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Approaches to statement of the optimal synthesis problem for the control systems of the wide 
kind vehicle are analysed and the formalized statement of the optimal synthesis problem for 
autonomous high-accuracy resistant to disturbance stabilization and course system is formulated. 
The optimum criterion for the formulated problem is defined. The structural and non-structural 
uncertainties of the stabilization systems are analysed. 

Проаналізовано підходи до постановки задач оптимального синтезу систем управління 
рухомими об’єктами широкого класу. Сформульовано формалізовану постановку задачі 
оптимального синтезу стійкої до збурень автономної високоточної системи стабілізації та 
визначення курсу. Визначено критерій оптимальності сформульованої задачі. 
Проаналізовано структуровані та неструктуровані невизначеності системи. 

Проанализированы подходы к постановке задач оптимального синтеза систем управления 
подвижными объектами широкого класса. Сформулирована формализованная постановка 
задачи оптимального синтеза устойчивой к возмущениям автономной высокоточной 
системы стабилизации и определения курса. Определен критерий оптимальности 
сформулированной задачи. Проанализированы структурированные и неструктурированные 
неопределенности системы. 

 
Statement of purpose 

Today the strapdown stabilization and course 
systems are the most widespread. This situation 
is caused by presence of the satisfactory 
accurate gyroscopic devices based on the new 
operation principles (laser, fiber-optic,  
micro-electro-mechanical ones), computing 
devices of the high speed and the GPS 
correction possibilities. Now principles of the 
inertial stabilization platforms are used only for 
the autonomous high-accurate stabilization and 
course systems. Such systems include the 
measuring unit mounted at the platform in the 
three-frame gimbals and the computing unit. In 
turn, the measuring unit consists of three 
accelerometers with the measuring axes directed 
along the platform axes and the gyroscopic 
devices, which provide determination of the 
vehicle complete attitude. For the domestic 
instrument engineering the most actual is 
creation of the autonomous high-accurate 
stabilization and course systems intended for 
exploitation at the marine vehicles. 

Now the matrix norms of the  
multi-dimensional closed system transfer 
functions are the widespread measure of the 
quality for the control processes in general and 
the stabilization processes in particular [1]. 
Values of the matrix transfer function norms 
allow to estimate the output signals for the 
definite class input signals. 

If the external disturbances are considered to 
be such signals, the stabilization processes 
quality will improve with growth of these 
signals suppression strength by the system. 

The quantitative estimation of the 
stabilization processes may be carried out based 
on the norms of the closed system matrix 
transfer function. 

So, the problem of the optimal stabilization 
and course system creation may be formulated 
as a problem of the system parametrical and 
structural-parametrical optimization. At that the 
minimum of the closed system matrix transfer 
function certain norm will be achieved. 
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Analysis of the last researches  
and publications  

The general approach to the formalized 
statement of the resistant to disturbance 
stabilization systems synthesis problem is 
presented in the paper [1].  

The detail review of approaches to creation 
of the wide class stabilization systems and 
comparative analysis of the 2H -optimiaztion, 

∞H -optimization and mixed ∞HH /2 -optimization 
is given in the paper [2]. Features of the optimal 
synthesis of the systems for control by motion 
of the aircraft and approach to creation of the 
complex quality criterion “accuracy-robustness” 
are presented in the paper [3]. The optimal 
synthesis formalization for marine vehicles 
resistant to disturbance stabilization and course 
systems is problem of today. 

The concepts of the robust quality and the 
robust stability are considered in the paper [4]. 
The analysis of the typical for control systems 
uncertainties including multiplicative, additive, 
inverse multiplicative and division uncertainties 
is given in the paper [5]. 

The goal of this paper is to formulate 
statement of the optimal synthesis problem for 
the marine vehicle resistant to disturbance 
stabilization and course system. 

The formalized statement  
of the optimal synthesis problem  
for the stabilization and course system 

To formalize statement of the studied 
problem in accordance with the approach 
represented in the paper [1], the linear  
time-invariant stabilization system, the structure 
chart of which is represented in fig. 1, may be 
used. 
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Fig. 1. The structure chart of the stabilization system 

At the represented chart: 
)(sW  is the transfer function of the 

stabilization object;  
)(sP  is the regulator transfer function;  

w  is the vector of reference signals of 
dimension 1k , which in this case represents the 
vehicle angular rate, that is the relative angular 
rate of the object, at which the studied system is 
mounted;  

u  is the vector of controls of dimension m ;  
f  is the vector of disturbances of dimension 2k ;  
z  is the vector of the system output signals, 

which are used for observation of dimension 3k ;  
v  is the vector of the system output signals, 

which are used for stabilization of dimension 4k ;  
y  is the vector of the measured output 

signals of dimension 5k ;  
ϕ  is the vector of measurement noise of 

dimension 6k .  
The mathematical model of the stabilization 

object in the state space may be represented in 
the following form: 

FfBuAxx ++=ɺ ; 
uDxCv 11 += ;                 (1) 

uDxCz 22 += , 

where 2211 D,C,D,CF,B,A,  are the matrices, 
which describe features of the system, controls, 
disturbances and measuring system;  

x  is the vector of the system state of 
dimension n . 

Under zero initial conditions the stabilization 
object model in the state space (1) may be 
represented by means of the matrix transfer 
function 
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here I  is the identity matrix. 
To formalize the statement of the optimal 

synthesis problem the structure chart 
represented in fig. 1 may be given in the more 
generalized form as it is represented in fig. 2. 
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The vector [ ]Twfd ϕ=  in fig. 2 represents 
the formalized vector of the input signals which 
act on the system. 
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Fig. 2. The generalized structure chart  
of the stabilization system 

 

Taking into consideration the model (1) and 
the equation gvy +ϕ+=  the stabilization object 
model in the state space may be represented in 
the following form: 

FfBuAxx ++=ɺ ; 

guDxCy 11 +ϕ++= ;                (2) 

uDxCz 22 += . 

Based on the expression (2) the stabilization 
object model becomes: 
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For the formalized vector of the input signals 
the matrix transfer function may be represented 
in the following form: 
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If to supplement the stabilization object 
equations (3) by the regulator equation 

yPu )(s= ,                  (4) 

it is possible to pass on to the generalized 
system, the structure chart of which is 
represented in fig. 3. 

))(,( ss PΦ

zd

 
Fig. 3. The structure chart  
for the formalized statement  
of the stabilization system synthesis problem 

 
Based on the expression (3) the closed 

system equations become 
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Based on the first equation of the set (5) and 
the relationship (4) it is possible to write 

yPOdOy )()()( 1211 sss += . 

Hence, taking into consideration the equation 
(1.4) it is possible to write the expression for the 
vector of controls 

dOPOIPu )()]()[( 11
1

12 sss −−= . 

Now the second equation of the set (5) may 
be represented in the form 

dOPQIPOdOz )()]()[()()( 11
1

122221 sssss −−+= . 

The obtained expressions may be used for 
representation of the transfer function 

))(,( ss PT , which corresponds to the structure 
chart shown in fig. 3, in the following form 
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This transfer function connects the 
disturbance vector with the system output 
vector. At that the goal of decrease of 
disturbance action on the system may be 
achieved due to decrease of the gain of the 
transfer function ))(,( ss PT . To solve this task it 
is convenient using the matrix norm concept. 

So, the formalized statement of the optimal 
synthesis problem for the stabilization system 
resistant to the external disturbances may be 
represented in the following form: 



ISSN 1813-1166. Proceedings of the NAU. 2010. №3 
 

43 

( )
arg inf ( ( ))*

j D
|| s, s ||

ω ∈
=

K
P Ф P ,               (6) 

where D  is the set of the transfer functions with 
the fractional rational components, for which 
the closed system characteristic polynomial 
satisfies the Hurwitz criterion. 

The formalized problem statement must take 
into consideration the specific features of the 
system to be studied. For the marine vehicles 
stabilization and course system the coefficient 
of the accelerated setting to the meridian is very 
important. If to denote this coefficient k , the 
formalized problem statement may be 
represented in the following form: 

( )
arg inf ( ( ))

per

*

j D ,k k
|| s, s ||

ω ∈ ≥
=

K
P Ф P ,              (7) 

where perk  is the permissible coefficient. 

Optimization of the linear control systems 
may be based on the 2H  and ∞H -norms of the 
Hardy space, that is the space of the function of 
the complex variable analytical in the left half-
plane of this variable. 

There are different types of the optimization 
tasks [1] depending on the concrete norm choice 
in the problem statements (6) or (7): 

1) the 2H -optimal synthesis, when the 2H -
norm of the closed system transfer function 

( ( ))s, sФ P  is minimized; 
2) the ∞H - optimal synthesis, when the ∞H -

norm of the closed system transfer function 
( ( ))s, sФ P  is minimized; 
3) the mixed 2H / ∞H  optimization. 
Problem of the 2H -optimization lies in 

determination of the regulator belonging to the 
permissible set, for which the 2H -norm of the 
closed system transfer function achieves 
minimum. It is known that the squared 2H -
norm under the definite conditions is equivalent 
to the quality functional of the LQG-problem. It 
is worth noting that the computational 
procedure of the system synthesis based on the 

2H -norm may be more simplified in 
comparison with the similar procedure of the 
LQG-synthesis, as approaches to their 
organization are different.  

In the first case the theory of the Lebesgue 
space is used. In the second case the 
probabilistic approach is considered.  

The requirements to the computational 
procedure in the first case include finiteness of 
the 2H -norm of the matrix transfer function for 
the closed system. In the second case it is 
necessary to take into consideration the 
requirements to the disturbance )(tf , which 
represents the white noise with the covariance 
matrix 

)()(])()([M 12121
T ttttt −δ= Vff , 

where M  is the symbol of the mathematical 
expectation; 

)( 1tV  is the matrix of the white noise 
intensity. 

Use of the ∞H -norm of the transfer function 
W  as the optimality criterion is possible 
because it represents the accurate upper bound 
of the square root of the gain between 2H -norm 
of the input signals u  and 2H -norm of the 
output signals y , that is [2] 

}1),,0[:sup{
2222

≤∞∈==
∞

uuWuyW l . 

Therefore in the physical interpretation the 
∞H -norm of the transfer function is the square 

root of the energy of the output signals under 
condition that the disturbance with the unit 
energy enters to the input. So, minimization of 
this norm means minimization of the error 
energy for the worst case of the studied class 
input disturbances [2]. 

Optimization by the mixed ∞HH /2 -criterion 
unites advantages of the different approaches. 
From this point of view it is possible to believe 
that the mixed ∞HH /2 -approach may be used 
for the synthesis of the optimal quality system 
under condition of its capacity for work under 
conditions of the worst disturbances. So, the 
best approach to the synthesis of the studied 
system is the mixed ∞HH /2 -approach. 

Specific features of the system to be studied 
are the significant variations of some its 
parameters and variable conditions of its 
exploitation. Therefore it is convenient to carry 
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out the synthesis of the studied system from the 
point of view of its robustness provision. Such 
approach allows to keep the certain 
performances of the system in conditions of the 
disturbance action. Taking into consideration 
the features of the studied system the optimal 
synthesis problem may be solved as the problem 
of the robust system optimization 

( )
arg inf ( ( ), )

per

*

j D ,k k
|| s, s ||

ω ∈ ≥
= ∆

K
P Ф P , 

where ∆  is the system uncertainty. 
Concepts of the robust stability and the 

robust quality are given in the paper [4]. For 
these concepts analysis the studied system was 
believed to correspond to the structure chart 
represented in fig. 4, a. 
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Fig. 4. The structure chart for analysis (a)  
and for definition (b) of the robust stability  
and the robust quality 
 

For the represented structure chart 
),,( ∆sW ),(sP ( , ( ), )s s ∆Ф P are the transfer 

functions of the stabilization object, the 
regulator and the closed system.  

In accordance with this structure chart the 
system may be described by the equation 

( , ( ), )s s= ∆z Ф P f , 

where ∆  is an uncertainty in the stabilization 
object representation.  

The single limitation is that the uncertainty 
belongs to some given set D∈∆ . 

To define the robust stability concept it is 
necessary to consider the closed system 
characteristic polynomial )),(,( ∆δ ss P , which 

depends on the kind of the regulator and the 
uncertainty.  

Roots of the stable system  

)),(( ∆δ=δ sii P , ni ,1
____

= , 

when n  is degree of polynomial must lie in the 

left half-plane of the complex variable C− .  
The closed system is the robust stable relative to 

the uncertainty D∈∆ , if the conditions  

( ( ), )i i s C−δ = δ ∆ ∈P , ni ,1
____

=   

are satisfied. 
The closed system has some robust quality, if 

it is robust stable relative to the uncertainty ∆  
and the condition RF ∈  is satisfied, where F  is 
the quality functional; R is the set of the 
permissible quality functionals for the studied 
system. The regulator yPu )(s=  is believed to 

provide the robust quality of the closed system. 
Such definition of the robust stability and the 

robust quality may be widened due to presence 
of the different kind uncertainties in the 
mathematical description of both the 
stabilization object and the regulator. 

Uncertainties of the time-invariant systems 
are divided in the structured (parametrical) and 
non-structured (non-simulated dynamics). 
Correspondingly, to take into consideration 
these uncertainties it is possible to use the 
variations of the system matrix or some 
additional linear fractional link as the feedback 
of the system. 

For many practical applications the optimal 
synthesis of the control system for the regulator 
with the given structure is the actual problem. 
At that the structured and non-structured 
uncertainties of the transfer functions of both 
the stabilization object and the regulator take 
place.  
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The structure chart of the closed system 
which may be used for definition of the robust 
stability and the robust quality and takes into 
consideration the different kind uncertainties of 
both the stabilization object and the regulator is 
represented in fig. 4, b. 

In the represented scheme )(),( 21 ss ∆∆  are 
the structured uncertainties of the stabilization 
object model and the regulator in the general 
form. Then the robust stability and the robust 
quality concepts may be defined in the 
following way [4]. 

The closed stabilization system described by 
the equation 

( , ( ), ( ), ( ))s s s s= ∆ ∆z Ф P f
1 2

 

is the robust stable relative to the uncertainties  
11 )( Ds ∈∆ , 22 )( Ds ∈∆ ,  

where 1D , 2D  are the sets of the permissible 
transfer functions, if the condition  

1
21 ))(),(),(( −∈∆∆δ=δ Csssii P , ni ,1

____

=   

is satisfied.  
At that the set of regulators  

yPu ))(,( 2 ss ∆=   

is considered to provide the robust stability of 
the closed system. 

The closed stabilization system has certain 
robust quality, if it is robust stable relative to the 
uncertainties )(),( 21 ss ∆∆  and the condition 

RF ∈  takes place, where F  is the quality 
functional; R is the set of the permissible 
functionals.  

The regulator  

yPu )(s=   

chosen from the set of regulators ))(,( 2 ss ∆P  is 
believed to provide the robust quality of the 
closed system. 

Now it is possible to define the formalized 
statement of the studied system optimal 
synthesis problem finally. As stated above, it is 
convenient to solve this problem from the point 
of view of the mixed ∞HH /2  approach. At that 
it is necessary to take into consideration that 
transfer functions of the stabilization object and 
the regulator must belong to the spaces  

2RH , ∞RH .  

It is known that 2RH  is the space of the 
strongly proper fractional rational functions 
which have not peculiarities in the left  
half-plane and at the imaginary axis. ∞RH  is the 

space of the proper fractional rational functions 
which have not peculiarities in the left half-
plane and at the imaginary axis. This implies 
that 2RHRH ⊃∞ .  

It worth noting, that in accordance with the 
definition these spaces can not include some 
enough widespread control systems such as the 
astatic systems.  

To carry out synthesis of such systems it is 
necessary to implement some transformations, 
that is pass on to the systems, which have not 
the above stated peculiarities but keep in full the 
basic performances of the studied system.  

So, the procedures of the robust system 
optimal synthesis may use norms of the 
transformed closed system transfer function 

( , ( ), ( ), ( ))

[ ( , ( ), ( ), ( ))]
F s s s s

F s s s s .

∆ ∆ =
= ∆ ∆
Ф P

Ф P
1 2

1 2

 

Uncertainties of the synthesized system 
mathematical description have many sources 
such as [5]: 

1) the errors in determination of the linear 
model parameters; 

2) the unsuspected non-linearities and 
changes in operation conditions; 

3) the unsuspected time delays and energy 
dissipation processes; 

4) imperfection of the measuring 
instruments; 

5) use of the reduced models, that is models 
of the reduced order for the synthesis procedure 
simplification; 

6) the unsuspected features of the model 
dynamics at the high frequencies; 

7) reduction of the regulator order and 
imperfection of its implementation. 

Above stated sources of the mathematical 
description uncertainties may be divided into 
three groups [5]: 
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1) the parametrical or structured 
uncertainties, when parameters of the model 
with the determined structure and order change 
in some given space of parameters; 

2) the uncertainties of the unsuspected and 
non-simulated dynamics; 

3) the lumped or non-structured 
uncertainties, caused by the parametrical 
uncertainty and non-simulated dynamics united 
in the single lumped disturbance of the 
preassigned structure.  

It worth noting, that in the scientific and 
technical literature the second and the third 
groups are often united into the single group of 
the unstructured disturbances. 

The parametrical uncertainty is defined for 
the set of parameters bounded by the some 
bounds ],[ maxmin pp . The set of parameters may 
be described by the expression [5] 

)1( ∆+= rpp av , 

minmax

minmax

pp

pp
r

+
−

= ; 1≤∆ ,  

where avp  is the average value of the parameter.  
For 1=∆  value of the parameter p  will be 

maximal, and for 1−=∆  – minimal. 
The mathematical description of the 

parametrical uncertainties for the real systems is 
significantly complicated due to large quantity 
of the undetermined parameters. To create such 
description it is necessary to have the model 
with the well-defined structure. Usually the non-
simulated dynamics is not taken into 
consideration in such models. Therefore it is 
convenient to carry out estimation of such 
system robustness taking into consideration the 
unstructured uncertainties after parametric 
optimization termination. 

The unsuspected and non-simulated 
dynamics is more complex for the mathematical 
representation and usually for this it is necessary 
to use the frequency domain. At that the 
disturbance ∆  is believed to be normalized by 
the ∞H -norm, that is the condition 1≤∆

∞
 will 

be satisfied, where )(sup ω∆=∆
ω

∞
j . 

There are some forms of the unstructured 
uncertainties such as multiplicative, additive, inverse 
multiplicative and division. Correspondingly they 
may be described in the following way [5]: 

1) multiplicative: 

)]()(1)[()(:)( sswsGsGsG mmnomdbm ∆+= , 

1≤∆
∞m , 

where )(sGm  is the set of permissible linear 
time-invariant models with the multiplicative 
uncertainties; 

)(sGm  is the stabilization object transfer 
function;  

)(sGdb  the set of the disturbed models of the 
stabilization object;  

)(sGnom  is the nominal model of the 
stabilization object;  

)(swm  is the weighting function;  
)(sm∆  is the multiplicative unstructured 

uncertainty; 
2) additive: 

)()()()(:)( sswsGsGsG aanomdba ∆+=  (), 

1а ≤∆
∞

, 

where )(sGa  is the set of permissible linear 
time-invariant models with the additive 
uncertainties;  

)(swa  is the weighting function;  
)(sa∆  is the additive unstructured 

uncertainty; 
3) inverse multiplicative: 

1)]()(1)[()(:)( −∆+= sswsGsGsG imimnomdbim ,

1≤∆
∞im , 

where )(sGim  is the set of permissible linear 
time-invariant models with the inverse 
multiplicative uncertainties;  

)(swim  is the weighting function;  
)(sim∆  is the inverse multiplicative 

unstructured uncertainty; 
4) division: 

1])()(1)[()(:)( −∆+= nomddnomdbd GsswsGsGsG , 

1
p

≤∆d , 
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where )(sGd  is the set of permissible linear 
time-invariant models with the division 
uncertainties;  

)(swd  is the weighting function;  
)(sd∆  is the division unstructured 

uncertainty. 
All the listed uncertainties are represented by 

the stable transfer functions with the magnitude 
less 1 at all the frequencies. 

Obviously, the unstructured uncertainties of 
the regulators will correspond to the same 
qualification. 

The multiplicative and additive uncertainties 
are equivalent if the condition 

)(

)(
)(

ω
ω

=ω
jG

jw
jw a

m  

is satisfied at all frequencies. 
The conditions are known, for which the 

system is stable for all the disturbances which 
belong to the above stated set. These conditions 
define the robust stability and may be described 
by the following expressions [5]: 

1) the additive unstructured uncertainty: 

1)()()( <
∞

sSsPswa , 

where )(sP  is the transfer function of the 
regulator;  

)(sS  the sensitivity function; 
2) the multiplicative unstructured 

uncertainty: 

1)()( <
∞

sTswm , 

where )(sT  is the function of the 
complementary sensitivity; 

3) the inverse multiplicative unstructured 
uncertainty: 

1)()( <
∞

sSswim ; 

4) the division unstructured uncertainty: 

1)()()(p <
∞

sSsKsw , 

)()()( sPsWsK =  
where )(sW  is the transfer function of the 
stabilization object. 

The sensitivity function is defined by the 
expression [6] 

)()(1

1
)(

sPsW
sS

+
= . 

The complementary sensitivity may be 
defined by the relationship [6] 

)()(1

)()(
)(

sPsW

sPsW
sT

+
= . 

The quality and the robustness of a system 
are connected by the known relationship 

1)()( =+ sTsS . 

Based on the sensitivity function the 
condition of fulfillment the requirements to the 
system quality may be defined in the following 
way [6] 

1)()( <
∞

sSswq , 

where qw  is the weighting coefficient, which 

depends on the system performances.  
Taking into consideration the sensitivity 

function and the Nyquist criterion the condition 
of the system nominal quality may be defined as 
the inequality 

)(1)( ω+<ω jKjwq , ω∀ . 

Based on this condition the robust quality 
may be defined by the same condition with its 
fulfillment for all the disturbed systems transfer 
functions )(sKdb . Then the above stated 
condition becomes 

)(1)( ω+<ω jKjw dbq , )(зб ω∀ jK , ω∀ . 

In the simplest case of the multiplicative 
disturbance the condition of the robust quality 
looks like 

1)()()()( <ωω+ωω
∞

jTjwjSjw dbq . 

From this condition follows that to provide 
the robust quality it is necessary to decrease the 
function of the complementary sensitivity 

)( ωjT .  
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To achieve the system nominal quality it is 
necessary to decrease the sensitivity function 

)( ωjS . So, problems of the robust systems 
synthesis are characterized by the conflicting 
objectives and require to use the complex 
quality index taking into consideration both 
aspects. 

It worth noting, that the synthesized regulator 
must belong to the class of the permissible 
regulators that is regulators which provide the 
internal stabilization of the object which 
corresponds to the condition  

( , ( ), ( ), ( ))F s s s s RH∞∆ ∆ ∈Ф P
1 2

. 

In accordance with approach represented in 
the paper [2] and fig. 4, a the matrix transfer 
function of the stabilization object may be 
divided into four block matrices 









=

)()(

)()(
)(

2221

1211

ss

ss
s

WW

WW
W , 

where 11W  is the transfer function from the 
vector of signals f  to the vector of signals z ;  

12W  is the transfer function from the vector 
u  to the vector z ; 

21W  is the transfer function from the vector 
f  to the vector v ;  

22W  is the transfer function from the vector 
u  to the vector v .  

According to fig. 4, a the output signals of 
the stabilization object and the regulator on the 
basis of the above stated transfer functions may 
be defined in the following way 

uWfWz )()( 1211 ss += ;                (8) 

uWfWv )()( 2221 ss += ;                (9) 

))(( gvPu +ϕ+= s .                                    (10) 

After substitution of the expression (10) into 
the relationship (9) it is possible to obtain 

))(()()( 2221 gvPWfWv +ϕ++= sss  

or after transformations 

++−= − gPWfWPWIv )()()([)]([ 2221
1

22 ssss  

].)()(22 ϕ+ ss PW                                         (11) 

After substitution of the expression (10) into 
the relationship (8) it is possible to find 

))(()()( 1211 gvPWfWz +ϕ++= sss .          (12) 

Substituting the relationship (11) in the 
obtained expression (12) it is possible to define 

+ϕ++= )()()()()( 121211 sssss PWgPWfWz  

])()()()(

)([)]()[()(

2222

21
1

2212

ϕ++
+−+ −

ssss

ssss

PWgPW

fWPWIPW
 

or after transformations 
1

11 12 22

21 12

1
12 22 22

12 12

1
22 22

z {W ( ) W ( )P( )[I W P( )]

W ( )}f {W ( )P( )

W ( )P( )[I W P( )] W ( )P( )}g

{W ( )P( ) W ( )P( )

[I W P( )] W ( )P( )} . (13)

s s s s

s s s

s s s s s

s s s s

s s s

−

−

−

= + − ×
× + +

+ − +
+ + ×

× − ϕ
 

Introducing the generalized vectors of the 
output  

T][ vzx =   

and the input  
T][ ϕ= gfd   

and the generalized matrix transfer function Ф , 
it is possible to represent the studied system in 
the following form 

=x Фd   

or  

 
    =          ϕ 

f
Ф Ф Фz

g
Ф Ф Фv

11 12 13

21 22 23

, 

where the matrix Ф  components according to 
the expressions (11), (13) may be defined in the 
following way  

( ) ( ) ( )[ ( )] ( )s s s s s−= + −Ф W W P I W P W1

11 11 12 22 21
; 

( ) ( ) ( ) ( )

[ ( )] ( ) ( )

s s s s

s s s ;−

= + ×

× −

Ф W P W P

I W P W P
12 12 12

1

22 22

 

( ) ( ) ( ) ( )[ ( )]

( ) ( )

s s s s s

s s ;

−= + − ×
×
Ф W P W P I W P

W P

1

13 12 12 22

22
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[ ( )] ( )s s−= −Ф I W P W1

21 22 21
; 

[ ( )] ( ) ( )s s s−= −Ф I W P W P1

22 22 22
; 

[ ( )] ( ) ( )s s s−= −Ф I W P W P1

23 22 22
. 

The system is inherently stable, if all the 
components of its matrix transfer function are 
stable  

( ) ,
____

ij s : i j ,=Ф 1 3 , ( )s RH∞∈Ф . 

To calculate the quality indexes of the robust 
control systems the 2H -norm of the closed 
system transfer function is used. The ∞H -norm 
is a measure of robustness that is stability to 
both the external and parametrical disturbances.  

In other words, the ∞H -norm is the effective 
characteristic of the system reaction to the 
external disturbances of the different kind in 
conditions of uncertainties in the system 
mathematical description. 2H -norm is the 
characteristic of the system sensitivity function. 

∞H -norm is the characteristic of the 
complementary sensitivity function. The above 
stated relationship allows to achieve 
compromise between the quality and the 
robustness of the system. Therefore to 
synthesize the studied system it is convenient to 
choose the complex criterion which includes the 

2H  and the ∞H -norms with the weighting 
coefficients change of which allows to achieve 
compromise between the quality and the 
robustness of the system. As the robustness is a 
measure of the system parametric uncertainty, it 
is convenient to use the ∞H -norms of the 
nominal and the parametrically disturbed 
models as components of this criterion. With 
respect to the 2H -norm the corresponding 
norms of the deterministic and stochastic 
systems it is necessary to use as components of 
this complex criterion. At that it is necessary to 
take into consideration disturbances, which are 
the most important and specific for the 
synthesized system. Then the complex criterion 
may be described by the expression [3]: 

i i i i

nom nom nom nom db db

n n
par par par par

i i

J H H H

H H ,

∞ ∞

∞ ∞
= =
∑ ∑

= λ + λ + λ +

+ λ + λ

2 2 2 2

2 2
1 1

 

where 
i i

nom nom db par par, , , ,∞ ∞λ λ λ λ λ
2 2 2

 are the 

weighting coefficients for the corresponding 
norms of the nominal, disturbed and n  
parametrically disturbed models of the system. 

Taking into account the above stated 
considerations the formalized statement of the 
studied system synthesis problem becomes: 

arg inf ( ( , ( ), ( ), ( )))
F , per

*
F

PH k k
J J s s s s

∞∈ ≥
= ∆ ∆

ΦΦΦΦ
Ф P

1 2
. 

This approach to stabilization and course 
system synthesis allows to achieve compromise 
between such conblict objectives as accuracy 
and resistance to disturbances.  

Conclusion 

The formalized statement of optimal synthesis 
problem for the marine vehicle resistant to 
disturbances stabilization and course system is defined. 
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