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Abstract. A mathematical model of a cavity under the influence of perturbations of various origins is evaluated. The
model is based on hydrodynamics of flows with free boundaries and the theory of small perturbations. Specific analysis

is provided for cavitational flows behind cones.
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1. Introduction

The theory of cavitational flows is widely used in
various applications, including aerodynamics of
aircraft wings, elements of marine vessels, and
liquid media flows in industrial processes. This
article aims to show the possibility of improving
analysis of the flow perturbations caused by conical
cavitators.

The basis of this theory was established in the
previous studies [Logvinovich 1969; Zhuravlev
1973]. Similar methods were used previously to
calculate the deformation of spherical -cavities
[Plesset, Shaffer 1948]. These approaches first
established in [Logvinovich 1969; Zhuravlev 1973]
were subsequently further developed in [Buivol
1980]. Relevant to these studies, an experimental
method of measuring cavity geometries including
perturbed cavity geometries [Epshtein, Lapin 1975;
Epshtein, Lapin 1980] has been developed. The
main results of these studies were obtained for disc-
shaped cavitator, thickness of which could be
neglected.

However, the methods developed in [Buivol
1980] can be improved so that it becomes possible to
apply them to calculate cavities in case of cavitator-
cones. In the present method, axisymmetric flow
behind a cavitator-cone is used as an unperturbed
flow [Logvinovich, Serebriakov 1975; Serebriakov
2008]. The method is illustrated for a case of
simultaneous effects of gravity and the angle of
attack of the cavitator.

2. Mathematical model

In presenting a mathematical model we follow
[Buivol 1980]. It is based on the model of a planar
nonstationary potential flow of an ideal fluid. The
coordinate system xQOy is arranged so that negative
axis Ox is directed against the cavitator velocity

vector V), while the intersection of jets with cone

edges occurs at the time ¢#=0 in the observation
plane at x=0. In this case, the problem reduces to
the integration of the Laplace equation in the polar
coordinate system:
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and satisfying impermeable cavity wall conditions:
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for a given or constant pressure difference at the
cavity boundary:
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as well as the condition of solution equals zero at
infinity (® - the velocity potential, R -
axisymmetric cavity radius, P, P, — pressure values

at infinity and in the cavity, respectively, and p —

the density of the liquid).

An asymptotic solution of the problem for the
velocity potential and the radius of the cavity cross-
section are found in accordance with the requirements
of the theory of small perturbations as follows
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where the perturbation ¢ and f are sufficiently

small relative to the ground state and
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@, in equation (4) is the first member of velocity

potential in cylindrical expansion, the second term is
the flow potential around a cylinder with speed u,
and (5) is a general solution of Laplace equation .

Problems (1) — (3) can be linearized if all
equations are expanded in Taylor series in the
vicinity of undeformed (axisymmetric) cavity
surface and only linear expansion terms are
considered. The linearized mathematical model of
the problem is as follows:

V?p=0, outside the cavity
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at the cavity boundary:

¢ = {u cos 3,—u sin 8,0} ,

where u — the vertical component of the cavity
velocity;

n — the vector perpendicular to the surface of the
cavity.

Satisfying the first condition (6), we obtain the
dependence of the modes a, of the potential ¢ of

deformational modes f, of cross-sectional radii of
the cavity
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After satisfying condition (6), we get an infinite
system of nonlinear differential equations of the
second order with respect to deformational modes,
which after some transformations can be
expressed as
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Here U :Fl2 where the Froude number
rL
V. )
F, =—"— is defined by the half-length of the
- ~ &Ly
cavity, L.

Froude number Fr=Fr, , which is defined by

the break-off diameter d,, .

If appropriate initial conditions for the
deformations of the radii and the rate of such
deformations are added to (7), one obtains the
Cauchy problem

L= fr0. [ (0)=fp.

In the absence of angle of attack and zero initial
conditions, the solution of the Cauchy problem
determines the influence of gravity on the movement
and shape of the cavity. The problem can readily be
solved in Mathcad, Matlab or Maple.

3. Cavities behind cones

The case of a disc- shaped cavitator was analyzed
previously in [Buivol 1980]. Therefore, without
considering this case, we proceed to deriving an
equation for the radius of the cavity by a circular
cone. In this case, we use an approximate
formulation of the problem, which is the integration
of the generalized differential equation S.S. Grigoryan
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where o — the cavitational number.

In equation (8) normalized values are used:
I
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one obtains

4 O°R’ +i & 2=4cs
ot TR ar '
The two terms in the left part of equation (9) are
not of the same order as the original R, since the
tangent of the angle between the tangent to the
meridian and the axis of the body cavity is of small
order &> 0. Thus, the second term in this equation
is of the order &° so this part can be neglected,
which leads to the equation
2p2
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To integrate equation (10), where the value p is
still unknown, we need to determine initial
conditions. To determine the initial conditions, we
note that at # =0 the observation plane is intersected
by a solid object with cross-section S, , therefore

or §(f)‘f:0 =LS:S(VI)=1.

n

S,y =S,

Below we will omit the dash denoting normalized
values.

In order to determine the derivative and simplify
the model, we assume that all the kinetic energy is
converted into energy of expanding rings and will
neglect its part corresponding to the flow along the
cavity in addition to the part defined by equation
(10). Then the kinetic energy can be calculated by
the formula

2y
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where R — the internal radius of the ring;

vy — the value of its outer radius corresponding to
all the energy dissipated;
v. — the radial velocity component, which is

r

defined in a symmetric expansion formula

RR . o
v, =——, where r is a current polar radius in the
r

. . R
polar coordinate system (r,9), and R:let — the
rate of expansion of the inner radius.

Thus, the kinetic energy is determined by a fairly
simple formula
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Since the kinetic energy equals zero at the initial

point of time, the expression (11) is the change in

kinetic energy equal to the work of external forces

over time ¢. External force here is the resistance of

the body, which is calculated by the formula
[Zhuravlev 1973]
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where ¢, =c, (o) — coefficient of resistance of the
body.

Thus, using the condition 7 =W, one finds an
expression for the derivative at the initial time
dR® - _ 2,
dt
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and Grigoryan problem reduces to the integration of
equation (10) for the following conditions

R*(0)=R;,
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This leads to the expression for the square of the
radius

R =—2 14y 2i+1.
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Using ar” =0 one finds the coordinates of the

mid-point intersection
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so that the final cavity radius for the cone can be
represented as
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Study [Serebriakov 2008] gives slightly different
asymptotic formulas. Therefore, it is recommended
to calculate the radius using the formula

R§=;2(x+a)[1—(x+a)],

(cq —ko)
c,

2u . . .
where 22 = M is squared cavity elongation.
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To calculate the resistance coefficient of the
cone at zero cavitation number, one can use the
formula

2 2
Cl0 :2{1—(1+82)(1—841nitﬂ, g=tany,

where y — a half cone angle.

The solution of the Cauchy problem was
implemented using Matlab, for which files with
functions were compiled to integrate the system of
equations, while a script file was generated to
execute the necessary calculations, produce output
graphics, etc.

If cavitator has an angle of attack o, it leads to a
non-zero derivative of cavity buoyancy already
present in the break-off cross-section at the initial
point of time. In case of sufficiently thick cones,

df;

formula to calculate ? is the same as for a disc:
t
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For thin cones similar expression is simplified:
an __
dt |i=o

Fig. 1 shows the vertical displacement h(% of
k

the cavity in the cavitation flow over a cone with
y=12°, 6=0.0125 , Fr = 30 at different angles of

attack (o =0°,3°,6°,12°).
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Fig. 1. Floating cavity s = 0.0125; Fr =30

The presence of the angle of attack causes the
from of the cavity to “dive” (negative A(f)). The
greater the angle of attack, the greater part of the
cavern that dives and just the “stern” of the cavity
experiences upward displacement due to buoyancy.
Therefore, gravity has a strong influence on the
angle of attack only in the stern.

However, as shown in Fig. 2, the deformation of
the lower part of the cavity is quite weak, since it
compensates for the effect of gravitational influence
of the angle of attack.
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Fig. 2. Section t = 1.5 cavity s = 0.0125; Fr =30

But the effect of gravity on the upper part of the
cavity angle of attack increases by creating a
movement of this part down, which leads to a
depression in the top of the cavity (Fig. 2).

4. Conclusions

The method of cavitational flow analysis for a cone-
shaped cavitator in presence of gravity is presented.
It uses the method of small perturbations of an
axisymmetric cavity. Differential equations of this
problem are linearized in vicinity of undisturbed
cavity surface. A mathematical model is presented
as an infinite system of nonlinear differential
equations of the second order. The Cauchy problem
for this system is solved using Matlab. Specific
results are presented and analyzed to illustrate
deformations of the cavity under the influence of
gravity.
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B.M. ByiiBoj. Hexinilinnii MeTo po3paxyHKy 30ypeHb BiceCMMeTPUYHHUX KaBiTaliiHMX Tevii

Hauionanphuii aBianiiiHuii yHiBepeurer, npoci. Kocmonasra Komaposa, 1, Kuis, Ykpaina, 03680

E-mail: va_buyvol@mail.ru
HaBeneno maremaTnyHy Mozaenb GpopMyBaHHS KaBEpHH IpH Aii 30ypeHb pi3HOI NPHPOH, B OCHOBI SIKOI JIeXKAaTh TeOpil
MOTEHI[IATBHIX TEYil 3 BUIBHUMH TPaHHUISIMH i ManuxX 30ypeHb. BUKOHAaHO aHami3 pe3yibTaTiB  KOHKPETHHX
KaBiTaIITHUX Tedilf 3a KOHycaMHu. PO3IIITHYTO METOH pO3paxyHKy KaBiTamiMHUX TEUiid 3a KOHyCaMH 3 ypaxXyBaHHSIM
monsl rpasitaiii. Bukopucrano meron manmx 30ypeHb BicecMMeTpWYHOI KaBepHH. /lndepeHmianpHi piBHIHHS 3a1adi
JiHEapu3yThCAd B OKOJI He30ypeHoi moBepxHiI kaBepHHU. [loOymoBaHo MaTeMaTHYHY MOJENb 3a1adi y  BHIJISAIL
HECKIHYEHHOI CHCTEMH HeNiHIHHNX AndepeHIialbHuX PIBHAHD ApYyroro mopsaky. 3amauy Komri mma miei cuctemu
PO3B’s3aHO 3a JONOMOTOI0 IIaKeTy NpHKIagHOi MaremaTwku Matlab. Ha KOHKpeTHHX Tewisx MOKa3aHO IpoLec
nedopmyBaHHST OPMHU KaBEPHH i BIUIMBOM IOJIsI TpaBiTaltii.
KoarouoBi ciioBa: rpasitauis; audepeHuniansHi piBHSAHHS; 30ypeHHsS; KaBepHA; KaBiTarop; KIHETHYHA EHEpris;
Koe(DiliEHT OMopy; KOHYC; KyT aTakH; KyT MiBpO3XWIIy; IIEPETUH 3pUBY; MOTEHIa]; piBHsIHHSA Jlamiaca; Tedist piguHu;
YHUCIIO KaBiTallii; yucio @pyna.

B.H. ByiioJ. Hetuneiinblii MeTO1 pacueTa BO3MYLIEHUH 0CECUMMETPUYHBIX KABUTAIMOHHBIX TeYeHUit

HannonanbHbIi aBUaliMOHHBINH YHHBEpcUTeT, pocn. Kocmonasta Komaposa, 1, Kues, Ykpauna, 03680

E-mail: vn_buyvol@mail.ru
[IpuBenena mareMaTwdeckas MOJIENb (OPMHUPOBAHUS KaBEPHBI TPU JICHCTBUN BO3MYILIEHHUHA PAa3IUYHONW HPUPOMEI, B
OCHOBE KOTOPOH JIEKaT TCOPHH TOTCHIMANBHBIX TEYCHHH €O CBOOOMHBIMU TPAaHUIIAMH M MAJIBIX BO3MYIICHHU.
BrinonHeH aHanu3 pe3yJbTaTOB pPAcueTOB KOHKPETHBIX TEYEHMH 3a KoHycamu. PaccmoTpeH Merox pacuera
KaBUTALMOHHBIX TEYEHUH 3a KOHycaMHM € YYETOM IOJIsi TpaBuUTaluu. MCnosb30BaH METOJ MaJblX BO3MYILUEHHI
ocecMMMeETpU4YHON  KaBepHBl. JuddepeHnnanbHpie  ypaBHEHHS 3aladyd  JIMHEApU30BaHBI B OKPECTHOCTH
HEBO3MYIIIEHHOW MOBEPXHOCTH KaBepHBI. IlocTpoeHa MaTemaTHyecKast MOJENb 33Ja4i B BUAEC OECKOHEYHON CHCTEMBI
HENUHEHHbIX An(depeHInanbHbIX YpaBHEHUI BToporo mopska. 3agada Kommm st 3TOW CHCTEMbI pellieHa ¢
NOMOIIBIO  ITaKkeTa MNpHUKIagHONH Maremaruku Matlab. Ha mnpumMepax KOHKPETHBIX TEYEHHWH II0Ka3aH MPOLEeCcC
nepopmMupoBaHusi GOPMbI KABEPHBI 10T BIMSHUEM I0JIS TPABUTALIHY.
KuroueBble ci1oBa: Bo3MyIleHUe; TpaBuTaiys; audhepeHIuanbHble YPaBHEHUs; KaBEPHA; KABUTATOP; KMHETHUCCKAs
SHEPrus; KOHYC; K03()(OUIMEHT COMPOTUBICHUS; MOTCHINAN; CCUCHIE CPBIBA;, TCUCHUE KUIKOCTH;, YTOJI aTaKd; YroJ
noyypactBopa; ypaBHenue Jlaraca; uncno kaButauuu; ynciio Opyna.
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