, /0s=—AT /P, + G —T,(P,AP+0,AQ)/
/\ P+ +(Ar —9Ay/ds)(T,N,
+(r,—9x/9s)x(AT,n +1T,ANn —AT,N,—T,AN,),
dAN, /98 =—AT,p; + 0 —T,(P,Ap+0,AQ)/

/P + 0 +(Ar —dAY/ds)(t,n, —T,N)+
+(r, = 9x/9S)(AT,n, + AN, ~AT N ~T An),

—Tn,)+

JAX/0s=At, ,0Ay/ds=At, ,0Az/ds=At,.

Now on the left-hand sides of these equations, the
derivatives with respect to S are partial, since the
terms Af,, Af , Af, contain derivatives with
respect to time

3. Simulation of the inertia forces of the boiling
liquid

To determine forces generated by a boiling liquid, it
is necessary to elaborate a model of dynamic
interaction of the spiral tube and liquid moving
inside it. As experimental studies carried out in
connection with analysis of boiling fluid motions in
glass tubes heated on the outside testify, at some
thermodynamical states and values of geometrical
and mechanical parameters of the system there
appear the cases of the so-called slug flows. They
reside in the fact that in the tube heat-exchanging
systems the regimes of fluid boiling are possible,
when the generated vapour-water mixture is not
homogeneous but consists of some fluid and vapour
segments alternating and moving at high velocities.
As the mixture flows, the process of boiling
continues, thus the lengths of the tube segments
filled with a fluid (called fluid clots) are decreasing
and the lengths of cavities filled with a vapour (gas
slugs) are increasing. In this case their velocities
considerably increase.

The observations made on heated glass spiral
tubes show that the lengths of fluid clots change
from approximately 10 internal diameters of the pipe
on their formation to a zero on a complete
evaporation, and the volume of a fluid, as it
evaporates, increases tenfold. On boiling, the
volume of gas cavities can change from a zero to 50
diameters of the pipe and then, as a result of clot
evaporation, they merge.

In studying the dynamical interaction between an
elastic pipe and an inner flow, T. B. Benjamin [1]
showed that viscous friction forces occurring during
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flow appeared to be relatively small. As these forces
are directed along the axis line of a pipe, they may
be neglected in investigation of its transverse
vibration. Thus, the fluid is assumed to be perfect
and, while investigating its influence on the
dynamics of the tube, only its inertial properties will
be taken into consideration. In investigating the
problem of vibrations of a pipe with an inner
nonhomogeneous flow, the motion of a fluid
element along a vibrating and dynamically bending
pipe-line will be considered. Calculation will be
made of its acceleration in the direction
perpendicular to the pipe axis and determination of
the inertial force acting on the fluid element and
transferring to the pipe walls.

In the calculations, the distributed moments of
external forces m are ignored. The role of the
vector of external forces in this case is played by the
summarized vector f=f'+f" of the inertial-forces
vector f' and friction forces vector f" . Since a fluid
element accomplishes compound motion, its
absolute acceleration a, is calculated by formula

ag=a%+a" +a°. (8)

Here, a® is the vector of the reference-frame
acceleration of the fluid in its movement with the
tube. Therefore,

=%, &=y, a&=2. ©)
The acceleration a’ of the fluid element caused
by its motion in the curvilinear channel of the tube is
relative. The vector a'lies in a contiguous plane;

therefore, it is conveniently represented in the axes
of a moving trihedron

a' =tdv/dt+.p’+q’Vvn. (10)

In the considered case Vv # const, but this term is
not taken into account, as the inertia force connected
with it is not applied to the tube walls.

The Coriolis acceleration a ¢ is due to interaction

of the rotational motion of the tube when it vibrates
and the relative motion of the liquid in it. It is
calculated as

a“=2moXxVv.

The vector @ determines the angular velocity of
rotation of the trihedron n, b, T in the Oxyz system.
It is expanded in the components of the unit vectors

o, =T, db/dt+1,db, /dt+1,db,/dt,
@, =n.dt/dt+n,dr, /dt+n,dt,/dt,

o, =bdn/dt+b dn, /dt+b,dn,/dt.

)

Knowing the total acceleration a, , one finds the

inertial force acting on the fluid element

f;l =—Ppay. (12)
For a tube element, one has
fti =P =_pt(Xi+ y.]+2k) (13)

The sum of fti and f, gives the total inertial
force acting on a coil element with liquid
f'=f +f,. (14)

After corresponding transformations the f'
vector projections on the axes of the movable
coordinate system OXyz can be represented as

follows:
fx ==y +pn) X—2pq Vo[ 10 + ) +1, (B, +
+nny) + 1Bk, + )] - pyViy PP + 0 1y,
fy=—(p +P1) V—2pq Val (bl +nyny) +1, %
X +12) +, (b, + )] - pgViy P+ @ 1y,
f2 =~ +P1) 2= 2p7 Vyl t(bb, + ) +
+ 1, (byb, + 1) + T,(02 + 12)] -

—PaViyPr+ o n,.

Note, that here p, denotes the mass of the unit

(15)

length of the flow. Depending on the type of the
medium fraction, which is located at the considered
point of the tube channel, it can be associated either
with the liquid density or with the vapour density.

If the external friction forces f™ are taken into
account their components are represented in the form

Kr=-nx, £ =-ny, f"=-nz,
where 1 is the friction coefficient.

In constitutive equations (7) there are the
linearized components Af,, Af , Af, of the total
external forces. For their construction it is also

necessary to linearize f,, f , f

y» T, in the vicinity of

the equilibrium state. Then,
Af =—(p, +p,)AX=2p V,[AT (] + )+
+At, (bb, +nn)+At,(bb, +nn,)]-p,v; x
n(PAP+gAQ)/
Iera emraan i can,

—NAX,
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Af, =P +py)AY-2p, vy [AT (BB, +n0 )+

+AT, (I + 1) + AT, (B, +nyn)]-pv, X
n(RAP+GAQ)/

><[/\/pj +q +\/p§ +0§Ar\/+mr\/

Af,=—(p,+py)AZ-2p,Vy[AT (B, +NnN,)+

(16)

s

+At (bb, +nn,)+At, (b} +n)]—p,vy X
n,(pAp+Qg,AQ)/ As

X — )
Wi +q B+ qan o +qn| |

In that the problem solving the constitutive
equations (7) are expressed through the components
along the axes U,v,w, then using correlations (16)

and the formulae of transition [1], one can transfer
from the components Af,,Af ,Af, to the

projections of the Af vector on the axes u,v,w. To

P

do this an angle x = arctga is introduced between

the unit vector n and axis U. After straightforward
transformations [6] one can write down

Afy=(Afn+Af n +Af,n)cosy+
+(Afb +Af by +A b, )sing,

A fV:—(A func+Afyn +A fznz)sinx+
+(A feb +A f by +A £, I, )cosy,

Af, =Af 1, +Af T +Af,T,.

To calculate the forces Af,, Af,, Af,, one must

(17)

take into account discontinuities in parameters of
density and inner flow velocities of the liquid-
vapour mixture, and assign the law of the fluid clot
flow and the vapou-filled cavities motion in its
channel proceeding from the condition of preserving
the overall vapour-water mixture flow mass rate at
the inlet and outlet. The model for changing the flow
parameters of motion is formed assuming that the
clots of length a, enter the channel with a velocity

of V, . At the inlet, a gap between two neighbouring
clots is equal to zero. During the motion caused by
boiling, the length of a clot varies as g =a,e” K and
decreases at the rate of a=da/dt=—kae*'. Asa
result, the lengths of the spaces (cavities) between
clots increase at the rate of b=dl/dt=ckage™!.

The volume of vapour in a space is considered to be
C times as much as that of a fluid from which it was

formed, therefore the relation

Py =Cpy is
performed between the densities of the fluid and the
vapour.

As the volume of the space of a cavity increases,
the velocity V,,, of the i +1-th clot increases relative

to the previous one as V ,=V,(c—1)a. The velocity
of vapour in the cavity between clots is assumed to
be distributed linearly.

The system of equations (7) and (17), along with
the corresponding boundary and initial conditions,
determines the dynamics of a curvilinear tube with
internal fluid flow. Underline its total order with
respect to variable S equals 15. But inasmuch as it
has three first integrals, only 12 boundary conditions
should be formulated at the edges s=0, S=S, as
additional 3 boundary conditions issue from the first

integrals.
4. The technique of solution

With the aim of reducing the system of equations (7),
(17) with partial derivatives relative to the independent
variables S, t to the system of ordinary differential
equations relative to the variable S, use an implicit time
finite difference scheme (the Houbolt method),
according to which the derivatives relative to time at the
t., time moments are substituted by their four-step

finite-difference analogs [6]

X (8 )= Yy (9= 557

X0 (918X, +9% 192X ), (o
X(8ty) = K9 =—x

(At)

X[2X41(9) = 5Xn(8) +4 X1 (9) = X 2(9)]
where At
predetermined by the condition of the calculation
convergence.

Assume, that at the time instants t
deformed states of the tube system are known. Then
substituting the derivatives by t in (7), (17) by
finite-differences (18), one gains the system of
ordinary differential equations of the 15th order at
the time instant t_, . This system is rewritten in the

N+l

1s the time increment. Its value is

t t the

n-2 > n-1°> ™n

n+2 *

general form
dy/dx=A(X)y+ f(x). (19)

Here ¥ = y(S) is the 15-dimensional vector of the
unknown functions; X the independent redenoted
variable S changing within the limits of 0 < X<'S;
S the spiral length; A(x) the known discontinuous
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matrix-function of the independent variable X; I?(X)
the preset vector of right members determined by the
known solution functions at previous steps in time.

It should be noted that the deformed state of the
tube system at the t, time instant in (18) is

determined through application of equation (19) at
t=t, using the deformed states at the previous time

instants t,_,, t_,, ., and analogously is done for the

., and t=t_, in (18). The tube system
states at t, =0, t, =At and t, =2At are found via

the use of appropriate initial conditions at t =0.

The solution to (19) must be subjected to
boundary conditions at the interval bounds, which
are predetermined at the beginning X = 0 and at the
end X=S of the integration interval.

They are represented in the general form as

By(0)=0, DY(L)=0,

where matrices B and D measure (6Xx15).

Notice, that the number 12 of boundary
conditions (20)is not equal to the system (19) which
is of order 15. This is associated with the availability
of the systems first three integrals which
complement the number of boundary equations
making a total of 15.

For constructing the solution Y(X), 6 components

n-3°

states at t =t o

(20)

Y, (x) are chosen from the Y, (x) (i = I,TS) components,
any values Y, (0) of which don't violate the first

equation (20) and the three first integrals at zero values
of the other components. After renumbering the

unknown values Y, (x) (i = I,TS) in such a way that the

index | could take on the values j = 1,6, the solution to
problem (19), (20) can be given as [6]

5= Y(KE +3,.
where Y, is the solution to the Cauchy problem for
system (19) at zero initial conditions, Y(X) is a

(15%x9) matrix of particular solutions Y, to the
homogeneous matrix differential equation
dY/dx= A(X)Y 21)

with initial conditions y,(0)=38/ (i=115, j=16)

for independently modified variables, and with
initial conditions chosen from the first equation of
system (20) and three first integrals for the other

variables ¥;; (0) (j =m)

Here 8! is the Kronecker symbol.

The vector of the constants Cz(Cl,CG)T is
chosen so that the equality

DY(L)C+Dy,(L)=0

following from the second conditions of system (20)
could be satisfied.
The construction of the matrix-function Y(x) and

the vector-function YO(X) is made by integrating

equations (19) and (21) by the fourth order Runge-
Kutta method. The peculiarity of using such an
approach is that due to the presence of large factors
in the coefficients of system (7), it is rigid and there
are rapidly growing functions among its particular
solutions. Therefore in constructing the matrix of its
fundamental solutions, the method of discrete
orthogonalization by Godunov [6] is additionally
used which makes it possible to obtain a stable
computational process by orthogonalizing the
vector-solutions to the Cauchy problems in the finite
number of argument change interval points. Its
essence is in the fact that the integration interval is
divided into sections, and the numerical integration
of the initial differential equation is carried out on
each of these sections in the same way as in using
the method of transfer matrix. The lengths of the
sections are such that the particular solutions to a
homogeneous equation within the limits of one
section could remain linearly independent. When
passing from one section to another, the matrix of
the solutions is subject to linear transformation so that
the vectors of particular solutions of the homogeneous
and nonhomogeneous equations become orthogonal.
Thus it is possible to preserve the linear independence
of the equation solutions in the whole interval of
integration. To avoid excessive increase of the
numerical values of the nonhomogeneous equation
solutions, the normalization factor is introduced at the
section boundaries.

5. Research results

The procedure for solution of a system of equations
(7), (17) with partial derivatives employs the Hubolt
implicit difference scheme, which is distinguished
by enhanced accuracy for its integration with respect
to time [6]. It is used to construct a step-by-step
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process in each step of which a two-point boundary-
value problem is solved for the 15th-order equations
with independent variable s that have three first
integrals. Since some of the coefficients of this
system have small divisors equal to the squares of
the steps of integration with respect to time, this
system is rigid and rapidly increasing functions are
among its partial solutions. It is therefore solved by
the joint application of the transfer matrix method,
the discrete-orthogonalization method [7] and the
Runge-Kutta method.

In the initial undeformed state, the axial line of
the tubular coil is determined by the equations

o . o
Xchos(CO; S), ystm(%sj, 22)

Z=Ssinaq,

where R is the radius of the cylindrical surface of
the coil and o is the angle of ascent of the coil.

They are used to calculate the components of the
unit vectors of the moving trihedron

n, :—cos(colga sj, n, :_sin(c0;a Sj, n, =0,

Ty =—COSO. sin(coéa Sj, (23)
cos QL .
T, =coso. cos( R Sj, T, =sinda,
b = Ty, — TNy, t%/ =T N — TNy,
b, = Ty =T Ny,
and the parameters of curvature and torsion
2
cOs~ Ol
By =0, =) + (Y +(2)? =52,
X/ 4 Z/
1. y” »| _ sinolcoso (24)
I‘O = % X,” y”’ Z,” = T
X Yy z

Relations (23) and (24) are used to calculate the
coefficients of equations (7).

The above-described procedure was employed to
study the vibrations of two types of steel tubular
spirals. The first type tubes have the following
characteristics : number of coils N=5; R=0,5m;

o=0,07214rad ; the curvature and torsion

parameters p, =0, ¢, =199 7!, r,=0,14 nT!. For
the tube of the second type these parameters
comprise : N =10; R=0,1m; p, =0; ¢,=9,95nT};
h=7,19 nr!'. For both tube serpentines, flexural
stiffnesses A=B=1253 Nn¥; torsional stiffness

C =955 N’ ; outside diameter of circular section
of tube d=0,02m; wall thickness of tube
h=0,003 m; mass per unit length of flowing liquid
(water) pyq =1,54-10"" kg/m; mass per unit length

of tube p; =1,24kg/m

Two cases of the problem were considered. In the
first case it was assumed, that the external friction
may be neglected and 1 =0. For the second one 1

was taken to be 1 Ns/m? .

It is impossible to determine beforehand the
period in which the tubular coil will respond to the
inertial forces of the internal flow. The nature of the
dynamic response of the coil is established after
analysis of the calculation results.

Eight problems were solved in each case for the
selected values of the parameters, which were
different by the lengths a, of the water clots at
entrance and the kK parameter, which determined the
rate of the clot evaporating.

The tube dynamics over a time interval equal to
9+10s,

regularities of the dynamic process, was studied for

sufficient for establishment of general

each problem at a fixed clot velocity V. Then, to
find the resonance modes of motion, V, was

changed and the motion modelling was repeated for

the new V, value. The smallest V, value at which
the vibration amplitude began to increase without
limit was considered to be critical. The step AV, of
V, variation was AV, =1m/sec. In the vicinity of
the critical state, this value was AV, =0,1 m/sec.

Table 1 corresponds to absence of friction forces
(M=0).
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Table 1. The values of critical velocities of liquid clots entering into tube spiral and the periods of their forced

vibrations at critical states (N =10)

Case =) K, Vo.crs (F Igs:t t()yge (r)rfghelz\lsr;lrsa 1) Case Vo.crs S(elgoic(i)’tilpﬁ](:f 'ﬁllezspl)ge;l
n;::rl st| nms [T,s|T,s|T,s g‘el;n ny's T.s | T,s |Ts
1 S/8 105 3.8 0,518 | 0,284 | 0,518 5 17,6 0,0447 | 0,0224 | 0,046
4,5 0,437 | 0,219 | 0,324 33,5 0,0235 | 0,0276 —
2 S8 |1 2,7 0,729 | 0,364 | 0,361 6 16,9...17 0,0466 | 0,0252 | 0,0466
4,9 0,402 | 0,326 ] 0,135 29,7 0,0265 0,018 -
3 S/4 105 54..7 0,729 | 0,146 | 0,212 7 17,7 0,0889 | 0,0327 | 0,036
7.2 0,547 | 0,274 | 0,616 34 0,0463 | 0,0339 | 0,308
4 S/4 1 5,1.58 ] 0,772 | 0,386 | 0,771 8 16,9...17,1 | 0,0931 0,031 | 0,0465
6,3 0,751 0,25 0,824 27,2 0,0579 | 0,0289 | 0,115

It was established in consequence of the result
analysis that critical values V, , of the velocity of a

0,cr
water clot entering into the tube could be achieved
when the amplitude of the spiral chatter began to
enlarge indefinitely. In doing so, as the clot motions
are not absolutely periodic, conventional periods T
of conventional resonances of the tube vibrations
can be established for every element of the spiral.
Usually these values are different for the directions
Ox and Oy. In Table 1 the values T, and T, are

listed for the middle element (s= S$/2) of the tube. It
can be seen from it that there can be several critical
values Vo, or even unstable segments for the
velocity V, and that V., enlarges when a,
The

diminishes with reduction of Kk .

The modes of helix motion have high complexity
with respect to both the space (S) and time (t)
coordinates. Figures 2 a-h are graphs of the
vibrations of the point S= §2 on the axial line of the
tube along the Ox and Oy axes for the precritical

(fig. 2,a b, V,=16,8m/s), critical (fig.2,c,d,
Vo.ar =16,9m/s), (aig. 2, & f,
Vo.ee =17m/s) and second critical (fig. 2, g, h,

diminishes. critical velocity Vo also

intercritical

Vo.or =27,1m/s) clot velocities for Case 8 in Table

1. It can be seen that at a low velocity V, =16,8 m/s
(fig. 2, a, b), the vibrations are in the form of beats,
while in the critical case Vo =16,9m/s the

amplitude rises, but not linearly, as in the case of
ordinary resonance vibrations (fig. 2, ¢, d). This type

of dynamic stability loss is typical for parametric
resonances of systems whose properties periodically
change.

This feature is inherent in the considered system,
because its inertia (mass) characteristics change
periodically with the clots movement.

It is necessary also to note that an increase in clot
velocity increases not only the frequency of clot
action on the structure but also the intensity of the
inertial forces, which is proportional to the square of
the velocity. Unlike in ordinary vibrational systems,
therefore, the spiral vibrations can again be unstable
in supercritical states, when V, is larger than the first

critical value V; o =16,9 m/s (fig. 2, g, h).

It is not simple to separate a 3D mode of forced
vibrations of the tube as the dynamic processes are
not steady, so the deformed states of its centerline
were analysed for different time instants. In Fig. 3
the outlines of the spiral states are shown for Case 8
in Table 1. They have different geometrics and it is
rather difficult to distinguish any regularity in the
spiral motion.

With the aim of investigating how the external
friction influences the stability of the spiral
vibrations, the 8 cases considered in Table 1 were
recalculated with allowance made for the friction
forces in (16) and (17) with the coefficient
n=1 NS/ m’ . The calculation results (Table 2)

testify that the friction forces do not practically
influence on the modes and periods of the system
vibrations, but their action brings slight enlargement
of the critical values of the flow velocities and
appearance of unstable segment at case 1.
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Fig. 2. Modes of vibration in time of the serpentine middle cross-section for different values of initial velocities of
the entering fluid
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Fig. 3. Modes of the serpentine motions for case 8 in Table 1 (V, =27,2m/s)

Table 2. The values of critical velocities of liquid clots entering into tube spiral and the periods of their forced

vibrations at critical states (1 =1 NS/ )

Case First type of the spiral Second type of the spiral
mm- | ;‘.a xqfsr’ (R=0,5m; N=5) | ¢ [ v, ,.mis | (R=0,1 m; N=10)
ber T,s| T,s|T,s ‘f:' T.s | . s | Ty s
1 S8 | 0,5 | 3942 | 0,518 | 0,285 0,519 5 17,9 0,0447 0,023 0,048
4,8 0,437 | 0,22 0,322 33,9 0,0235 | 0,0281 —
2 S/8 1 3,0 0,729 | 0,366 | 0,360 6 17,1..17,4 | 0,0466 | 0,0261 | 0,047
4,8 0,402 | 0,327 | 0,136 31,2 0,0265 0,019 —
3 S4 105 |57.73 10729 | 0,147 | 0,212 7 18...19,1 0,0889 0,033 0,038
7,5 0,547 | 0,277 | 0,617 35,7 0,0463 0,034 0,309
4 S/4 1 5,3..59 | 0,772 | 0,385 0,773 8 17,2..17,4 | 0,0931 0,033 | 0,0467
6,7 0,751 | 0,253 0,826 28,3 0,0579 0,029 0,116

6. Conclusion

The problem of computer simulation of tube spiral
vibrations under action of internal flows of boiling
fluid is considered. A mathematic model of
dynamics of the elastic serpentine is elaborated with
allowance made for a discontinuous distribution of
the parameters of the internal flow caused by the
process of its heating and boiling. The action of
inertial forces of positional and gyroscopical types is
taken into account. The analysis of the results

obtained for different values of the parameters of the
flow nonhomogeneity and velocity makes it possible
to make the following conclusions:

1. The nonhomogeneity of the inner fluid flow
manifests itself both in the nonhomogeneity of
centrifugal inertial forces acting on the pipe in the
transverse direction and in the change with time of
the system general mass geometry. In this
connection purely dynamical and parametrical
excitations of vibrations take place.
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2. The possibility of establishment of stable and
unstable regimes of motion is found out, which depend
on the character of nonhomogeneity and velocity of the
fluid clots and the rate of their evaporation.

3. The spatial modes of forced vibrations of the tube
spiral are constructed. It can be noted that the centrifugal
inertia forces normal to the elastic line of the curvilinear
rod and the Coriolis inertia forces caused by slewing and
rotation of the rod cross-sections lead to expansion and
intricating of the vibration modes. Besides, generation of
combined modes including longitudinal, bending and
torsional modes followed by condensation and
rarefaction of the spiral coils as well as by the
enlargement and diminution of their diameters is
peculiar to the studied regimes.

4. The influence of external friction forces on the
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3arponoHOBaHO METOAMKY YHCEIFHOTO MOJCTIOBAHHA AWHAMIKY MPYKHUX CEPIAHTHHHUX TPYO 3 BHYTPILIHIMH HOTO-
KaMu KUIuisiaol piguau. OTpuMaHo cucTeMy AudepeHiiaibHUX PiBHSHb, K4 MICTUTh PO3PHBHI KOe]ILliEHTH y TpaBiii
YacTHHI, KOTpi 3aiexarth Bif 4dacy. IIpomoHyeTbcs MoOzellb pyXy 3TYCTKIB HEOAHOPIAHOT KuIuisidol piguHu. Bona
MOB’si3aHa 3 YMOBOIO 30epe)KEeHHS Mach piAMHU. MeToIuKa YHCENbHOrO DIlleHHsI PIBHSIHb MOOYIOBaHA Ha OCHOBI
METOAY TpaHchep-Marpuili. BUSBICHO MOKIIMBICTh BCTAHOBJICHHS CTIMKHX Ta HECTIMKHX PEKUMIB PyXY, K 3aJIeKATh
BiJl XapaKkTepy HEOJHOPIJHOCTI Ta IBUAKOCTI PyXYy 3TyCTKIB.
KoarouoBi ciioBa: BHYTPIIIHI TIOTOKH; JUHAMIKA; KOJMBAHHS; HEOJHOPIAHA PIAMHA; MIIHIPUYHI CIipai; YHCeTbHUN
METO/; IIBUIKICTb.
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E-mail: tolbatov_e@mail.ru
[pemnokeHa METOMKA YUCICHHOTO MOJCIHPOBAHUS TUHAMUKA YIPYTUX CIUPATBHBIX TPYO ¢ BHYTPEHHHUMH IOTOKA-
MU KWImsmied okuakoctH.  [lomydeHa cuerema  audQepeHIUANBHBIX — YpaBHEHHWH, coaepkalias pa3phbIBHBIC
KOX(pPHUIHUEHTH B MIPAaBOM YacTH, 3aBHUCAILINE OT BpeMeHH. [IpeamaraeTcst Moenb ABMKEHHUS CTYCTKOB HEOJTHOPOTHON
kursmed xugkoctd. OHa CBsi3aHA C YCIOBHEM COXpPaHEHUS MacChl XKUAKOCTH. METOIWKa YHCIEHHOTO PEUICHHUS
ypaBHEHHI MTOCTPOSHA HA OCHOBE MeToJa Tpanchep-mMaTpuIlpl. OOHapyKeHa BOZMOKHOCTh YCTAHOBJICHHUS YCTOWYIHBBIX
U HEYCTOMYMBBIX PEXKUMOB JBUKECHHUSI, 3aBUCSILUX OT XapaKTepa HEOAHOPOAHOCTH U CKOPOCTHU ABUXKEHUS CI'YCTKOB.
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