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Abstract. The multiobjective task of optimal control of vibration response of an elastic plate is considered. An
application of a genetic algorithm for determination of the optimum compensating force frequency dependence and
parameters of concentrated masses for different boundary conditions is described. The principle of virtual work and
Ritz approach are employed for investigation of dynamic behaviour of mass-loaded plates, which are subjected to any
number of forces. The optimisation problem is formulated as a constrained task. Optimization provided the reduction of
both total acceleration level and compensating force. Numerical results show the appropriateness of the model for
optimization of concentrated masses values and their location on a plate. Interpolation of optimal compensating force

parameters frequency dependence is used for the design of feedforward control system.
Keywords: concentrated mass; feedforward control; semi-active method; vibration of plates.

1. Introduction

Plates are often used in practical engineering work,
e.g. aircraft, spacecraft and ships. In some cases it is
necessary to mount devices on elements of a
construction under condition of the minimal
acoustical and vibrating loading.

To provide effective work of these devices it is
necessary to prevent resonance of the structural
elements. One of the methods, which can be used in
order to solve the problem of acoustical and
vibrating loading reduction for engineering
construction, is based on applying optimum
distribution of the concentrated masses. Passive
methods possess a large number of advantages
compared to active structural acoustic or vibration
control.

The use of passive methods is usually less
susceptible to errors, cheaper and requires no
additional power supply.

Chen and Handelman [1956] carried out a study
on the determination of the fundamental natural
frequency of a rectangular plate with a rigid mass
under certain boundary conditions using the
Rayleigh—Ritz method.

Stokey and Zorowski [1963] developed a general
method for determining approximately the natural
frequencies of a rectangular plate with arbitrarily
located masses.

Laura et al. [1987] calculated the fundamental
frequency of a plate carrying several concentrated
masses using the optimized Rayleigh method. The
effect of attached masses on free vibrations of
rectangular plates is studied in paper [Amabili et al.
2006] by considering rotary inertia of concentrated
masses and geometric imperfections of the plate.

The works written by Low and Dubey [Low,
Dubey 1997; Chai, Low 1993; Low 1997; Low
2003] summarise the existence of three different
methods for eigenfrequency determination.

The first is based on Rayleigh quotient [Chai,
Low 1993; Low 1997; Low 2003]. It is used only for
an approximation of the fundamental frequency and
requires the shape function to be known.

The investigation done by Ciancio et al. [2007] is
based on the usage of Ritz variational method. This
method is employed by the authors in the current
study too. A number of other researchers have
continued the trend of seeking harmonic solutions to
the plate-mass problem.
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For the more complicated boundary conditions
and structures, carrying concentrated masses, the
finite element method is utilised in order to calculate
mode shapes and eigenfrequencies.

Employing this method, Ranjan [2006] made a
parametric study of mass value and location
influence on the fundamental natural frequency of
circular plate with clamped (CC) and simply
supported (SS) boundary conditions. In this paper
two types of classical boundary conditions are
investigated: SS and CC condition.

The dynamic behaviour of the rectangular plate
excited by a harmonic force at a certain point is
studied.

At the decision of an optimizing problem
additional restriction was used: the total weight of
plates with concentrated masses and plate without
masses remained a constant (mass-loaded plate had a
smaller thickness).

Unlike filtered signal least mean squares
algorithm, which is usually used for feedforward
control [Preumont 2003], proposed semi-active
control methods gives possibility to control vibration
response of flexible structure over its entire surface.

The article is structured as follows. The task of
optimal feedforward control is formulated, after that
presentation of the governing equations for flexible
structure is given.

2. Problem statement

In the case, when the frequency of oscillations varies
with the time ¢, it is reasonable to apply control
system (Fig. 1) to the flexible structure for proper
adjustment of compensating force value F¢ and
phase ¢c.
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Fig. 1. Feedforward control system

Other parameters, which includes mass values m,,
and their location on flexible structure x,, and yy,
cannot be varied during exploitation of flexible
structure. These parameters have to be determined
prior to the application of control system to the
flexible structure. If the location of exciting force is
excluded from the set of feasible locations of
additional masses and compensating force, then
determination of optimum values for these

parameters requires the application of optimization
algorithm, which is able to find global optimum.
Because in this case noise and vibration objective
functions dependance on parameters iy, Xm, Ym,» Xc,
V. possess several local minima.

Multiobjective optimization task for semi-active
method is formulated as follows:

N
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F, and ¢, are the value and phase of
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values found from the

compensating force at mode n, which is
characterized with the combination of n, and n,
numbers, where n, is the number of halfwaves,
which is contained in plate length a, n, is the number
of halfwaves, which is contained in plate width .
Optimization is done with the following control
parameters: m, ,X,,¥,,X.,Y, and constrains:
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where {=0.3;
M

olap

plate is mass of plate part, which oscillates;

X, and y, - are gaps from the plate
boundaries;
Solap

overlap.

is area of attached to the plate objects'

: 2
Evaluation of a¢

includes optimization of the following expression
with control parameters F , ¢ :

in the first objective of eq. (1)

ab
min ay = o} [ [ w(w,)w* (@,)dxdy @)
00

Optimization in eq. (2) is performed separately
for every mode n. The value of transverse motion of
flexible structure w in (2) can be estimated based on
analytical model of flexible structure.
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3. Simplified analytical modelling of plate

Consider transverse motion of a plate with finite
dimensions of its area axbxh with concentrated
masses m, attached at the points (x,,y, ) (Fig. 2).

Fig. 2. Setup and geometry of the investigated plate

External force F.(¢) is located in the point

(xF s Vr ) :

The mathematical model of plate oscillation can
be constructed on the basis of a principle of virtual
work [Chen, Handelman 1956]. The principle of
virtual work for the considered model of plate can be
written in the following form:
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F=1
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w(x,y,t) is a vector of transverse

displacement at plate oscillation, dots above W

where

denote derivative with respect to time and indices
w,, denote the derivative with respect to plate

coordinates x and y;
m,, — the masses which are in points (x,,,);
p is density of plate material;
Por L
m-th mass;
k,, . is shaker stiffness;

— density and moment of inertia of the

M and K are respectively the number of masses
and forces.

7 — a vector normal to the plate;

D — plate stiffness:

— Eh3 .

C12(1-v3)’
E — complex Young’s modulus:
E=E"(1+i n);

E'—Young’s modulus;

v — Poisson’s ratio;

n — damping loss factor;

The plate is loaded by a harmonic force
F.(t)=F, exp(-iot+¢.),

which has a phase @, and angular frequency @ . For

harmonic oscillations of a plate the equation (3)
takes a form:

0d =0, 4)
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In order to receive the solution of equation (4)
Ritz method is used. In accordance with Ritz method
the form of transverse motion of plates is expressed
by means of functions, which ¢, (x) satisfy the

geometrical boundary conditions.
For example, displacement for plate oscillation
can be presented in the form:

wcgﬁnwmm, )

where {n}=(n,n ) is combination of modal

numbers, A, are the unknown coefficients.
For CC plate X

nx

(x) and Y, (y) are beam

functions which satisfy boundary conditions of the
CC beam:

X, (x)=cosa—cosha -y, (sina—sinha),

Y, (y)=cos f—cosh - Yy (sin f—sinh ),

A,.x
a= ;
a
plwd
b b
cosAchh =1;
_ cos A, —cosh 4,

7’ . . ,» l=n.,n,.
" sin4 —sinh 4, Y

For SS plate X, (x) and Y (y) are beam

functions which satisfy boundary conditions of the
SS beam:

X, .(x)=sin L7 ;
. nr
Y, (y) = smT.

Due to orthogonally of accepted beam functions,
function ® (4) can be simplified. Orthogonal
properties of used CC and SS beam functions can be
found in [Berthelot 1999].

Because 84, is finite and arbitrary quantity, the

expression (4) can be executed only in the following
case:

a;():0 for

“1...N. 6
o4 " ©)

Substitution of (5) into (6) leads to system of the
linear equations with quantity unknown variables 4,
equal to number of modes N:
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for CC plate:
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for SS plate:

br' ar’ 7
bfnnB :—D{4a3 nj: + e ni + n’ .

2ab "

The system of equation (7) can be solved
numerically after evaluation of all necessary
coefficients.

Solution is valid for any number of forces and
masses.

In order to find the -eigenfrequencies the
following generalized eigenvalue problem has to be
solved

B,V=/B,V,

where eigenfrequencies can be expressed in terms of
eigenvalue A as follows: @ =~/— A1 .

4. Comparison of the received solution to

experimental results

Reduction of acoustic radiation and vibration
response of constructions due to the increase of
mass, when the sizes of its active area are preserved,
is obvious. In the case, when weight of construction
remains unchanged, the efficiency of passive method
of reduction of vibration response and acoustic
radiation by the concentrated masses needs to be
proved.

Properties of the investigated CC plate are
resulted in a Table 1.

Table 1. Properties of the investigated plate

Property Value Dim.
Length, a 0.864 m
Width, b 0.562 m
Thickness, A 1.97- 10'3 m
Density, 7970 ke/m’
Mass, suspended on plate, 31_10'3 kg
mg
Young’s modulus, £ 171 ,109 Pa
Poisson coefficient, v 03 —
Material (DIN 17100) Steel 37
Damping loss factor, # 0.01 —
Two plates are used for research. In an

experiment with the first plate, which has 1.97 mm
thickness (Table 1), the impedance head Briiel and
Kjeer 8001 attached to the plate represents only one
point mass. The second, slightly thinner plate is
equipped with additional point masses to remain the
same overall weight.

Experimental researches of the second plate with
a thickness of 1.47 mm is executed after the
calculation of optimum parameters of additional
mass by a genetic algorithm. On the basis of the
known solution for w , objective function for a
genetic algorithm is created:

Sinax ab
Ly = 101g I (02“- w(x, y)w*(x, y)dxdydf .
Jinin 00

®)

This function takes into account vibration speed
over the whole active area of plate. When
optimization was performed, the integration over
the plate area was conducted with relative accuracy
of 0.1%.

Integration over the frequency was conducted
with accuracy of 0.05%.

This provides sufficient quantity points in order
to take into account all modes of vibrations in the
considered frequency range. In each of these points
integrand is evaluated.

Total maximal mass of the additional masses is
limited by the difference of the masses of active
areas between plates, which have thicknesses of 1.97
and 1.47 mm.

In such way we provide equality between mass of
more thick plate and mass of thin plate with
additional masses.

With the purpose of measurements’
simplification by the laser scanning head of Polytec
PSV-400 (LSV) the additional masses are attached
from the side of plate, to which the modal exciter
Briiel and Kjer 4809 is fastened. Thus, the top side
of the plate remains flat, simplifying the optical
measurement.

Optimization was conducted for the five
additional masses. For some masses the results of
optimization have shown very small values of
masses with no practical relevance (weight less than
production accuracy).

Thus, the amount of the masses was limited to
three, and then to one. During optimization the
stiffness of modal exciter is taken into account, in
accordance to its specifications.

During optimization, “overlap conditions” are
used in order to exclude these positions of the point
masses, where they would clash with the impedance
head.

Setting the task in this way, eliminates evident
solution in accordance with which mass must be
placed in position of force application.
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Checking for implementation of conditions was
inserted in the Matlab function “isTrialFeasible”.
This function is used by the functions of genetic
algorithm, which create an initial population, and
functions of crossover. Also there is a mutation
function  “mutationadaptfeasible”,  which calls
“isTrialFeasible” function. Implementation of
discrete limiting conditions is thus provided during
the whole process of evolution.

During optimization, individuals, which do not
have physical sense, are not created saving
calculation time.

The result of optimization, which is received
from genetic algorithm, was deepened with the
hybrid optimization function. As a hybrid function
the intrinsic Matlab function “patternsearch” is
used, that also satisfies to all mentioned above
constraints.

During optimization the followings modes shapes
are taken into account: 1-1, 2-1, 1-2, 2-2, 3-1, 1-3,
2-3,3-2,4-1,3-3,2-4,4-2.

The range of frequencies, in which optimization
was conducted, is 20-200 Hz.

The result of optimization is a set of parameters
containing the value of the optimal masses and their
position, which are represented on Fig. 3.

864 [

223  Additional
mass

1.895 kg

562

50
H* !

B&K 8001 10 |

N

&
| Iy
202

Fig. 3. Scheme of mass location on the active plate
area (values given in millimeters)

The dependence of the objective function on the
frequency of the modal exciter is shown in Fig. 4
(Numbers mark the modes’ numbers. res. denotes
resonance of experimental setup).

Abbreviation res. on Fig. 4 marks resonance of
experimental setup, which was accompanied by
transverse motion of CC edges of plate.

Peaks on the spectrum with optimum mass on
frequencies 65.4 and 76.8 Hz correspond to two
different combinations of modes’ pair 1-2 and 3-1.

Other unsigned on Fig. 4 modes cannot be
referred to any known forms of vibrations. The
modes 5-1, 5-2, 4-3 were not included in the set of
modes, for which the optimization was performed.

Appearance of these modes in the frequency
range of optimization, leads to additional peaks on
the spectrum of objective function. These peaks
increase objective on frequencies, which exceed
160 Hz.

The wavelengths of higher modes are shorter, so
any inaccuracy in gluing mass or force is more
significant for that modes rather than for lower modes.

On low frequencies we have another reason of
reduction of method’s efficiency. Value of objective
function for a mode 1-1, that is measured on a plate
without the additional masses makes -11, on a plate
with the optimum masses the objective function is
equal -11.1.

It means that on mode 1-1, at the use of optimum
parameters of additional mass, take place a slight
increase of objective function on 0.1. Due to the
inclusion of mode in the frequency range of
optimization and in the set of modes, which is taken
into account during optimization, the increase
objective function is insignificant.

Because mode 1-1 has no nodes, diminishing of
vibrations on a mode 1-1 is impossible at the use of
method of reduction of vibration by the concentrated
masses. Especially, if we take into account that in
this case, there were no changes of total mass of
construction. In the case when an increase of mass is
allowed the reduction of vibration is possible also on
the mode 1-1.

Form of vibrations on the mode determines mode
contribution to the total vibration response and
acoustic radiation of plate. Both modes 2-1 and 1-2
have one nodal line. Mode 2-1 has a greater value of
objective function for a plate without mass than
mode 1-2. Consequently the reduction of objective
function is more important for a mode 2-1 than for a
mode 1-2.

I'O BJ

i

" H LRV
" L Yo

[V ) S - = T il
! without masses LXOBJ—-2.7539
| .
: .......... with masses LzOBJ_'7'1975
_50 L T T
50 100 150 200
f, Hz

Fig. 4. Dependence of objective function (8) from
frequency
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During optimization in the wide frequency range
an algorithm gives advantage to the modes which
have a greater value of objective function. Unlike on
the mode 1-2, there is reduction of objective
function on the mode 2-1. The use of optimum mass
results in displacement of nodal line for a mode 2-1
in position of force. In any case effect of objective
function reduction is achieved due to the change of
mode shape in such way, that the vibration in the
point of force application is decreased. Displacement
of nodal line in position of force takes place not
always. So for a mode 1-2 a nodal line for optimum
configuration vice versa was remote from the point
of force application. This results in the growth of
objective function on this mode.

At the use of method of vibration response and
acoustic radiation attenuation with the concentrated
masses the reduction of eigenfrequencies is typical.
So on Fig. 4 we can find displacement of all present
modes in the considered range. Peaks, which
correspond to eigenfrequencies, are differently
shifted along the frequency.

The example of such phenomenon is a location of
peaks of modes 4-1 and 3-2 on a spectrum
represented on Fig. 4. Investigations shows that
mass do not cause the change of vibration shape and
accordingly do not cause the shift of eigenfrequency,
only in the case of its location in the node of mode
shape. The closer is the mass location to the peak of
the mode shape the greater is the shift of
eigenfrequency. Let us consider mode 4-1, its nodes
are much closer to the location masses than nodes of
mode 3-2, that caused greater shift along frequency
of mode 3-2 than the mode 4-1.

In the range of frequencies from 60 Hz the modes
of vibrations of plate have sufficient quantity of
nodes for the reduction of objective function for
each of them. Total reduction of objective function,
which is evaluated on the basis of experimental data,
is 4.4436.

Intensity of acoustic radiation was measured on
the distance 50-55 mm from the acoustic centre of
lower microphone to the surface of plate.
Measurements are done with the use of signal with
frequency, which changes linearly with speed
20 Hz/s.

The received data are the result of 3 averaged
sweeps without overlap. Fig. 5 shows the 1/12-
oktave acoustic power spectrum for two CC plates
with parameters summarized in a Table. 1. On
thinner plate optimum mass is placed in accordance
with Fig. 5.

70 /A N
40
R A Y A i At
A | i i g
- |
20}\ + i I ¥ . H
5 B A l
106 W5 -4 - without mass. TSPL=56.7dB |
» | |
.:wi I I with mass.  TSPL=47.6dB |
R | I
40 60 80 100 120 140 160 180
f, Hz

Fig. 5. Sound power level of CC plate

It follows from Fig. 5, that reduction of total
level of sound power (TSPL) in the range of
frequencies from 35 to 180 Hz composes 9.1 dB.
The conducted experimental researches proved the
efficiency of the method application for vibration
response and acoustic radiation reduction with the
concentrated masses at the preservation of total mass.

5. Semi-active control of forced vibration
Orthogonal properties of the beam functions make it
possible to simplify eq. (2):
ab
a, = wjjjww*dxdy =
00

N

ab
=o][[ [Z AXY](Z A4 szxy]dxdy =
00

{n} {s}

N
4 *
=wlab) A4,(0,)4,(w,),
{n}
where A: are complex conjugate Ritz coefficients.

The problem is solved with the help of controlled
elitist genetic algorithm with non-dominated sorting

that is a modified version of the NSGA-II,
implemented in Matlab function ‘“gamultiob;j”.
Principle of this algorithm is shown in Fig. 6.
Create initial
_ Y [ Calculate Pareto |
Evaluate fitness ranks and distances
function | ™ between individuals

. o | Apply crossoverand |
Display plots for | | Choose parents- | | rytation to selected

current pppulation: | toumament parents
‘ [ Ccalculate Pareto | '
ranks and distances| | =
Evaluate fit function
between individuals, o oo N

(Check Sioaiie remove individuals | v .

o N crit "% - for population size - Merge current and next
| Stopping | preservation population

Fig. 6. The scheme for illustration of the principle of
multi-objective optimization using a genetic algorithm
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The calculation procedure for the block
“Calculation of objective functions” is depicted in
Fig. 7.

Corvert relative values to Determmne overlap area and

Nelder-Mead simplex method is wused for
optimization of the constrain of type 1 in equation
(1). This method is implemented in Matlab functions
“fminsearch”.

The multi-objective genetic algorithm NSGA-II
is not intended for use with nonlinear constraints.

The objective functions Ly, and F,,, are

multiplied by the penalty factor 10°"** for
exclution of overlapping from the set of feasible
solutions.

Optimization was performed for the parameters
of the plate shown in Table 2 for the oscillation
modes: 1-1, 2-1, 1-2, 2-2, 3-1, 1-3, 3-2, 2-3, 4-1, 3-3,
1-4,4-2,2-4,5-1, 4-3, 3-4, 1-5, 5-2.

These modes cover the frequency range
15-250 Hz, for which the optimization was
performed.

Table 2. Properties of the investigated plate from steel
C13 and parameters of invariable masses

absolute ones ™ penalty factor
A
Calculate pait of finess Calculate nertia of additional
function, which is executed masses
only at first function call *
A Calculate elements of Br and
Get chromosome from Bo matrces
optimization algorithm.
Assign comesponding Evaliaic emenie _
genes to model parameters ‘ ol oo sk |
Detemmine optimal values of
Evaluate vector compensating force and
C elements and phase together with total
Rilz cocfiicients (- = acceleration of plate on is
A for cument eigenfrequencies with the
eigenfiequency help of local optimization
algonthm
Calculation of filness funclion
Transfer finess f e based on optn:lal values of
£S5 s | — acceleration and
optmization algonthm 2
compensating force on
eigenflequencies

Fig. 7. The algorithm of calculation of objective
functions for the semi-active method of vibration
reduction

of the

following sequence of genes [Em,)_cm,;m,;c,i} ,

Chromosome of individual consists

which are transmitted to the objective function of

genetic algorithm. The dash over variables
designates that the values are relative to
[M p,me’a,b,a,b:l. Under the part of the objective

function, which performs only at the first function
call, is meant the calculation of values, which are the
same for all individuals. These calculations include:
assignment of plate parameters, mode numbers set,
constant weight location and their values, mass of
the plate and compensating force joint, plate density,

density of additional masses, offsets from objects on

the plate, parameters of the external excitation, beam
function constants and calculation of constant
intermediate values.

Any optimization algorithm, which is able to
quickly find a local optimum function of two
variables, is suitable for finding of the optimal
values of the function @, and parameters F

cn

and @, .

Property Value Dim.
Active area dimensions, axb 0,392x0,351 | mxm
Thickness, A 0,53-10° m
Density, p 7362,6 kg/m3
Young’s modulus, £’ 210e9 Pa
Poisson coefficient, v 0,3 -
Damping loss factor, # 0,01 —

Mass of compensating force 2471 0 ke

joint, m,

Xass of exciting force joint, 7.55-10° ke
nAiccelerometer masses (KB11), 14-10° ke
Cross-section area of

additional mass, b,, xb,, 0,02x0,02 m>m
Additional mass density, p,, 7800 kg/m3

6. Results of problem (1) solution for semi-active
control method

The result of the optimization is the Pareto front,
depicted in Fig. 8.

94 % ‘
* | | | |
* Ko l l l
92L- - - ’Sﬂiﬂﬂ 777777 R B i
9 S | |
90— I SN
A | e |
88— e R 1
86 | | | |
0.32 0.34 0.36 0.38 0.4 0.42
FcOpt’N

Fig. 8. The set of Pareto optimal solutions found
with genetic algorithm
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Above the line, consisting of the points of the
front, the solution of optimization problem is not
optimal. Under the Pareto front there are no
solutions. Let us chose solution with objective
functions [Feop; Lza] = [0,417H; 87,8 dB], because
the difference in the values of the objective function

F,,, 1s not significant compared with the difference

in objective function Ly, values.

Selected solution in the parameter space (i.e. in
relative coordinates on the plate) is shown on Fig. 9.
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Fig. 9. The layout of the optimal mass (square), the
exciting and the optimal compensating forces (circle)
and accelerometers (points) in relative coordinates on
the CC plate

Spectra for the selected optimal solution are
found in a similar way to the optimization problem
solution in eq. (2). Algorithms of these calculation
differ only in a set of frequencies, for which
acceleration is computed. Solutions on the Pareto
front are close to each other not only in the objective
function space, but also in parameter space. The
difference between the maximum and minimum
values of the genes on the front are

[Am., =0,0049; Ax, =0,0016; Ay =0,0198;

Ax.=0,0527; Ay, =0,0331]. The largest

difference is observed in the
compensating force x..

Optimal spectra are shown in Fig. 10, 11. Le.
when the compensating force with the parameters
shown in Fig. 11 is applied to the plate then we get
spectrum marked as “Semi-active” in Fig. 10.
Fig. 10 shows the decrease of the total acceleration
level on all modes of oscillation. However, there are
frequencies (53,3 Hz, 58.9 Hz, 68 Hz, Hz 89.5 etc),
where there is almost no reduction in the total
acceleration level. These frequencies correspond to
the zero values of compensating force on the
spectrum of optimum compensating force values
(Fig. 11, a).
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Fig. 10. Optimal spectra of the total acceleration level

On the spectrum of the optimal phase of
compensating force (Fig. 11, b) at these frequencies
takes place a sharp change in the phase on 7 rad.
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Fig. 11. The optimum spectrum of the compensating
force value (a), phase (b) as a result of optimization
for semi-active control method

Such phenomena are caused by the fact that with
the change in frequency occur change of the
oscillation shape of the plate. Previous parametric
studies of the active noise reduction methods have
shown small effect of concentrated compensating
forces at their placement in the nodes of the
oscillation shapes. There are no points on the plate
for the entire range of frequencies, through which
the nodal line do not pass on some frequencies.
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That's why optimization lead to solution, in
which there is no reduction of the vibration of the
individual intermediate frequencies.

Fig. 10 shows that the semi-active method is the
most effective. For accurate determination of the noise
reduction methods' efficiency the concept of integral

level of acceleration Lia 1s introduced as follows:

f max N

1 x
L,=10lg— [ o'ab) 4,4,df.
0 fmin {n}
Fig. 10 shows values of acceleration level
for initial configuration, configuration without

compensating force (passive method), configuration
without additional mass (active method) and
configuration with optimal compensating force and
mass (semi-active method). Significant reduction
of the acceleration level in the frequency bands
85-140 Hz and 180-220 Hz is caused by the usage of
the concentrated mass. At the same time the
placement of the compensating force and application
of optimal spectra of compensating force can
significantly reduce each single peak in the spectrum
of the total acceleration level.

Optimization shifts the location of compensating
force so that its intersections with the nodal lines are
at frequencies that do not make a significant
contribution to the integral acceleration level.

It can be concluded from the analysis that the
total acceleration level compensation must be done
with several compensating forces. Applying at least
two compensating forces at different positions on the
plate, we can get reduced total acceleration at each
frequency in the low frequency band under
consideration.

For optimum feedforward control of flexible
structures optimum compensating force amplitude
and phase frequency dependence (Fig. 11) should be
included in control system.

Author suggests piecewise cubic Hermite
polynomial interpolation of optimal frequency
dependences with matlab function "pchip". Received
piecewise polynomial representation of F.(f) and
o(f) is then embedded into the control system
(Fig. 1) in Simulink with "MATLAB Function"
block type.

7. Conclusions

The change of the optimal parameters of the control
signal, which is caused by the change of external
disturbance frequency, led to the necessity of
automatic control system design in a wide band of

lower frequencies covering the first 10-15
resonances of the elastic structure.

Formulated and solved optimization problems
allowed us to establish the optimal parameters of
the control signal for integral vibration criteria
of the flexible mechanical structures. Multicriteria
optimization task of takes into account the criterion
of vibration and criteria, the reduction of which
leads to a decrease in the control signals values.
Experimental verification of the proposed models
of control objects, showed a satisfactory
correspondence between the results of calculations
and measured data.

Application of optimization results to the elastic
CC plate in experimental conditions demonstrated
decrease of root-mean square velocity level
integrated over the plate surface on the 5.5 dB and
reduction of total sound power level on 9.1 dB.

Combination of active and passive methods for
reduction of the vibrations of flexible structures
allowed us to obtain additional reduction of
vibration integrated over the entire plate surface

by 10 dB.
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PosrisHyTo GararokpurepialibHy 3a/1a4y ONTHMAJIBHOIO YNPABIIHHS BiOpauiiHOIO BiINOBIAIO MPYXKHOI ITUIACTHHH.
OmnrcaHo 3aCTOCYBaHHS T€HETHYHOTO aJTOPUTMY AJIS BH3HAYCHHS ONTHMAJBHOI 3aJI€KHOCTI KOMIICHCYIOUOI1 CHIIHM Bif
YaCcTOTH i MapaMeTpiB KOHIIEHTPOBAHUX Mac JJIS Pi3HUX TPAHUIHUX YMOB. BUKOpHCTaHO MPHHINT BipTyadbHOI poOOTH
i migxig Pitoa s mocnimpkeHHs AWHAMIKK IDIACTUHH 3 MPUETHAHOK MACO0, IO 3HAXOAMTHCS IiJ| JTIEH JOBLIBHOT
KUIBbKOCTI CHJI. 3ajady onTumizailii, ska 3a0e3rnedye 3HIDKEHHS sSK CYMapHOTO piBHs BIODONPHCKOPEHHs, Tak i
KOMIICHCYIOUO1 CHIH, c(hOopMyITBOBaHO K 3aqady 3 OOMEKEHHSAMH. 3a3HA4Y€HO, IO YHCIOBI Pe3yibTaTH IMOKa3yITh
MPHUIATHICT MOJENI Ui ONTHMI3allii BEJIMYMH KOHIICHTPOBAHUX Mac Ta iX PO3MIillleHb Ha IUIacTuHi. [HTEepmosIio
3aJI)KHOCTI KOMIIEHCYIOUO1 CHJIM BiJl YaCTOTH BHUKOPUCTAHO IS CHHTE3y CHUCTEMHU YHPaBIIHHS 3 HPSIMUM
3B’ A3KOM.
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PaccmoTpeHa MHOTOKpUTEpHANBbHAS 33[ja49a ONTHMAIbHOTO YIIPABICHUS BUOPAIIMOHHBIM OTBETOM YIPYTOW IUIACTHHBL.
OnucaHo MPUMEHEHHWE T'€HETUYECKOro ajiropuTMa AJisl ONpPEAENCHUs] ONTUMAIbHON 3aBUCUMOCTH KOMIIEHCUPYIOLIEH
CWJIBI OT YacTOThl M TMapaMeTPOB KOHIIEHTPUPOBAHHBIX MacC JUIs Pa3jMYHBIX TPAHUYHBIX ycioBHWil. Mcmosb3oBaH
MIPUHIUT BUPTYaIbHOMN pabOTH 1 moaxox Purtia s ncciegoBaHus AMHAMUKH IUIACTUHBI C IPHCOSINHEHHOM MaCcCOM,
HAXOJAIICHCS TMOJa JEHCTBHEM MPOW3BOJIBHOTO KOJIMYECTBA CWII. 3aJava ONTHMHU3AIUH, KOTopas OOEeCIeYHBaeT
CHIDKEHHE KaK CyMMAapHOT'O YPOBHsI BUOPOYCKOPEHUS, TaK U KOMIICHCUPYIOIICH CHJIbI, COPMYITHMPOBaHa KaK 3ajada ¢
orpanndeHUsIMA. OTMEYEHO, YTO YHCIEHHBIE PEe3yJbTAaThl MOKA3BIBAIOT MPUMEHHMOCTh MOZENH Ui ONTHMHU3ALUN
BEJIMYMH KOHIIEHTPUPOBAHHBIX MAcC U UX pa3MELIEHUI Ha miacThuHe. MHTepHosuus 3aBUCUMOCTH KOMIIEHCUPYIOLIEH
CHJIBI OT YaCTOTHI UCTIOJIb30BaHa JIJIsl CHHTE3a CUCTEMBbI YIIPABIICHUS C MPSMO CBS3BIO.
KiaroueBble cioBa: BuOpanus IUTaCTHH; KOMOWHHPOBAHHBIH METOX; KOHIIGHTPHPOBAaHHAsS Macca; yIpaBlIEeHHE C
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