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Abstract. Presented is a gas turbine engine bearing diagnostic system that integrates information from various
advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a
computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based
transform. The continuous wavelet transform with the complex Morlet wavelet is adopted to detect the harmonics
presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the

wavelet ridges.
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1. Introduction

Improving the reliability and maintainability of gas
turbine engines is becoming more critical to end
users concerned with reducing costs and increasing

availability.
In order to reduce the cost and inconvenience of
unscheduled  repairs, design engineers have

traditionally estimated the statistical reliability of such
faulty bearings and assigned a conservative safe life
replacement interval (based on time or usage).

However, evidence has indicated that actual usage
of military aircraft systems varies considerably
depending on intended use and operating environment.

Unanticipated and extreme operating scenarios
are major causes of failures and unscheduled
maintenance events.

Actual operational lives for aircraft are
commonly extended past their original design lives
because of the critical mission they perform.

Thus, the unfortunate reality of statistical- based
preventative removals is that significant useful life
remains in most units while limited failures continue
to occur in the field.

The former represents an opportunity to reduce
maintenance time and life-cycle costs and increase
readiness, while the latter represents a significant
opportunity to improve safety through the
implementation of diagnostic and prognostic
techniques that will enable the transition from the
traditional safe life removal/change intervals to
condition-based approaches.

A Condition-based Maintenance strategy promises to
reduce the costs associated with scheduled maintenance
by monitoring the actual condition, or health, of the

component and replacing component only when
necessary and at optimally scheduled maintenance
times.

Vibration-based features are of particular
importance in determining the condition of the
bearing within this system and are the focus of this
paper.

Analysis has shown that vibration features offer
better incipient fault detection than the widely used
and accepted oil consumed analysis. In addition,
vibration-based diagnostics offers isolation capabilities
beyond oil debris monitoring [1, 2].

The accuracy of bearing health predictions is
critical to a robust and effective Prognostic and
Health Management implementation.

Substantial research has focused on the development
of robust and accurate features that can be used to
increase the accuracy of health predictions; however,
many of these developments have occurred in
laboratory settings.

Although suitable for proof-of-concept validation,
the idealized laboratory test rig is often a simplified form
of the target system, such as a gas turbine engine.

Confounding issues, such as indirect vibration
transmission path, operating condition issues, and noise
sources, are often absent from the development
laboratory. Complete validation of the feature or sensor
is therefore possible only through actual engine tests.

Therefore, we used data collected from an actual
gas turbine engine, mounted in a full scale test cell,
to validate the developed techniques.

Some of the results of these tests are presented herein.

Copyright © 2014 National Aviation University
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2. Analysis of last researches

Solving the problem of synthesis, application efficiency,
operation control systems aircraft turbine engine
devoted to the work of scientists: V.Y. Berezhnoy [1],
O.D. Degtyarev [1], M.M. Kudin [1], O.P. Saveliev [1],
A. N. Sinyakov [6], F.A. Shamayrdanov [6], M.S. Kulik
[7], JM. Tereshchenko [7], V.V. Panin [7],
S.V. Zhernakov [8].

Bearing failures are of particular concern in high
performance turbines because of the potential for
catastrophic, cascading consequences throughout the
system.

An ability to predict early stage bearing failures
will therefore affect turbine reliability and life-cycle
costs both positively and dramatically.

Thats why we used wavelet-analysis.

3. Wavelet Transform and analyzing wavelet

Wavelet Transform (WT) has been drawing a lot of
attention from scientists and engineers over the years
due to its ability to extract time signal and frequency
information simultaneously. WT can be continuous
or discrete.

Continuous Wavelet Transform (CWT) is adopted
for harmonic analysis because of its ability to
preserve phase information [2].

The wavelet transform of a continuous signal,
f(t), is defined as (1),

W f ) =(fow,,) = f:f(’)%‘y*(t_ujdt’

N

where ‘P*(t) — the complex conjugate of the
wavelet function y(z) ;
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s — the dilation parameter (scale) of the wavelet;

u — the translation parameter (location) of the
wavelet.

The wavelet function must
mathematical criteria [2, 3].

These are the following:

satisfy certain

— awavelet function must have finite energy;
— and u a wavelet function must have a zero
mean, that is, has no zero frequency component.

The simplified Complex Morlet Wavelet (CMW)
[3, 4] is adopted in the algorithm for harmonic
analysis as shown in Fig. 1 and is defined as

()= L 5 ei2met (1)
o

where f; — the bandwidth parameter;

f. —the center frequency of the wavelet.

The CMW is essentially a modulated Gaussian
function.

It is particularly useful for harmonic analysis due
to its smoothness and harmonic-like waveform.

Because of the analytic nature, CMW is able to
separate amplitude and phase information.

Strictly speaking, the mean of the simplified
CMW in (1) is not equal to zero as illustrated in

W) = [ 2ol gy = 4o DT (2)
b
However the mean of the CMW can be made

arbitrarily small by picking the f, and f.

parameters large enough [4, 5].
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Fig. 1. The real part (a) and imaginary part (b) of the CM'W
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For example, the mean of the CMW in (2) with

fp=2 and f,=1 is 2.6753x107°

practically equal to zero.

The frequency support of the CMW in (2) is not a
compact support but the entire frequency axis.

The effective time support of the CMW in (2) is
from — 1 to 8 provided that £} is not more than 9.

From the classical uncertainty principle, it is well
known that there is a fundamental trade-off between
the time and frequency localization of a signal.

In other words, localization in one domain
necessarily comes at the cost of localization in the
other.

The time-frequency localization is measured in
the mean squares sense and is represented as the
Heisenberg box.

The area of the Heisenberg box is limited by

1
0ot >~
2 b
where 6w — the frequency resolution;
ot — the time resolution.

For a dilated complex Morlet wavelet,
_s fb
3)
o=

Complex Morlet Wavelet achieves a desirable
compromise between time resolution and frequency
resolution, with the area of the Heisenberg box equal to 0.5.

From (3), it is seen that the frequency resolution
is dependent on the selection of f} and the dilation.

which is

The dilation is dependent on the selection of f,
and the sampling frequency.

4. Harmonics frequency detection
Given a signal f'(¢) represented as
S (1) =a(t)cos §(0), 4
the wavelet function in (1) can be represented as[5],
() =g 5)

The dilated and translated wavelet families [4]
are represented as

Vs () =%\v(t;” j =g, 5 (), (6)
where

geur (O =sg((t-u)/s)e™;

E=w/s.

The wavelet transform of the signal function
f(¢)in (4) is given as,

Wf(u,s)=§a(u)e—f¢<”><g(s[&—¢’(u>]>+ )

+e(u,9)),

where g(®) represents the Fourier transform of the
function g(?).

The corrective term £(u,&) in (7) is negligible if
a(t)and ¢'(t) in (4) have small variations over the
in (6) and if ¢'(u) > Aw/s .

If a power signal contains only a single frequency,
the corrective term can be safely neglected.

However for a power signal containing
harmonics from low frequency to high frequency,
the corrective term will contribute to the wavelet
coefficients, making the frequency detection not
straightforward.

The instantaneous frequency is measured from

support of ¥,

wavelet ridges determined over the wavelet
transform.
The normalized scalogram defined by [2, 5]
W f (u s)
SR prsteof ®)

1S calculated with

=208 =W

g[n[ q’é)Dﬂ( &)‘ .9)

Since | é((ﬂ)| in (9) is maximum at ® =0, if one
neglects £(u,&). (9) shows that the scalogram is
maximum at

@—i( ) =¢'w). (10)

The corresponding points (u,&(u)) calculated by

(10) are called wavelet ridges [5].
For the CMW, g(¢) in (5) is a Gaussian function.

Since the Fourier transform of a Gaussian function is
also a Gaussian function, the wavelet ridge plot
exhibits a Gaussian shape.

Fig. 2 shows the wavelet ridges plot for the
40 Hz signal. It can be seen that the wavelet ridges
can accurately detect the signal frequency.

Fig. 3 shows the wavelet ridges plot for the
detection of the 40 Hz signal component in the
signal containing frequencies at 40 Hz and 240 Hz,
respectively.

There are some fluctuations at the peak of the
wavelet ridges, introducing small errors in the
frequency detection. The fluctuations are due to
imperfection of the filters produced by the dilated
CMWs and the corrective term in (7).
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Fig. 2. Wavelet ridges plot for a 40 Hz and 240 signal

Discrete Stationary Wavelet Transform (DSWT)
[5] is adopted to remove the fluctuations of the
wavelet ridges.

In view of the shape of the wavelet ridges, the
Symlet2 wavelet developed by Daubechies is used.

It is found that a decomposition level of 5 is
sufficient to remove the fluctuations.

Fig. 4 shows the denoised wavelet ridges plot of
the signal containing frequencies at 40 Hz and
240 Hz, respectively.
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Fig. 4. Denoised wavelet ridges plot of the wavelet
ridges plot in Fig. 3

The 40 Hz frequency component of the signal is
accurately detected by the wavelet ridges after
denoising.

5. Discrimination of adjacent frequencies
The Fourier transform of a dilated CMW in (6) is
represented as [1, 6, 7]

P(sf) = Jse Il L), (11)

The function W(sf) can be regarded as a
bandpass filter centered at the frequency f.. .

6

Some fluctuations at the
peak of the ridges plot to be |

removed by denoising
techniques
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L¥e)

0 5 10 15 20 25 30 35 40 45
Scale (s)

Fig. 3. Wavelet ridges plot for a 40 Hz signal

The bandwidth of the bandpass filter can be
adjusted by adjusting f, .

The CWT of a signal is the convolution of the
signal with a group of bandpass filters which is
produced by the dilation of the CMW.

Suppose that (11) is represented as

W(sf)=x, (12)
where x represents an arbitrary magnitude to be

defined later.
Combining (11) and (12) gives
fdes

s srtlﬁj \j ln(%j’

where f, /s — the center frequency of the dilated
bandpass filter; and the bandwidth is

@/snf) /|1n(x/J§)|.

Fig. 5. Shows the plot of the frequency support of
two dilated CMWs at scales S; and S§,,

respectively.

T

(13)

7k

Fourier transform of
complex Morlet wavelet
-

Fig. 5. Frequency plot of (15) for two CMWs at scales
S; and S, , respectively
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If the two dilated CMWs are used to detect two
adjacent frequencies in a signal, with their
frequencies represented as

_hle o _ LS
fl_ S] > fz—S—za

where f, represents the sampling frequency, then

Je_Je
S 5
(14)
+ 1
Sz"x/?b
Assume that S, > S, (14) is simplified to
Hth
XHE— 15
=T (15)
(16)

Substituting (16) into (15) gives

fc\/7b>0.58x%, 5,200, x<0.5. (17)
271

It is estimated that the magnitude of x should not
be more than 0.5.

Equation (17) is used to determine the values of
fp and f. in (1) for the continuous wavelet
transform with CMW which is a necessary condition
to discriminate adjacent frequencies contained in the
power signal.

6. Harmonics amplitude detection

Theoretically, once the algorithms developed in 3
and 4 detect the harmonics contained in the power
signal, the corresponding harmonics amplitudes
would be determined readily by

2GRS wD A S5

£(0) 1
3 2‘ W f(u,s)

N

The values of Zw“Wf(u,s)|2/s2 in (18) are

obtained in the process of generating the scalogram.

(18)

Due to the imperfection of the filters produced by
the dilated CMWs and the corrective terms in (7),
the amplitudes detected exhibit fluctuations.

Simulation results show that the amplitudes for
harmonics frequencies from 50 to 1000 Hz have
errors of the order of £5 %.

Fig. 6 shows a plot of the absolute wavelet
coefficients generated by (18) for a 991.5 Hz harmonic
frequency component of a power signal containing
frequencies ranging from 50 to 1000 Hz.

991.5Hz fi = f = 9 = T step 0.5
180 - : . -

160t
140 +
120 +
100 +
80+
60+

40 |

Absolute wavelet coefficient

2000 3000 4000
Data point

0 1000 5000

Fig. 6. Absolute wavelet coefficients plot generated by

CWT (using complex Morlet wavelet, f, =9,
f. =7) for harmonic frequency at 991.5 Hz
The smoothness of the absolute wavelet

coefficients plot is also related to the number of data
points taken per cycle of the harmonic frequency
component.

It is found that a minimum of 25 data points per
cycle should be used to provide a smoother absolute
wavelet coefficients plot.

Discrete Stationary Wavelet Transform [2, 5] is
adopted to remove the fluctuations.

Since the absolute wavelet coefficients plot
should exhibit a constant magnitude for a harmonic
frequency of constant amplitudes, the Haar wavelet
is used for the DSWT to denoise the absolute
wavelet coefficients. It is found that a decomposition
level of 5 is sufficient for harmonics up to 1000 Hz.

Fig. 7 shows the output of the DSWT of the
absolute wavelet coefficients shown in Fig. 6.

The fluctuations are removed resulting in an
accurate detection of the amplitude of the harmonics
frequency.
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Fig. 7. Coefficients generated by DSWT (Haar

wavelet, level 5 decomposition) of the absolute

wavelet coefficients plot in Fig. 6

The proposed harmonics detection algorithm is
presented in Fig. 8.

Determine the ranges of
frequency by section based
on the power signal
characteristics

|

Determine for each frequency range:
1) the sampling frequency,
2) the setting of £ and £, of the
complex Morlet wavelet,
3) the data length (time period).

——

Estimate the wavelet coefficients
by continuous wavelet transform
with complex Morlet wavelet

Repeat the
procedures for
another frequency

range Denoise the wavelet ridges
by discrete stationary »
wavelet transform and
determine the scale(s) at
which the wavelet ridges are
at maximum

Estimate the wavelet ridges

The harmonics frequency
of the i3 represented by
the scale at which the
wavelet ridges are at
maximum

Extract the absolute wavelet
coefficients at the scales
where the wavelet ridges are
at maximum

Denoise the absolute
wavelet coefficients by
discrete stationary wavelet
wansform and determine the
harmonics amplitudes

|

Fig. 8. The flow chart of the proposed harmonics
detection algorithm

The proposed algorithm is implemented with
Matlab software.
7. Experimental results

In order to characterize various bearing damage
levels in the engine, tests were performed with three
different bearings.

All bearings tested were gas generator shaft
(engine) bearings, from the second bearing location.

First, a healthy bearing with no faults was used to
generate baseline data.

Second, a bearing with a seeded inner raceway
fault was used to generate incipient fault data.

The fault on the second bearing was seeded by
placing two dents (Brinell marks) in the anticipated
load path of the bearing (Fig. 9).

Fig. 9. Dented Inner Raceway

The intent of the marks was to cause the initiation
and progression of a spall during testing to
characterize fault progression.

The third bearing used in testing had a large, pre-
existing spall on the inner raceway and was used to
generate data representative of a severe fault.

When applied to bearing vibration signals,
autocorrelation is used to estimate the periodicity of
the demodulated signals resulting from ImpactEnergy™,
WT, or Short Time Energy (STE) processing [6, 8].

The top plot of Fig. 10 is the STE of a wavelet
coefficient with center frequency of 18.8 kHz, which
was decomposed from the bearing vibration signal
as shown in Fig. 11.
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£ | — Ball
S 0.5
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Fig. 10. Demodulation of Bearing Vibration Signal
and Fault Detection:

a — STE of a wavelet with center frequency of 18.8 kHz;

b — autocorrelation coeffcient of STE
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The bottom plot of Fig. 11 shows the
autocorrelation coefficients of the STE and
demonstrates that the first and second peaks of the
coefficients match the lines of ball defect harmonics,
which is indicative of a ball defect.

Normalized M ag.
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o — Spectrum
L 18.8 50.7 PSD Estimate
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L]
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=z 0 4 TR
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Fig. 11. Band Selection Using a Parametric Method:
a — time waveform of bearing vibration;
b —band selection

For each bearing condition, multiple test cycles
were performed.

Two cycles were run on the healthy bearing,
which translated to approximately 1 hour of test
time.

Sixty-six cycles were run on the dented bearing,
which translated to approximately 43 h of test time.

Test time on the spalled bearing was limited due
to concerns about the rapid spall progression.

Four cycles, approximately 2 h, were run on the
prespalled bearing.

More cycles were put on the dented bearing to
initiate, and hopefully propagate, the dent into a spall.

Each of the aforementioned diagnostic techniques
was then applied to the collected data.

Successful diagnostic features need the ability to
detect an anomaly in the monitored system with
minimal false alarms, isolate potentially faulted
components, and provide useable correlations to
system health [8].

The following sections detail the diagnostic
capabilities of the various developed techniques.

Results presented are from a single accelerometer
location (gearbox) and only from the high speed and
load condition (military power).

This is because the gearbox accelerometer
provided the clearest indication of the fault. In
addition, the feature magnitudes varied the least

during military power, resulting in more robust
diagnostic features.

Also, the signal’s modulation was more pronounced
during military power than during the other regimes.

To establish ground truth, the raceways were
visually inspected twice during and once after the
testing was complete.

Upon final inspection of the dented raceway,
spall initiation and slight progression was witnessed
(Fig. 12 as compared to Fig. 9).

Fig. 12. Dented Raceway End of Testing

Although the spall had progressed, it was still a
very small, incipient fault.

Please note that the results shown here are from
only during military power, which the engine was
run at for 375 min (the total run time was 2400 min).

The feature trend shown in the following figures
is divided into stages to investigate the shifts in
feature distribution as the test progressed.

The stages correspond to intermediate teardown
inspections of the engine to document the fault
progression.

8. Conclusions

As part of this work, conventional and new signal
processing techniques were combined in different
ways to detect bearing faults.

These methods were applied to data collected
from baseline and seeded fault bearing tests to verify
the efficacy of the integrated techniques.

The proposed harmonics detection algorithm is
able to identify the frequency and amplitude of
harmonics in a power signal to a very high accuracy.

The accuracy of the proposed harmonic detection
algorithm has been verified by tests conducted on a
computer-simulated signal and a field signal.

Two techniques are adopted to achieve accurate
frequency identification.
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Firstly, complex Morlet wavelet is used for the
continuous wavelet transform and secondly, wavelet
ridges plot is used to extract the frequency
information.

Given that the complex Morlet wavelet is a
Gaussian modulated function, the area of the
Heisenberg box on the time-frequency plane is equal
to 0.5.

The bandwidth of the complex Morlet wavelet
can be adjusted by carefully selecting the bandwidth
determined accurately without the need of a large
time window.

It is seen that the wavelet ridges plot is a
Gaussian; the scale at which the wavelet ridges plot
is maximal represents the frequency of the
harmonics in the signal.

Discrete stationary wavelet transform is used to
remove small fluctuations near the peak of the
wavelet ridges plot so that a smooth Gaussian-like
wavelet ridges plot is revealed, the peak of the
wavelet ridges plot can then by identified.

Discrete stationary wavelet transform is proved
to be useful in denoising the absolute wavelet
coefficients of the continuous wavelet transform for
amplitudes detection.

The disadvantage of the proposed algorithm is
that the accuracy of both frequency and amplitude
detections is dependent on the data points taken per
cycle of the highest harmonics in the signal.

In other words, a higher sampling frequency
than twice the Nyquist frequency is required.

It is concluded that bearing fault detection is
highly affected by the hybrid diagnostic techniques
that are implemented, as well as the bandwidths
chosen for scrutiny.

In other words, the proper selection of the
vibration bands and diagnostic techniques will result
in better estimation of bearing health.
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MOTYKHOCTI CHTHAJNY. ANTOPHUTM BHSBJICHHS YaCTOTH PO3POOJICHO 3 BEHWBIET-CKAjorpaMm i XpeOTiB. 3a3HA4eHO, IO
HEOOXITHOI0 YMOBOIO € PO3PI3HEHHS CYCIIHIX YacTOT. 3ampoNOHOBAHO METOA MHTTEBOI YaCTOTHOI IAcHTH( IKAIT A1
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KOTOPBIC MPCACTABICHH B MOMIHOCTH CHTHANA. AJTOPHTM OOHAPYKCHHA YACTOTHI Pa3pab0TaH HA OCHOBC BCHBICT-
CKalorpaMM MW XpeOToB. OTMEYEHO, YTO HEOOXOAMMBIM VCIOBHEM SBIICTCS OIPENCICHUE COCCOHHX YACTOT.
[TpennokeH METOA MTHOBEHHOW YACTOTHOH WICHTU()MKAIWH [ OIPEICICHHUS KOMIIOHCHTOB HACTOT. AJITOPHTM,
OCHOBAHHBIM HA AWCKPETHOM BEHBIICT-TIPEOOPA30OBAHNH, TPHHAT Uil CHIDKCHIS IIyMa BEHBICT-XPEOTOB.
KiroueBbie c¢j10Ba: BEHBIET-CKANOTPAMMBI W XpEOTHI; Ta30TYPOMHHBIA JBUTaTteib; AC(EKTH NOAIIHUITHUKOB;
KOMIUIEKCHBIN BelByieT Mopre.
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