
V. Azarskov et al. Discrete-time control of linear multivariable systems with either singular...  
 

Copyright © 2014 National Aviation University 
http://www.nau.edu.ua 

19

UDC 681.5 

Valerij Azarskov1 
Leonid Zhiteckii2 

Klavdiia Solovchuk3 

DISCRETE-TIME CONTROL OF LINEAR MULTIVARIABLE SYSTEMS WITH EITHER 
SINGULAR OR ILL-CONDITIONED TRANSFER FUNCTION MATRICES 

National Aviation University 
Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine 

E-mails: 1azarskov@nau.edu.ua; 2leonid_zhiteckii@i.ua; 3solovchuk_ok@mail.ru  

Abstract. The control of multivariable linear discrete-time, time-invariant systems whose transfer function matrices 
are either singular or ill-conditioned is considered. It is assumed that there are arbitrary unmeasurable but bounded 
disturbances, and the parameters of these systems may be somewhat unknown. The optimal controller is derived by 
using the pseudoinverse of the system transfer function matrix. The boundedness of all signals caused by this controller 
and also the robustness properties of the controller in the presence of parameter uncertainty are proved. Numerical 
examples are given to support the theoretical investigations. 
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1. Introduction 
The problem of controlling multivariable systems in 
the presence of unmeasurable disturbances stated 
several decades ago in [10] remains actual up to 
now. This is an important problem from a theoretical 
and practical point of view. 

Since the seventies, the internal model method 
become popular among other methods dealing with 
an improvement of the control system by exploiting 
the different types of plant and disturbances models.  

Based on this principle, multivariable regulator 
problem was first approached in [4].  

A reformulation of this problem utilizing the 
geometric approach tools is reported in the book [11]. 

A perspective modification of the internal model 
control principle is the so-called model inverse approach.  

The perfect output control performance is an 
important multivariable control problem closely 
related to inverse systems.  

The problem of inversion of linear time-invariant 
multivariable systems has attracted the attention of 
several researches [3, 6, 8].  

During last years, a significant progress in this 
research area has been achieved in [7].  

Most of these works except [7] dealt with 
continuous-time multivariable systems.  

To the best of our knowledge, an inverse model 
approach to regulating discrete-time systems 
described by the first-order difference equations was 
first advanced in [5].  

Unfortunately, the inverse model approach is not 
appropriate when the transfer function matrix is 
singular, because the one becomes noninvertible.  

There are different methods to deal with possible 
noninvertibility in [6]. 

It turned out that the so-called pseudoinverse 
model can be exploited in closed loop to cope with 
the singularity of multivariable system.  

Such an approach is based on the pseudoinverse 
transfer function matrix which is the generalized 
inverse matrix [1, 9]. 

In summary, the main contribution of this paper is 
the utilization of the pseudoinverse model concept as a 
tool for dealing with the control of some multivariable 
systems whose transfer function matrix are singular or 
ill-conditioned, and the proofs of the boundedness, 
optimality and robustness results.  

Therein, the bridge between iterative algorithms 
for solving singular linear equations [9] and similar 
control algorithms for controlling these systems is 
provided. 

2. Problem statement 
The plant to be controlled is a linear multivariable 
time-invariant, discrete-time system described by 

1 ,n n ny Bu v−= +      (1) 
where B  represent a N N×  transfer function 
matrix;  

(1) ( ) T[ , , ] ,N
n n ny y y= …   

(1) ( ) T[ , , ]N
n n nu u u= … , 

(1) ( ) T[ , , ]N
n n nv v v= …   

are the N-dimensional output vector, control input 
vector and unmeasurable external disturbance vector, 
respectively, 1, 2,...n =  denotes the discrete time. 
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The following basic assumptions are made. 
A1. B  is the singular matrix, i.e., 
det 0,B =      (2) 

or ill-conditioned matrix implying  
1cond 1,B B B−= >>    (3) 

where cond B  denotes the conditionality number of .B  
A2. The components ( )i

nv  of nv  are upper 
bounded in modulus by some isε  for all n 

( )i
n iv ≤ ε   ( 1, , )i N= …    (4) 

meaning that the norm of nv  satisfies  

nv ≤ ε      (5) 

with 2 2 1/ 2
1( ) .Nε = ε + + ε"  

A3. The control sequence  

0 1 2{ } , , ,nu u u u= …   

may be constrained U  according to 
.nu U≤ < ∞      (6) 

It is assumed that the matrix B  may be exactly 
unknown, in principle, whereas rank B  needs to be 
known. 

Comment. Equation (1) may describe a process 
control with the sampling period 0T  larger than the 
transient time [5].   

Let  
0 0(1) 0( )[ , , ]N Ty y y= …  0( const).y ≡  

denote a given reference set-point vector for ny   
satisfying 

0(1) 0( )| | | | 0.Ny y+ + ≠…  
Define the output error vector ne  as 

0:n ne y y= −      (7) 

and introduce the semi-norm sse  of { }ne  given by  

: lim sup nss n
e e

→∞
=     (8) 

to evaluate the ultimate (asymptotical) behavior of 
the control system. 

The problem is to design a linear controller 
minimizing the upper bound on sse  defined in (8) for 

any finite 0y  from the N-dimensional Euclidean space 
IRN  provided that the resulting control system is 
Bounded-input Bounded-state (BIBS) stable. 

Moreover, the robustness properties of such a 
controller need to be examined. 

3. Preliminaries 

It is known that if B  is non-singular, that is 
det 0,B ≠  then the feedback control 

1n n nu u Ae−= +     (9) 

together with (7) solves immediately the problem 
stated above by setting 

1,A B−=                 (10) 

where 1B−  denotes the inverse matrix of .B   
Namely, the choice of A  in the form (10) gives 

that the control objective 

{ss }
inf

A
e →  (11) 

in which { }A  represents a set of admissible sA  is 
achieved for arbitrary  

0 IR .Ny ∈  

To implement the control law (9), we need the 
inverse model described by the equation 

n nu AeΔ =  (12) 

with A  given by (10) and also the discrete 
integrator whose output is 

1
.

n
n k

k
u u

=
= Δ∑  (13) 

In view of (12), (13), the controller contained in 
the closed loop plays the role of an I-type 
multivariable controller whose matrix gain is A  
(Fig. 1).  

 
Fig. 1. Configuration of the closed-loop control  
system (1), (7), (9) 
The controller (7), (9), (10) causes that the each –

i-th current error  
( ) 0( ) ( ):i i i
ne y y= −   

will follow the corresponding change of i-th 
disturbance ( )i

nv  defined by  
( )( ) ( )

1: ii i
n n nv v v −Δ = −   

during the one sampling period 0T with the accuracy 
of its sign: 

( ) ( ).i i
n ne v≡ −Δ  (14) 
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Thereby, the control law 
1

1n n nu u B e−
−= +  (15) 

obtained simply by substituting (10) into (9) is 
optimal.  

Due to (4), (5), (14) it gives 
( )limsup 2i
n i

n
e

→∞
≤ ε

 
leading to 

lim sup 2 .n
n

e
→∞

≤ ε   (16) 

The equations (1), (15) together with (7) yield 
1 0 1 .n nu B y B v− −= −  

from which, using (5), we obtain 

( )1 0
nu B y−≤ + ε < ∞   ( 1, 2, ).n = …  (17) 

This and (16) imply that the vector 
T T T[ , ]n n nw u y=   

remains bounded in the norm for all integer 
[1, ),n∈ ∞  meaning { } ,nw ∞∈A  where ∞A  denotes 

the space of all bounded sequences. 
Now, let us assume that the transfer function   

matrix B  in (1) is singular.  
Then the control (9) with A  given by the 

inversion (10) is impossible.  
In this case, a certain condition given below is 

necessary to avoid the instability of the closed-loop 
control system (1), (7), (9). 

Before going to present this condition, the kernel 
and the image of an arbitrary matrix H  [9] denoted 
by ker H  and im ,H  respectively, are introduced. 

Theorem 1. Let Assumption A1 be valid.  
Suppose the set-point vector 0y  satisfies  

0 imy B∉  

and the disturbances nv  are absent.  
Then the singularity of A  implying  
det 0A =  (18) 

is necessary to achieve an equilibrium state 
lim nn

w w∞ ∞→∞
= ∈A  

of the feedback control system (1), (7), (9). 
Proof. Let 0.nv ≡  Then by the definition of the 

image of the matrix [9, p. 10] from (1) we get 
imny B∈  for all 1s.nu −   

Due to (2), im B  is a linear subspace in NIR  
whose dimension satisfies dim(im ) rankB B N= <  
[9, sect. 6.25].  

In view of (17), the output error ne  determined 
by (7) together with (1) as 0

1n ne y Bu −= −  will be 
nonzero vector for any ,n  i.e., 

0ne ≠   .n∀  (19) 

From (1) it follows that an equilibrium state w∞  
can be achieved if limn nu→∞ < ∞  will be 
guaranteed.  

By virtue of (12), (13), this condition requires  
0n nu AeΔ = →  as n → ∞  (20) 

(recall that 1).n n nu u u −Δ = −   
On the other hand, in order to satisfy the   

requirement (21), from the definition of the kernel of 
the matrix [1] it can be concluded that the ultimated 
vector : limn ne e∞ →∞=  must lie on .ker NA IR⊆  

Now, assume that A  is non-singular.  
In this case we have ker {0}A =  [1], where {0} 

denotes the origin of NIR   
However, according to (19), e∞  cannot lie on 

ker .A  Therefore, the assumption that det 0A ≠  
made above does not hold.  

This fact establishes the validity of Proposition. 
Remark. Due to Proposition, if det 0A ≠  then 

nw  goes to infinity as n  tends to .∞   
Nevertheless, this feature of the closed-loop  

control system (1), (7), (9) with a non-singular A  
does not exclude a situation when the error vector 

ne  may be bounded in norm for all time ,n  as shown 
in Fig. 2.  

 

Fig. 2. Geometrical interpretation of Remark 

In this special case, n n
y y∞→∞

→  with y∞ < ∞  

whereas snu  which are determined by (13) together 
with (12) will lie on the line orthogonal to ker B  and 
become unbounded in norm (Fig. 2):  

limn nu→∞ = ∞   
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Thus,  

1: lim limn nn n
y y Bu∞ −→∞ →∞

= =  

remains bounded in norm, while { }nu is theoretically 
the unbounded control sequence: { } .nu ∞∉A  

Now, let the transfer function matrix B  be 
singular according to (2).   

Then, the choice of A  in the form (10) becomes 
impossible.  

At first sight, in this case, instead of (15), the 
control law 

1n n nu u B e+
−= +  (21) 

can immediately be derived from (9) via replacing 
1B−  by the so-called pseudoinverse matrix B+  

according to  
.A B+=  (22) 

Recall [1] that B+  is specified as follows: 
2 1

0
: lim( )T TB B B I B+ −

δ→
= + δ  

where I  denotes the identity N N×  matrix.  
Thereby, the structure of the closed-loop control 

system containing the pseudo-inverse model   
together with  the discrete integrator will be the 
same as in the presence of inverse model (Fig. 1). 

To confirm the fact above established, a   
numerical example is given. 

Example 1. Suppose 
1 2 3
4 8 12 .
5 10 15

B
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

In this case, det 0.B =   
Let ( )diag 0.02, 0.05, 0.03 .A =  
With  

[ ]T0 5,12,17y =   

and initial  

[ ]T0 1, 2, 3u =   

the closed-loop control system (1), (7), (9) was  
simulated.  

The behavior of this system is shown in Fig. 3. 
We see that the norm of control input nu  

increases whereas the output ny  becomes constant 
in its norm. 

Since the singularity of the matrix B  causes 
det 0,B+ =  the requirement (18) given in Proposition 
can always be satisfied under condition (22).  

 
Fig. 3. Simulation results of Example 1:  
a – the norm of control input un;  
b – the norm of output yn 

Nevertheless, both the boundedness of all  signals 
in the closed-loop control system (1), (7), (21) 
provided that { }nv ∞∈A  and the optimality of the 
controller are not obvious as yet and need to be 
argued.  

Substantiations of these properties and also of its 
robustness are the main results. 

4. Control of system with singular transfer 
function matrix 

Suppose for the time being that the disturbances are 
removed and B satisfying (2) is exactly known. 

With these assumptions, the properties of the 
closed-loop system (1), (7), (21) are explored in the 
following theorem.  

Theorem 2. Subject to Assumption A1 and 
provided that 0nv ≡  and 0y  represents an arbitrary 

vector from ,NIR  then the controller (7), (21) leads 
to stabilizing nw  so that:  

(i) the error vector ne  remains constant equal to 
0( )ne I BB y+= −   2, 3,n∀ = …  (23) 

irrespective of initial 0 ;u  
(ii) starting from the first time instant, 

nu becomes the constant vector depending on 0u  and 
0y  in accordance with 

0
0( )nu I B B u B y+ += − +   1, 2,n∀ = … . (24) 

Proof. Due to space limitation, the proof is 
omitted. 

Corollary. In the special case, where  
0 imy B∈  (25) 
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and there are no disturbances, the output error ne  
will be zero vector  

N
T0 : [0,...,0]N

N
=   

for all integer [2, ) :n∈ ∞  

0 .n Ne ≡  (26) 

Proof. By Theorem of [9] any vector Ny IR∈0  
can be presented as 

0 0 0
im kerpr pr TB By y y= +  (27) 

in which 0
impr B y  and 0

kerpr TB y  denote the 

projections of 0y  onto im B  and ,ker TB  
respectively.  

In view of (25), from (27) we obtain 
0

kerpr 0 .T NB y =  (28) 

Further, by Corollary 3.5 of [9], it can be written 
0 0

ker( ) pr .TBI BB y y+− =  (29) 

Taking into account (29), and the property (23) 
together with (28) result in (26).  

This completes the proof.  
The geometrical interpretation of Theorem 2 is 

given in Fig. 4.  

 

Fig. 4. The meaning of properties (i) and (ii) 

Let nv  be present. In this case, the following 
basic result holds. 

Theorem 3. Under Assumptions A1 and A2, the 
closed-loop system (1), (4), (21) has the properties: 

(a) the ultimate output error vector ∞e  and also 
the input control vector ∞u  are bounded in norm by  

( )0 2 ,ee Q y∞ ≤ + ε + ε  (30) 

( )0
0 ,uu Q u B y+

∞ ≤ + + ε  (31) 

where 
: ,eQ I BB+= −  (32) 

: ;uQ I B B+= −  (33) 

(b) the controller (22) is optimal in the sense of 
the requirement (11). 

Proof. (a) Following the same steps as in proving 
Theorem 1 it can be written 

0
1( ) ,n e n ne Q y v v−= − − Δ  (34) 
0

0 ,n u nu Q u B y B v+ += + −  (35) 

where eQ  an uQ are  the matrices given by (32) and 
(33), respectively, and the notation 

1:n n nv v v −Δ = −  (36) 

is introduced. 
Taking into account (5), by the triangle inequality 

from (36) we get 2 .nv ≤ ε  
This together with (34), (35) and (10) leads to 

(30), (31).  
(b) Equation (1) together with (4) yields  

1 1.n n n ne e B u v+ += − Δ + Δ  (37) 

Using again the triangle inequality, from (38) we 
have 

1 1 .n n n ne e B u v+ +≤ − Δ + Δ  (38) 

Consider the general linear control of the form 
(9) rewritten as  

: .n nu AeΔ =  (39) 

By Theorem 3.4 of [1], the condition  
:n nu B e+Δ =  (40) 

applied to the first term of the right-hand side of (38) 
gives  

N IR
|| || inf

N
n

n n n
uu

e B B e e B u+
Δ ∈

Δ

− = − Δ  (41) 

with IRN NA ×∈  and IR .N
ne ∈   

Defining an arbitrary vector uΔ  as : nu AeΔ =  
from (41) we obtain 

Ninf || ||
n

n n n nA
u

e B u e B Ae
Δ

− Δ = −  (42) 

provided that nuΔ  is given by (40).  
Since the variables n ne B u− Δ  and 2nvΔ ≤ ε  

are independent, (42) means that the control (40) 
minimizes the upper bound on 1+ne  given by (38) 
for any nonnegative integer .n   
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Hence, this control is optimal on the set of 
controls having the form (39) for all admissible sA  
because (11) is satisfied.  

The fact thus established completes the proof. 
Example 2. Consider the system (1) with B, 0u  

and 0y  as in Example 1. Let }{ (1)
nv  and }{ (2)

nv  be the 
pseudorandom variables taken from the range 
[ 1, 1].−   

Choose A  by (22) in which  
T(1/588) .B B+ =  

The behavior of the closed-loop control system 
(1), (7), (21) is presented in Fig. 5. 

From Figs 5, d, e, f we observe the outputs  
depicted by solid lines are close to the set-points 
depicted by dashed lines.  

This shows that the performance of the   closed-
loop system with the controller containing the 
pseudoinverse matrix is successful.  

Since B  may not exactly be known, the choice of 
A  in the form (22) becomes impossible.  

 
Fig. 5. Simulation results of Example 2:  
a – first control input;  
b – second control input;  
c – third control input;  
d – first control output;  
e – second control output;  
f – third control output 

In this case, +B  needs to be replaced by a 
suitable estimate +B~  close in some sense to .B   

However the following question arises:  
Is the controller 

1n n nu u B e+
−= + �  (43) 

robust in the presence of difference between +B~  and 
?B+   
The answer is given in Theorem 4 below.  
The crucial step in deriving the robustness  

properties is based on utilization of the following 
lemma which is a reformulation of results that can 
be found in the handbook [9]. 

Lemma. Let Q  be a matrix of the form (32) or 
(33) satisfying the conditions:  

(i) ( )
1

( ) max ( ) 1;QQ Q∗
λ∈σ
λ≠

ρ = λ <  

(ii) 2rank( ) rank( ) ,I Q I Q− = −   

where the notification ( )σ Q  of the matrix spectrum 
is introduced. 

Then  
(a) there exists a limit matrix  

: lim ;n
n

Q Q∞ →∞
=  

(b) the series 

( ) ( ) ( )2 3
I B B B I B B B I B B B+ + + + + +− + − + − +� � � � � � …

converges. 
With this lemma, the following result can be 

shown to be valid. 
Theorem 4. Under Assumptions A1-A3, there is 

a set of +B~  including T~ BB =+  such the controller 
(43) guarantees the boundedness of }{ nw . 

Proof. Due to space limitation, the proof is   
omitted. 

Example 3. Consider the system with B  as in 
Example 1 and 2. Choose +B~  as 

1 4 4,8
(1/ 588) 2 8 9,6

3,02 12,08 14, 496
.B+ =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

�  

The performance of the closed-loop system 
containing the controller (43) with no disturbance 
and in the presence of disturbances as in Example 2 
is depicted in Figs 6, 7, respectively.  

Fig. 6, b demonstrates just the feature of this 
controller given by (24). 
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a 

 
b 

Fig. 6. Simulation results of Example 3 with no disturbance:  
a – the norm of control input in the case A B+= �  (solid 
line) and in the case A B+=  (dashed line);  
b – the norm of error A B+= �  (solid line) and in the case 
A B+=  (dashed line) 

 
Fig. 7. Simulation results of Example 3 in the presents  
disturbance:  
a – first control input;  
b – second control input;  
c – third control input;  
d – first control output;  
e – second control output;  
f – third control output 

5. Control of system with ill-conditioned  
transfer function matrix 

Consider the case where 
rank B N=  (44) 

but the conditionality number cond B  satisfies (3) 
meaning that the norm of the inverse matrix 1B−  is 
sufficiently large number. In this case, the following 
result can be shown to be valid. 

Theorem 5 [2]. Let (44) be satisfy.  
Suppose assumptions A1 in which (3) takes place 

and A2 hold. 
Define 

{ }: det 0
: arg min

B B
B B B∗ =

= −� �  (45) 

as the singular matrix which is the closest to .B   
Let  

1,B+
∗ Δ <  (46) 

where  
: .B B∗Δ = − �  (47) 

Then the controller 
n n nu u B e+

∗= + �  
guarantees  

( )0
0lim sup .

1n
n

B
u I B B u y

B

+
∗+

∗ ∗ +→∞ ∗
≤ − + + ε < ∞

− Δ

�
� �

�
 

Corollary. Let 1B−  be a non-singular matrix satisfying 
1B B− +

∗> �  

with B∗
�  determined by (44).  

Under Assumptions A1 and A2 the system (1), 
(4), (45) will be dissipative. 

The proof is based on utilizing the result taken 
from [11, Lemma 7.2]. 

The result thus established allows now to derive 
the controller satisfying the constrain (46) together 
with (47) of the form 

1 1
1

1

if 2
otherwise

n n
n

n n

u B e B Bu
u B e

− − +
− ∗

+
− ∗

⎧ + ≤⎪= ⎨ +⎪⎩

�
�

 (48) 

putting 0 [0, , 0] .Tu = …   
Due to Corollary and Theorems 5, the controller 

(48) may be considered as a suboptimal controller 
whose actions { }nu  satisfy (6) with 

( )02 .U B y+
∗= + ε�  

This controller is applicable to deal with the ill-
conditioned transfer function matrix B. 
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6. Conclusions 

It was established that the inverse matrix approach can 
be used to optimize the discrete-time control of linear 
multivariable systems whose transfer function matrices 
are either singular or ill-conditioned. 
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Розглянуто керування багатовимірними лінійними дискретними стаціонарними системами, матриці  
передавальних функцій яких  або вироджені, або погано обумовлені. Показано, що є довільні невимірювальні, 
але обмежені збурення, а параметри  цих систем можуть бути частково невідомими. Оптимальний регулятор 
побудовано з використанням псевдоінверсії матриці передавальних функцій системи. Доведено обмеженість 
усіх сигналів, породжуваних цим регулятором, а також властивості робастності регулятора за наявності 
параметричної невизначеності. Для підтвердження теоретичних досліджень наведено числові приклади. 
Ключові слова: багатовимірна система; дискретний час; матриця, яка не може бути оберненою; обмежене 
збурення;  оптимальність; псевдоінверсія. 
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