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Abstract. The control of multivariable linear discrete-time, time-invariant systems whose transfer function matrices
are either singular or ill-conditioned is considered. It is assumed that there are arbitrary unmeasurable but bounded
disturbances, and the parameters of these systems may be somewhat unknown. The optimal controller is derived by
using the pseudoinver se of the system transfer function matrix. The boundedness of all signals caused by this controller
and also the robustness properties of the controller in the presence of parameter uncertainty are proved. Numerical

examples are given to support the theoretical investigations.
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1. Introduction

The problem of controlling multivariable systems in
the presence of unmeasurable disturbances stated
several decades ago in [10] remains actual up to
now. This is an important problem from a theoretical
and practical point of view.

Since the seventies, the internal model method
become popular among other methods dealing with
an improvement of the control system by exploiting
the different types of plant and disturbances models.

Based on this principle, multivariable regulator
problem was first approached in [4].

A reformulation of this problem utilizing the
geometric approach tools is reported in the book [11].

A perspective modification of the internal model
control principle is the so-called model inverse approach.

The perfect output control performance is an
important multivariable control problem closely
related to inverse systems.

The problem of inversion of linear time-invariant
multivariable systems has attracted the attention of
several researches [3, 6, 8].

During last years, a significant progress in this
research area has been achieved in [7].

Most of these works except [7] dealt with
continuous-time multivariable systems.

To the best of our knowledge, an inverse model
approach to regulating discrete-time systems
described by the first-order difference equations was
first advanced in [5].

Unfortunately, the inverse model approach is not
appropriate when the transfer function matrix is
singular, because the one becomes noninvertible.

There are different methods to deal with possible
noninvertibility in [6].

It turned out that the so-called pseudoinverse
model can be exploited in closed loop to cope with
the singularity of multivariable system.

Such an approach is based on the pseudoinverse
transfer function matrix which is the generalized
inverse matrix [1, 9].

In summary, the main contribution of this paper is
the utilization of the pseudoinverse model concept as a
tool for dealing with the control of some multivariable
systems whose transfer function matrix are singular or
ill-conditioned, and the proofs of the boundedness,
optimality and robustness results.

Therein, the bridge between iterative algorithms
for solving singular linear equations [9] and similar
control algorithms for controlling these systems is
provided.

2. Problem statement

The plant to be controlled is a linear multivariable
time-invariant, discrete-time system described by

y,=Bu,, +Vv,, (D)
where B represent a NXN transfer function
matrix;

—_Ty® (N)1T

yn_[yn sy yn ] s

1 N)qT

u, =[u,...,uM]

b
1 N)qT
v, =[V",...,vV]

are the N-dimensional output vector, control input
vector and unmeasurable external disturbance vector,
respectively, N=1, 2,... denotes the discrete time.
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The following basic assumptions are made.
Al. B is the singular matrix, i.e.,

detB=0, @)
or ill-conditioned matrix implying

cond B =|B[B] >>1, €)
where cond B denotes the conditionality number of B.

A2. The components W) of v, are upper
bounded in modulus by some gs for all n

‘vﬂ)‘SSi (i=1...,N) 4)

meaning that the norm of V,, satisfies

Il <e

&)
with e = (g} +---+&§ /2.

A3. The control sequence

{Un} = Up, U, Uy,
may be constrained U according to

Jun|SU <o,

(6)
It is assumed that the matrix B may be exactly
unknown, in principle, whereas rank B needs to be

known.
Comment. Equation (1) may describe a process

control with the sampling period T, larger than the

transient time [5].
Let

Y =[y°O,.., YN (Y0 =const).

denote a given reference set-point vector for VY,

satisfying
[ YOO |+, +] YN £ 0,
Define the output error vector €, as
&= yO ~—Yn (7)
and introduce the semi-norm ||e||$ of {||q]||} given by
el = tim sup [ ®)
N—oo

to evaluate the ultimate (asymptotical) behavior of
the control system.
The problem is to design a linear controller

minimizing the upper bound on "e”$ defined in (8) for

any finite y° from the N-dimensional Euclidean space

IRN provided that the resulting control system is
Bounded-input Bounded-state (BIBS) stable.

Moreover, the robustness properties of such a
controller need to be examined.

3. Preliminaries

It is known that if B is non-singular, that is
det B # 0, then the feedback control

Uy = Uny + A, ©)
together with (7) solves immediately the problem
stated above by setting

A=B1, (10)

where B™' denotes the inverse matrix of B.
Namely, the choice of A in the form (10) gives
that the control objective

|efl, — inf

inf an

in which {A} represents a set of admissible As is
achieved for arbitrary

ye IRN.
To implement the control law (9), we need the
inverse model described by the equation

Ay, = Ae, (12)

with A given by (10) and also the discrete
integrator whose output is

(13)

n
U, = > Au,.
k=1

In view of (12), (13), the controller contained in
the closed loop plays the role of an I-type
multivariable controller whose matrix gain is A
(Fig. 1).

Pseudo-inverse
(Inverse) Model

Discrete
Integrator

Fig. 1. Configuration of the closed-loop control
system (1), (7), (9)

The controller (7), (9), (10) causes that the each —
i-th current error

) = o) — y)
will follow the corresponding change of i-th
disturbance V. defined by

A"ﬁi) = Vﬁi) _Vgll
during the one sampling period T, with the accuracy

of its sign:

&) =—A). (14)
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Thereby, the control law

U,=U, +Be, (15)
obtained simply by substituting (10) into (9) is
optimal.

Due to (4), (5), (14) it gives

limsup ‘e,(]')‘ < 2g

N—soo
leading to

lim sup &, < 2e. (16)
N—c0

The equations (1), (15) together with (7) yield
u, =By’ - By,

from which, using (5), we obtain
<8 (] +e) <= =120
This and (16) imply that the vector
W, =y, Yol

remains bounded in the norm for all integer

ne[l,e), meaning {W}e ¢, where /_ denotes

the space of all bounded sequences.

Now, let us assume that the transfer function
matrix B in (1) is singular.

Then the control (9) with A given by the
inversion (10) is impossible.

In this case, a certain condition given below is
necessary to avoid the instability of the closed-loop
control system (1), (7), (9).

Before going to present this condition, the kernel
and the image of an arbitrary matrix H [9] denoted
by kerH and im H, respectively, are introduced.

Theorem 1. Let Assumption Al be valid.
Suppose the set-point vector Y satisfies

Y e imB

and the disturbances V,, are absent.

(17)

Then the singularity of A implying
det A=0
is necessary to achieve an equilibrium state

(18)

W, = lim w,e ¢
L, n_)(x’\% o

of the feedback control system (1), (7), (9).

Proof. Let v, =0. Then by the definition of the
image of the matrix [9, p. 10] from (1) we get
yo€imB forall u,_;s.

Due to (2), im B is a linear subspace in IR
whose dimension satisfies dim(imB)=rankB< N
[9, sect. 6.25].

In view of (17), the output error e, determined
by (7) together with (1) as € =Yy’ —Bu_, will be
nonzero vector for any N, i.e.,

lef#0 wn. (19)

From (1) it follows that an equilibrium state W_

can be achieved if lim,_,., ||un|| <o will be
guaranteed.
By virtue of (12), (13), this condition requires

|Au,=]Ag)| =0 as n— e (20)

(recall that AU, =U, —U,_).

On the other hand, in order to satisfy the
requirement (21), from the definition of the kernel of
the matrix [1] it can be concluded that the ultimated

e, must lie on ker AC TR,

Now, assume that A is non-singular.

In this case we have ker A= {0} [1], where {0}
denotes the origin of IR"

However, according to (19), €  cannot lie on
ker A Therefore, the assumption that det A#0

made above does not hold.
This fact establishes the validity of Proposition.
Remark. Due to Proposition, if det A#0 then

vector € =lim_

||Wn|| goes to infinity as N tends to oo.

Nevertheless, this feature of the closed-loop
control system (1), (7), (9) with a non-singular A
does not exclude a situation when the error vector

€, may be bounded in norm for all time n, as shown
in Fig. 2.

Fig. 2. Geometrical interpretation of Remark

In this special case, Y, njw Y., with ||yoo||<<><>

whereas U s which are determined by (13) together

with (12) will lie on the line orthogonal to ker B and
become unbounded in norm (Fig. 2):

lim,_,., ||un|| =oo
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Thus,

=1lim vy, = lim Bu
yoo Neeo yn Ne—oo n—1

remains bounded in norm, while {U, } is theoretically
the unbounded control sequence: {U.} & /_.

Now, let the transfer function matrix B be
singular according to (2).

Then, the choice of A in the form (10) becomes
impossible.

At first sight, in this case, instead of (15), the
control law

U, =U, , +B'e, 1)
can immediately be derived from (9) via replacing

B™' by the so-called pseudoinverse matrix B’
according to

A=B".
Recall [1] that B" is specified as follows:
B* = %in%(BT B+68%1)'B"

(22)

where | denotes the identity N X N matrix.

Thereby, the structure of the closed-loop control
system containing the pseudo-inverse model
together with the discrete integrator will be the
same as in the presence of inverse model (Fig. 1).

To confirm the fact above established, a
numerical example is given.

Example 1. Suppose

1 2 3
B=14 8 12|
5 10 15

In this case, detB=0.
Let A= diag(0.02, 0.05, 0.03).
With
Yo =[5.12,17]"
and initial

w=[1,2,3]

the closed-loop control system (1), (7), (9) was
simulated.
The behavior of this system is shown in Fig. 3.

We see that the norm of control input ||un||

increases whereas the output Y, becomes constant
in its norm.

Since the singularity of the matrix B causes
det B" =0, the requirement (18) given in Proposition
can always be satisfied under condition (22).

L

15 20

920

80

70

— 60 |
= 50 -
= 40
30

Fig. 3. Simulation results of Example 1:
a — the norm of control input Up;
b — the norm of output y,

e
COo-aNNWWA
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L .

5 . 10
Discrete time n
a

5. 10 15 20
Discrete gmen

Nevertheless, both the boundedness of all signals
in the closed-loop control system (1), (7), (21)

provided that {V.}e /_ and the optimality of the

controller are not obvious as yet and need to be
argued.

Substantiations of these properties and also of its
robustness are the main results.

4. Control of system with singular transfer
function matrix

Suppose for the time being that the disturbances are
removed and B satisfying (2) is exactly known.
With these assumptions, the properties of the
closed-loop system (1), (7), (21) are explored in the
following theorem.
Theorem 2. Subject to Assumption Al and

provided that Vv, =0 and y’ represents an arbitrary
vector from IR", then the controller (7), (21) leads
to stabilizing W, so that:

(1) the error vector e, remains constant equal to

e,=(1-BBHY Vvn=2,3,... (23)
irrespective of initial U,;
(i1) starting from the first time instant,

U, becomes the constant vector depending on U, and
y’ in accordance with
U, =(1 —-B"B)u, +B*Y Vvn=1,2,.... (24)

Proof. Due to space limitation, the proof is
omitted.
Corollary. In the special case, where

Y eimB (25)
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and there are no disturbances, the output error €,
will be zero vector

0y =[0,...,0]"
N

for all integer Ne [2,):

Proof. By Theorem of [9] any vector y’e IR
can be presented as

Y =Y’ +p15 1Y’

(26)

27

in which primByO and pl‘kerBTy0 denote the

projections of y’ onto imB and kerB,

respectively.
In view of (25), from (27) we obtain
pr gy =0n (28)

Further, by Corollary 3.5 of [9], it can be written
(1 -BB* )Y =pr_ V. (29)

Taking into account (29), and the property (23)
together with (28) result in (26).

This completes the proof.

The geometrical interpretation of Theorem 2 is
given in Fig. 4.

Ay

" / “I Py ™S
L
}] " u 0 -

) U,

~

Fig. 4. The meaning of properties (i) and (ii)
Let V, be present. In this case, the following

basic result holds.
Theorem 3. Under Assumptions Al and A2, the
closed-loop system (1), (4), (21) has the properties:
(a) the ultimate output error vector e, and also

the input control vector u_, are bounded in norm by

el < Qul(]y]+2)+ 2e. (30)

Ju-l <l +[&+]( ] +2). (31)

where
Q.=1-BB", (32)
Q,=!-B"B; (33)

(b) the controller (22) is optimal in the sense of
the requirement (11).

Proof. (a) Following the same steps as in proving
Theorem 1 it can be written

& =Q(Y (34)

U, =Qu + B'Y’ — Bty (35)
where Q. an Q, are the matrices given by (32) and
(33), respectively, and the notation

—Vh1) — AV,

AV =V, — Vi (36)
is introduced.

Taking into account (5), by the triangle inequality
from (36) we get ||Vn|| <2e

This together with (34), (35) and (10) leads to
(30), 31).

(b) Equation (1) together with (4) yields

G =&~ BAun + AV (37)

Using again the triangle inequality, from (38) we
have
el < = BAU] + [Av|

Consider the general linear control of the form
(9) rewritten as

(3%)

Au, = Ag,. 39)
By Theorem 3.4 of [1], the condition
Au, =B'e, (40)

applied to the first term of the right-hand side of (38)
gives
le,~BB'g [|= inf [&-BAu| (41)
——"  AvelRN
Auy
with Ae IRNN and e, IRN.
Defining an arbitrary vector Au as Au:= Ag,
from (41) we obtain
& — BAw,[| =inf |6, - BAg, |
—_—
Aup

(42)

provided that Au, is given by (40).
Since the variables ||%—BAun|| and ||Avn||s2£

are independent, (42) means that the control (40)
minimizes the upper bound on ||en o || given by (38)

for any nonnegative integer n.
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Hence, this control is optimal on the set of
controls having the form (39) for all admissible As
because (11) is satisfied.

The fact thus established completes the proof.

Example 2. Consider the system (1) with B, u,
and y° as in Example 1. Let {v\"} and {v{’} be the
pseudorandom variables taken from the range
[-1, 1].

Choose A by (22) in which

Bt =(1/588)BT.

The behavior of the closed-loop control system
(1), (7), (21) is presented in Fig. 5.

From Figs 5, d, e, f we observe the outputs
depicted by solid lines are close to the set-points
depicted by dashed lines.

This shows that the performance of the closed-
loop system with the controller containing the
pseudoinverse matrix is successful.

Since B may not exactly be known, the choice of
A in the form (22) becomes impossible.

e

20

Input 24"
o o o
o - N w

=)

.40 . 60 80 100
Dlscret% timen

4

0 20

o
=)

o

Input 14

.40 . 60 80 100
Dlscret% time n

Input 45"

08
086
04
02

0

(1)
n

=
—
=
%
£
=
O
=20
™15
—
S 10
£
>
O 0
0 20 0. . (] 80 100
5 Di¥crete time’h
- e
T =20
15 s
—
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=
3 o
0 20 40 . 60 80 100
5 Discrete time n

Fig. 5. Simulation results of Example 2:
a— first control input;

b — second control input;

¢ — third control input;

d— first control output;

e—second control output;

f — third control output

In this case, B' needs to be replaced by a
suitable estimate B* close in some sense to B.

However the following question arises:
Is the controller

u,=u, ,+B'e, (43)

robust in the presence of difference between B* and
B*?

The answer is given in Theorem 4 below.

The crucial step in deriving the robustness
properties is based on utilization of the following
lemma which is a reformulation of results that can
be found in the handbook [9].

Lemma. Let Q be a matrix of the form (32) or

(33) satisfying the conditions:
(i) p*(Q) = maxyc ) [MQ)| < 1;
Al

(i) rank(l — Q)= rank(l —Q)?,
where the notification G(Q) of the matrix spectrum
is introduced.
Then
(a) there exists a limit matrix
Q.= 1lim Q"
n—oo

(b) the series
(1-B'B)B* +(1 —B'B) B +(1 -B'B) B +...
converges.

With this lemma, the following result can be
shown to be valid.

Theorem 4. Under Assumptions A1-A3, there is
a set of B* including B* =B" such the controller
(43) guarantees the boundedness of {w,} .

Proof. Due to space limitation, the proof is
omitted.
Example 3. Consider the system with B as in

Example 1 and 2. Choose B as

5 1 4 4,8
Bt =(1/588)| 2 8 9,6 |.
3,02 12,08 14,496

The performance of the closed-loop system
containing the controller (43) with no disturbance
and in the presence of disturbances as in Example 2
is depicted in Figs 6, 7, respectively.

Fig. 6,b demonstrates just the feature of this
controller given by (24).
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Fig. 6. Simulation results of Example 3 with no disturbance:
a — the norm of control input in the case A= B* (solid
line) and in the case A= B* (dashed line);

b — the norm of error A= B+ (solid line) and in the case
A=B" (dashed line)
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Fig. 7. Simulation results of Example 3 in the presents
disturbance:

a— first control input;

b — second control input;

€ — third control input;

d — first control output;

e—second control output;

f — third control output

5. Control of system with ill-conditioned
transfer function matrix

Consider the case where

rank B=N (44)

but the conditionality number cond B satisfies (3)

meaning that the norm of the inverse matrix B™ is
sufficiently large number. In this case, the following
result can be shown to be valid.

Theorem 5 [2]. Let (44) be satisfy.

Suppose assumptions A1 in which (3) takes place
and A2 hold.

Define

min (45)

B} det B=0 HB B BH

B. = arg{

as the singular matrix which is the closest to B.
Let

||B,:A|| <1, (46)

where

A=B-B. (47)
Then the controller
Uy =y +Ble,
guarantees
, . B
hrr?_iljp un || < "I - BB ""Uo" + %(" y°|| + 8) < oo,

Corollary. Let B™' be a non-singular matrix satisfying
[51>[e]
with B, determined by (44).

Under Assumptions Al and A2 the system (1),
(4), (45) will be dissipative.

The proof is based on utilizing the result taken
from [11, Lemma 7.2].

The result thus established allows now to derive
the controller satisfying the constrain (46) together
with (47) of the form

e e

U, +Bfe, otherwise

(4%)

putting y, =[0,...,0]".

Due to Corollary and Theorems 5, the controller
(48) may be considered as a suboptimal controller
whose actions {u,} satisfy (6) with

U =2[er|(ly

This controller is applicable to deal with the ill-
conditioned transfer function matrix B.

+8).



26 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2014. N 2 (59): 19-27

6. Conclusions

It was established that the inverse matrix approach can
be used to optimize the discrete-time control of linear
multivariable systems whose transfer function matrices
are either singular or ill-conditioned.
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OTpaHUYCHHBIC BO3MYIICHHS, a TApaMETPhl STHX CHCTEM MOTYT OBITh YAaCTHYHO HEW3BECTHHIMH. ONTHMAaIbHBIN
PETYIIATOP MOCTPOCH C HWCIOJB30BAaHUEM IICEBJOMHBEPCHUH MATPHUIIBI IIEPEJaTOYHBIX (DYHKIMU cHCTeMbl. J[oka3zaHa
OTPaHNYEHHOCTh BCEX CHTHAJIOB, MOPOKICHHBIX 3TUM perymiaropoM. [IpuBeneHbl cBOMCTBa poOACTHOCTH PETyIATOpa
NpU HAIWYUM [apaMeTPUUYECKON HEONpeneneHHOCTH. [l MOATBEPKIEHUS TEOPETHUYECKHX HCCIEIOBAaHUM JaHbI
YUCJIEHHBIE IIPUMEDHI.
KiroueBble cjI0Ba: JUCKPETHOE BpeMsi; MHOTOMEPHAas CHCTeMa; HeoOpalaemas MaTpuIla; OTpaHUYEHHOE BO3MYIIICHUE;

ONITUMAJIBHOCTB; IICEBJOUHBEPCHUA.
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