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Synthesis of the Coriolis vibratory gyroscopes ocensation with the help of the
Wiener-Kolmogorov procedure led to the proper tfansfunction of the optimal feedback
controller is proposed in this paper. CVG as th¢eobof compensation is considered as sensitive
element transfer function, which was obtained a#iealysis of it's dynamics in terms of the
amplitude-phase variablegkfficiency of the obtained transfer function of thgtimal feedback
controller is demonstrated by means of numericalsation.

Onucano cunmes nepeoasanrbHoi QYHKYII onmMumManibHo20 pe2yisamopa 360pOmMHO20 36’ A3KY 34
oonomozor nioxody Binepa—Koamoeoposa. Kopionicie eibpayivinuii 2ipockon sax 00’ €km
KOMRneHcayii po32NAHYMO K NepeoasanvHy @QYHKYII0 1020 Yymiaueo2o eleMeHma, aKa oyia
OMPUMAHA NICA  AHANI3Y U020 OUHAMIKU Y BUDAINCEHHSAX AMNAIMYOHO-(A308UX 3MIHHUX.
Egexmusnicmv ompumanoi nepedasanvroi yHKYii ONMuUManibHO20 pe2yasmopa 380POMHO20
36" A3KY NPOOEMOHCMPOBAHO 3 OONOMO20I0 YUCTI08020 MOOETIOBAHHA.

Onucan cunmes nepeo0amoyHoU QYHKYUU ONMUMATLHO2O pe2yiamopa O0OpPaAmHol C6a3U C
ucnoavzoeanuem nooxooa Bunepa—Konmoeoposa. Kopuonucos eubpayuonHvlii 2upockon Kax
00beKm KOMNEHCayuu paccMompeHr 6 Kauecmee nepeoamoyHou (QYHKYuu e20 4y8CmEUmenbHo20
JemMenma, NOJYYEeHHOU NOCle AHAIU3A €20 OUHAMUKU 8 BblPANCEHUAX aMHAUmyOHO-(ha306bix
nepemenHuix. IhpexkmusHocms noayUeHHOU nepedamoyHou GYHKYUY ONMUMATLHO20 Pe2yiamopa
00pammoll c6s3uU NPOOEMOHCMPUPOBAHO NOCPEOCMBOM YUCTEHHO20 MOOEIUPOBAHUSL.

Statement of purpose At the same time, performances of CVGs are

Coriolis  vibratory gyroscopes (CVGs) ar‘,:limited. In vieyv o_f this problem, optimal contralle
interesting due to the possibility to fabricatesttime d€VElopment is highly necessary. The latter coeld b
elements of such gyroscopes in miniature form Whleved only in systems where unkpoyvn angular rate
using modem  microelectronic  mass-productiofi N© longer a system parameter but its input [2].
technologies. Such gyroscopes are frequentlyeeferr 1S paper briefly describes method of synthesis of
to as MEMS (Micro-EIectro-MechanicaI-Systems?pt'ma| cor.1t.roller design in frequency domain for
gyroscopes [1]. CVGs sensitive element.

CVGs sense Coriolis acceleration, which arises due proplem formulation
to the rotation in oscillating structures, it cauadot . .
more complicated mathematical models, comparing to 1°. synthesize optimal controllers for CVGs the
the conventional types of gyroscopes. One of sul@owing major steps must be completed: _
complication is a result of the useful signal propoal ~ — development of the mathematical model in
to the external angular rate being modulated i tdemodulated signals; _
intentionally excited primary oscillations. Frometh ~ — 0btaining system transfer functions where angular

control systems point of view, input to dynamiderys "a{€ is an input

is primary oscillation excitation signal and unkmow — Synthesis of optimal controllers based on the
angular rate is represented as coefficients oérsystobtained earlier fransfer functions;
transfer functions. Due to this conventional cdiatnol — numerical simulations proving the performances

fittering systems design is practically impossible.  Of the optimal controller.
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Demodulated dynamics Sysem trander functions

of Coridlisvibratory gyr oscopes Having CVG sensitive element motion

In the most generalized form, motion equations gfyuation in the form (2), allows obtaining its
the CVG sensitive element both with translational a.ansfer functions from the input angular rate to

rotational motion could be represented in theviatig

form [1]: the amplitude othe secondary oscillations.

Application of the Laplace transformation to

(% 420,k % + (K = dQ?) x+ the equation (2) with respect to zero initial
. S conditions for all time-dependenvariables

3 0%+ afx = () 2 (1) results in the following expressions:

% +20,k % + (K - dQ*) x -

—0.0% —Ox = [(s+ w)*+2k,Zz,( s+ W) +KG] A( 9 =
(—0,Q% —Qx = q(9). = A[s*ig W];\Z;( 3 el A (3)
where x, and x, are the generalized coordinates that ? '

describe primary (excited) and secondary (sensed)Solution of the algebraic equation (3) for the

motions of the sensitive element respectively; secondary amplitude-phase Laplace transform is
¢, and{, are the dimensionless relative damping
coefficients; Q) = A (st jg,w) W(9
k, and k, are the corresponding natural (s+ jw)2+2k222( S+ jw) +k§
frequencies; o .
Q is the measured angular rate, which is orthogonal Considering the angular rate as an input, thensyste
to the axes of primary and secondary motions; transfer function for the secondary amplitude-plsase
g, andg, are the generalized accelerations due to _
the external forces acting on the sensitive element W, (g = A(S _ : ﬁ( st_jgw : =
The remaining dimensionless coefficients are Q) (st )’ +2k( (st @)+ &
different for the sensitive elements exploitindnesit 4)
translational or rotational motion. For the traictel Go(S* g0
sensitive element they are: = — 02~ 9 - .
d1 = d2 = 1, ((S+ J(*)) +2|SZ2(S+ p))+ I{)( i{ _(‘02+2 Wlfzo
d;=m /(m+ m); One should note that transfer function (4) has
g, =2m /(m+ m); complex coefficients, which results in the complex
9,=2, system outputs as well. There is quite an important
wherem, andm, are the masses of the outer frami@Pecial case, when complex transfer function (4)
and the internal massive element. transform to the simple real-valued one. Assuming

Using amplitude-phase substitutions for primargqual primary and secondary natural frequencies
and secondary generalized displacements of C\(& =k, = k), equal damping ratios{(={, =),

sensifive element one can obtain from system (Ll o0 ce excitation € K), and constant angular rate,
equation for the secondary oscillation: : -
one can easily obtain [2]:

A +2(Ck + A + (K —oF +

. . . (2) _ A9 _ S
2j6,)A = (00,0 + Q)A. Wy (9 = ’g(s) s )
Equation (2) describes amplitude-phase of

the secondary oscillations with respect to the Transfer function (5) relates angular rate to the
settled primary oscillations, wherey is a secondary oscillations amplitude. This transfectfan

constant parameter [2]. This allows to pass on & now useful for derivation transfer function of
system transfer functions derivation. feedback optimal controller.
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Optimal controller transfer Substituting Y7) into equation of object (6) we'll

function synthesisalgorithm obtain

Let's synthesize optimal feedback controller ferth  F_=(P- MW)"; (8)
CVG analytically. We'll use so called Wiener-
Kolmogorov procedure to solve the task of optimal £ =w(pPp- Mmw )'. (9)
compensation.

CVG motion is possible to describe with the help of Knowing transfer functions (8) and (9) one can
the following equation: easily obtain equation of feedback contrafler

The task of synthesis is in follows: to define
Px= Mu+ M,Q (6) such structure ofW on class of fractional-rational

functions, which provides stability of closed-loop

wher.e>§|soutput of sys.tem; system and simultaneously deliver minimum to
uis input of system; functional:

Q is unknown angular rate, which in our case IS

joo

regarded as disturbance; 1 . .

P is characteristic polynomial of obtained earlier €~ I iR+ C3] d (10)
transfer function (5), angular rate is considersd a o
random process with known spectral dergjty. whereS,, S,, are spectral densities pfandu;

In our case we consider outpuif the system asan R andC are weight positively and negatively
error, which will be minimized. Measurement in thejefined symmetrical matrices.

compensated system is conducted in the feedbackas x andu are equal
contour after passing the signal through the déemtro B o
Assume, that output in fig. 1 is measured X=F&: U=FQ,

by ideal measuring instrument and get intghen equation (6) can be rewritten as
controller, which is situated in feedback and has

desired transfer functiow. PF, - MF,=E, (11)
Equation of controller and named as coupling equation between functions
u=Wx (7) F.andF,, and functional (10) —as

Let’s denote transfer function of closed-loop syste joo '
from input 11 to outputx as F, and transfer function of e=— j tf(F.RF, + F.CE) §, ]d= (12)

closed-loop system from inpLi to outpuuasF, . J e
Let'sform a system of equations
l Q PF,—-MF, = E,
(13)
PF, +MF, =V,
M
¢ where first equation is coupling equation (11) and

) second forms functiow, which varies.
> . N Functions of systemF,and F,is necessary to

M > > P . ) )
express in terms of. For this purpose let's solve
1 system (13) relatively to matric€s and F, , after that
1_.
W F, =§P1(V+ E); (14)
: . 1,4
Fig. 1. Structural scheme of “ideal” F, ZE M™(V-E). (15)

stabilization system
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After determination of matrices, and F, it will

__ Bgqo .
be possible to define transfer function of corgroll D= m’ (20)
W=FF". (16)
Bg,q,0

Using equations (14), (15) and (16) we can write D. :—4Zk2(B— 9’
structure of transfer function of controller as

Let’s proceed solving of variational task:
W= MY (V- E)V+ E)'F

r.r=P*RP*+M’CM~. (21)
When we'll find structure o as result of solving

of variational task and substitute it into (14p)(&nd Factorization of equation (21) gives us:

(16) we can define functiorts , F, andWat once. Jo( /szz M2 9
Substituting functions (14) and (15) into functiona - _ C (22)
(12), we can rewrite it as XK+s '
e—ijftr{[( +\) P'RP{ E+ V¥ M 2
4, mrE g Ve 4T -9
, M= .
+V. —E)MCMY(V- B)] Sol} ds.  (17) k-s

Let's solve the task with the help of Wiener- Another step of Wiener-Kolmogorov procedure:
Kolmogorov procedure and apply result to our T=T,+T, +T_=

concrete system. The first variation of the _ - pappi_yacyyp, (23)
functional (17) is [3]:
i whereT, is number or polynomial;
6e:i_ J' t{OV[( P*RP*+ M*CM) W+ T.is proper fraction with poles in the LHP;
4 S T_ is proper fraction with poles in the RHP.
+R'RP*= M'CM Y] §, + One can easily obtaify, , T, , T_ applying
+S, [ V[( P*RP*+ M'CM) + operation of separation to equation (23):
+HRRP - M:CM™)]5\F ds T =0,
where for our case spectral density of angular T, = Bg,q,0(Ast A) ' (24)
rate is defined as: 4UCMAC(Lk+ 9( B+ $
B2 ko> where
S = ST (18)
16¢°k"(B" - s) A =y/C(-1+
Let's define transposed equation (18) according M2 ,
procedure, which was mentioned above:

+ )
’ K)(CKC++/ C* R+ M
S,=DD (19) M7+ (B+09RKCH G+ M C

whereD. is unstable part, A =—CL*K + M? +
D is stable part. 2 2
b . 2M*(C(B+ZR+{ XK + M)

Symbol “*” designates Hermite conjugate. .
Lets use operation of factorization to devide M 2+ (B+LK)(C kC+\/ CU’R+ MQ

equation (19) into stable and unstable part. Now we have all information to define
Itll gives us: optimal structure of functiok' as:




ISSN 1813-1166. Proceedings of the NAU. 2028. 59

V=-T"(T,+T,)D". (25) i
After substitution equations (20), (22), (24
into equation (25), we’ll obtain: ﬁU >
V =- A18+ 6 ) (2 6) b’ i Al
(\/szzk2 + CM2 + 9 M |—> CVG Dvnamics Secondary Detector
Structures of transfer functiorts,, F, and flnaIIy. ﬁu n. J Controfler
optimal feedback controller now can be define [
without any trouble substituting equation (26) int Am -%_’Ilf

equations (14), (15) and (16):

2
B+Jk+ /(2k2 +M7 +s Fig. 2. Simulation model for constant anguéger
C

= X
(M?+(B+{k)(k +\/C(|V| 2 +7%k*C))) Simulation results for model, which is shown
-M in the fig. 2 are demonstrated in the fig. 3.

sz2+M—2+s, .
( c 9 10X 10

- - KC++%k*C? +M2C .
T (M2 +(B+)(KC+C(M? +{?kEC))
B+ ¢k

(ﬁ(zkz +N(I:2 +9)
M2 0
M (B+Zk+, |0+ + 9
W C . (27)

(B+ZK)(CkC+{ QM+ K Q) Fig. 3. Simulation results for constant angulae rat

F

X

a1

X

Amplitude, m

Equation (27) is the final goal of the where solid line shows amplitude of the
research, let's now make proving of its usefWecondary oscillations proportional to the
properties by the numerical simulations. unknown constant angular rate and dashed line

Numerical simulations shows amplitude of the compensated

Let's demonstrate efficiency of the obtaine@Scillations.

optimal feedback controller making numerical ANalyzing results in the fig. 3, one can see
simulation. good efficiency of the optimal feedback

In order to obtain the most realisticegulator. _ _
simulation results, equations (1) were used to Let’s consider at the input of the system not

build a numerical model of CVG dynamicsconstant, but varying angular ratResulting
using Simulink/Matlab. Resulting sensitivesensitive element model and controller in
element model and controller in feedback afeedback are shown in the fig. 4 for varying

shown in the fig. 2 for constant angular rate.  angular rate.
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Analyzing results in the fig. 5, one can see
good efficiency of the optimal feedback

> regulator for input varying angular rate as well.
ﬁU" Conclusion
@. Presented above synthesis of compensated
CVG using Wiener-Kolmogorov procedure
r CVG Dynamics resulted in obtaining transfer function of
B . J Cmﬁzgzrﬂdaryﬂetemm optimal  feedback  controller.  Excellent
performance of the regulator has been

W b4

Fig. 4. Simulation model for varying angular rate

demonstrated using numerical simulations under
action of constant and varying angular rates.

As a future research, further improvement of
. ) o the controller using slightly modified synthesis
. SlmL_JIatlon results for mode_l, Wh'ch IS ShOVVr}atlgorithm allows obtaining simultaneously
in the fig. 4 are demonstrated in the fig. 5. features of filter and controller as well is

x10° | | suggested.

2
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