
ISSN 1813-1166. Proceedings of the NAU. 2010. №3

© Victor М. Sineglazov, Sergiy G. Kyevorkov, Raad Kareem Kadhim, 2010

25

UDC 004.942(045)
1Victor М. Sineglazov, D.E., Prof.

2Sergiy G. Kyevorkov, Post-graduade student
3Raad Kareem Kadhim, Post-graduate student

CHOICE OF THE PROJECT DESIGN DATA INTEGRATION
MODULE SORTING ALGORITHM OF A COMPUTER-AIDED DESIGN

National Aviation University
1,3E-mail: svm@nau.edu.ua

2E-mail: kyevorkov@ukr.net

Investigation of computer-aided design data module integration algorithms. The analysis of data
sorting algorithms was realized. Algorithms for tasks sorting of project data integration module
were suggested.

Проведено дослідження формування метамоделі системи автоматизованого
проектування та її компонентів. Розроблено ієрархію метамоделей та моделей системи.
Проведено аналіз комплексів системи.

Проведены исследования формирования метамодели системы автоматизированного
проектирования и ее компонентов. Разработана иерархия метамоделей и моделей системы.
Проведен анализ комплексов системы.

Statement of purpose

At present time, much attention is paid to
essential task of improving the effectiveness of
computer-aided design systems in the way of
more full use of databases (in digital format and
symbolic) for solving of problems that are not
directly linked with design, for example in the
technological preparation of production. For
solving such a problem in the work [1] was
suggested the approach of CAD development to
the problems of production technological
preparation. Structure scheme of such CAD is
given on fig. 1.

A distinctive feature of the CAD is the
presence of project data integration module. The
main elements of the module are: database,
adapters to CAD systems, interfaces to external
systems, end-user interface, administration tools
and customization of data, algorithms of sorting,
consolidation, retrieval, conversion and data
conversion. The design data integration module
structure is illustrated fig. 2.

An example of using a design data
integration module at the stage of technological
preparation of production (TPP) is to launch in

the production of a list of objects (parts and
assembly unit) in the official notes. During
processing of the official note the list of
incoming objects is defined. Depending on the
number of objects sorting on the marking, on
the material, on the group of technological
processing is performed. During performance of
the object analysis (part or assembly unit) a
query to find the information objects (three-
dimensional models, electronic circuits or
drawings), is carried out in the CAD
environment.

During the TPP objects sorting I done
according to the following grounds:

– matching the model detail or assembly unit,
for example: 77.01.0110.912;

– name of the model parts or assembly units,
such as: bracket, stringer, left beam;

– material; for example: В95, 1163, D16Т;
– type of the detail technological process; for

example: cast, extruded, bent.
Sorting is included into the list of tasks

necessary to perform the TTP and access to CAD
data. Let’s analyze the sorting algorithms in terms
of their use in the project data integration module.

ISSN 1813-1166. Proceedings of the NAU. 2010. №3

26

Fig. 1. CAD structure with package data integration module

Fig. 2. Design data integration module structure

ISSN 1813-1166. Proceedings of the NAU. 2010. №3

© Victor М. Sineglazov, Sergiy G. Kyevorkov, Raad Kareem Kadhim, 2010

27

Problem statement

If there is a sequence a0, a1... an and
comparison function, which on any two
elements of sequence takes one of three values:
less, than or equal to. The task is to sort the
permutation of the members of a sequence in
such a way as to satisfy the condition:
ai <= ai+1, for all i from 0 tо n. If there are
several (x, y, z) fields, then x is called the key,
by which the sorting is realized.

For the algorithms analysis the next criteria
are used:

– sort time;
– volume of operative memory;
– stability (stable sort does not change the

relative position of equal elements).
The most widespread sorting algorithms are:
– bubble sort;
– insert sort;
– shaker sort;
– merge sort;
– fast sort;
– shell sort.
Let’s make a comparison [1, p. 20–80] of

these algorithms by suggested above criteria.

Algorithm 1. Bubble sort

Implementing of this method doesn’t require
any additional memory [2, p. 120–132; 3]. The
method is as follows: a pair is taken of the
adjacent elements, and if the element with lower
index is higher than the element with a larger
index, then we change their places. These
actions are continued until there are such pairs.
When there are no such pairs, then the data will
be sorted. To search for such pairs of data is
over looked from the beginning to the end.
From this it follows that during this overview a
maximum is found, which is placed at the end
of the array, and so the next time enough to
watch a smaller number of elements. As every
time at its own place gets at least one element,
then do not need more than N passages where
N – number of elements.

Algorithm 2. Insert sort

A new array is created, into which elements
are consistently inserted from the original array
so that the new array was ordered.

Insertis performed in the following way: at
the end of the new array is allocated a free cell,
then analyzed element, standing in front of an
empty cell (if a blank cell is not on the first
place), and if this is more an element is inserted,
then moves the item into a free cell (at its own
place a free cell is formed), and the next
element is compared. So we go to the case
where the element in front of an empty cell is
less than inserted, or an empty cell is at the
beginning of the array. Put the plug-in to an
empty cell.

So, in turn, insert all the elements of the
original array. It is obvious that if, the array has
been ordered before the element then after
inserting before the inserted element are located
all elements smaller than him, and after it -
larger. Since the order of elements in the new
array does not change, then the array will be
formed into an ordered one after each insertion.
It means that, after the last insertion, we obtain
an ordered array of the source. This sorting can
be implemented without additional array B, if
you sort the array A directly in the readout-ing,
ie, to insert a new element in the array A.

Algorithm 3. Shaker sort

When the data is sorted not in operative
memory and hard disk space, especially if the
key is associated with a large amount of
additional information, the number of
displacements of elements substantially affect
the operating time. This algorithm reduces the
number of such displacements, and acts as
follows: by means of one pass through all the
elements the minimum and maximum one is
selected. Then the minimal element is placed at
the beginning of the array, and the maximum,
respectively, at the end. Then, the algorithm is
executed for the remaining data. Thus, for each
pass, two elements are put into their places and,
hence, need N / 2 passes, where N - number.

Shaker method is more benefit because of
sorting data on external memory devices, and it
requires a half less permutations then the
algorithm №1 and №2.

ISSN 1813-1166. Proceedings of the NAU. 2010. №3

28

Algorithm 4. Merge sort

This sorting uses the following subtasks:
there are two sorted arrays, you need to do
(unite) one but sorted. Sorting algorithm works
on the principle: divide the array into two parts,
sort each of them, and then merge the two parts
into one sorted.

To estimate the time necessary for this
algorithm, we form a recurrence.

Let T (n) - sorting time an array of length n,
then for mergesort rightly

T (n) = 2T (n / 2) + O (n) (O (n)
this time, it is necessary to have drained two
arrays). Write down this ratio:

It remains to estimate k. We know that
2k = n,

and hence
k = log2n.
The equation takes the form
T (n) = nT (1) + log2nO (n).
Since T (1) - constant, then
T (n) = O (n) + log2nO (n) = O (nlog2n).
That is, the time estimate of the merge sort is

less than at the first three algorithms.

Algorithm 5. Fast sort

Like merge sort [4], the array is divided into
two parts, with the condition that all elements of
the first part is less than any element of the
second. Then each part is graded separately.
Partitioning is achieved on the part of the
ordering with respect to some element of the
array, i.e., in the first part of all numbers less
than or equal to this element, and second,
respectively, greater than or equal. Two indexes
are held on the array from different directions
and looking for items that were not in their
group. Finding such items, exchange them. The
one element on which the indices will intersect,
determines the group devision.

Time O (nlog2n) is the minimum for sorting,
which use only a paired comparison of elements
and not use the structure of the elements.

Algorithm 6. Shell sort

For each element it is necessary to find how
many less than a certain number items are there,
and place this number at the appropriate
place [1, р. 60].

For a linear array, we pass on to the
calculation of each possible value, and how
many items have the same value. Then add to
each of the numbers the sum of all previous.
Obtaining in such a way the number of elements
whose values are not more of the given value.
For the linear passage formed from the original
array new sorted. Two same elements are
tracked not to be recorded in one place.

The method does not use nested loops and,
taking into account the small range of values,
hits work duration is O (n).

Another important feature of algorithms is its
sphere of application. There are two main
positions:

– internal sorting work with data in memory
with random access;

– external sorting organizes information
located on external memory devices.

This imposes some additional restrictions on
the algorithm:

– access to the memory device has been
ongoing the consistent way: each instant period
of time one can read or write only the element
following by the current one t

– the amount of data does not permit them to
stay in RAM

In addition, access to data on the memory
device is much slower than the operation of
RAM.

This class of algorithms is divided into two
main sub-classes:

Internal sorting operates with arrays, entirely
fist in memory with random access to any cell.
All data usually graded at the same place,
without its Additional Cost.

External sorting operates with storage
devices of a large volume, but access is not
arbitrary, but consistent (sort of files), i.e. At the
moment we 'see' only one element, and the cost
of skipping over the memory of unfairly high.
This leads to special methods of sorting,
typically using additional storage space.

The results of given algorithms comparison
using time criteria are shown on fig. 3 [5].

ISSN 1813-1166. Proceedings of the NAU. 2010. №3

© Victor М. Sineglazov, Sergiy G. Kyevorkov, Raad Kareem Kadhim, 2010

29

Time,s

Number of elements

Fig. 3. Comparison of sorting time duration
depending on the number of elements:
1 – bubble sort;
2 – shaker sort;
3 – insert sort;
4 – сортировка Шелла

Given analysis shows that the most optimal

in time is Shell’s sorting.

Conclusion

As a result of conducted research the analysis
of sorting algorithms was performed. For use of
project data in integration module it is better to
use Shell’s algorithm.

References

1. Кнут Д. Искусство программирования.
Т. 3. Сортировка и поиск / Д. Кнут. = The Art
of Computer Programming. Vol. 3. Sorting and
Searching. – 2-е изд. – М.: Вильямс, 2007. –
824 c.

2. Алгоритмы: построение и анализ:
2-е изд. / Томас Х. Кормен,
Чарльз И. Лейзерсон, Рональд Л. Ривест,
Клиффорд Штайн. –– М.: Вильямс, 2007. –
1296 с.

3. Ткачук В. Алгоритмы сортировки.
Ч. 1 / В. Ткачук. – Режим доступа:
http://docs.com.ru/algoritm_1.php.

4. Ткачук В. Алгоритмы сортировки.
Ч. 2 / В. Ткачук. – Режим доступа:
http://docs.com.ru/algoritm_2.php.

5. Кантор И. Алгоритмы сортировки /
И. Кантор. – Режим доступа:
http://algolist.manual.ru.

The editors received the article on 26 May 2010.

