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ROBUST  STABILIZATION  AND  OPTIMIZATION  OF  FLIGHT  CONTROL  SYSTEM  
WITH  STATE  FEEDBACK  AND  FUZZY  LOGICS 

This paper deals with combination of two powerful and modern control tools as linear matrix inequality that is used for 
synthesis a ‘crisp’ controller and a fuzzy control approach for designing a soft controller. The control design consists 
of two stages. The first stage investigates the problem of a robust an 2H controller design with parameters uncertainties 

of the handled plant in the presence of external disturbances. Stability conditions are obtained via a quadratic 
Lyapunov function and represented in the form of linear matrix inequalities. The second stage consists of the outer loop 
controller construction based on fuzzy inference system that utilizes for altitude hold mode. The parameters of the fuzzy 
controller are adjusted with a gradient descent method in order to improve the performance of the overall system.  
The case study illustrates the efficiency of the proposed approach to the flight control of small Unmanned Aerial 
Vehicle.  

Розглянуто принцип поєднання двох потужних та сучасних засобів теорії управління як метод лінійних 
матричних нерівностей, який використовується для синтезу чіткого регулятора та нечіткого управління для 
синтезу регулятора з м’якими обчисленнями. Процедура синтезу складається з двох етапів. На першому етапі 
вирішено задачу синтезу робастного 2H - регулятора для безпілотного літального апарату із врахуванням 

зовнішніх збурень, які діють на об’єкт управління. Умови стійкості сформовано у вигляді лінійних матричних 
нерівностей. Другий етап присвячено задачі синтезу нечіткого регулятора для зовнішнього контуру управління 
в режимі стабілізації висоти, заснованого на нечіткій логіці. З метою покращення якості управління 
параметри нечіткого регулятора настроюються за допомогою градієнтного методу. Проведено дослідження 
на прикладі управління поздовжнім каналом безпілотного літального апарату.  

fuzzy optimization, fuzzy robust control, model with parameters un certainties, linear matrix inequality 
 
Introduction 

During the last years, the problem of robust flight 
control system (FCS) has attracted a great attention 
from the control system society, especially in the 
area of Unmanned Aerial Vehicle (UAV). It is 
known that the control of UAV remains a challenge 
for the engineer. This is explained by the fact, that 
the parameters of UAV dynamic models are very 
vulnerable towards the changeable atmosphere 
conditions; therefore there are significant 
uncertainties of plant’s models as well as of the 
exogenous disturbances spectral properties. From 
the other hand, the design of FCS involves manifold 
requirements which include a low cost design, 
weight and power consumption.  
To satisfy the aforementioned requirements, several 
control methods have been proposed. Among them, 
it is possible to enumerate some works related to the 
combination of observer and linear quadratic 
regulator (LQR) [1; 2]. Furthermore, to preserve the 
required level of performance without loosing the 
robustness of the FCS, the ∞HH2 – robust 
optimization procedure is used. The main idea 
behind this technique is to seek a trade-off between 
the performance and the robustness of the overall 
closed loop system [1; 2].  

Nowadays, a great attention is drawn to the Linear 
Matrix Inequality (LMI) approach [3; 4]. This 
advanced approach permits to consider the problems 
of optimal and robust–optimal control design in the 
form of LMI and formulate the stability conditions. 
The LMI technique is used to design a static output 
feedback in [5; 6], also this method is utilized to 
compensate the external disturbances by the static 
and dynamic output feedback [7], only a few works 
have been devoted to the problem of ∞H controller 
design with external disturbances and plant with 
uncertainties [7–9]. In the area of UAV robust 
control this approach gives a promising results, 
however, it is important to formulate the robust 
stability conditions under LMI.  
In this article, the combination of two advanced 
approaches is used two design UAV robust flight 
controller. The first approach uses LMI to design the 
inner loop controller based on 2H criterion, taking 
into account the model uncertainties and exogenous 
disturbances. This inner loop is designed to the 
stabilization of the angular motion of the aircraft. 
The second method is devoted to the design of outer 
loop controller utilizing zero order Sugeno fuzzy 
inference system.  
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The outer loop is designed to the stabilization of the 
UAV flight altitude and velocity. The realization of 
fuzzy controller requires the choice of many 
parameters by the designer, such as the shape and 
number of membership functions, the choice of the 
rule base to represent the control strategy and the 
universe of discourse, where the input/output 
membership function are distributed. Hence, it is 
important to the designer to optimize some 
parameters of the fuzzy controller in order to 
achieve the desired performance. In this work the 
optimization of the parameters of the input 
membership function as well as the position output 
singletons are adjusted. The performance index is 
formulated using the error between the desired 
altitude signal and the output altitude of the UAV. 
The method is based on the gradient descent 
technique, which seeks optimal parameters of the 
fuzzy controller using the derivative of the above 
performance index with respect to the membership 
functions parameters. 
The case study and simulation results devoted to the 
longitudinal motion stabilization of the Aerosonde 
UAV. These results prove that the used method is 
very efficient for multivariable control from the 
viewpoint of its robustness and performance. 

Inner loop robust controller design via  
Linear Matrix Inequality  

This section is dedicated to the design of inner loop 
robust controller based on 2H criterion taking into 
consideration the parametric uncertainties and 
external disturbances. The controller design is 
formulated in the context of the convex analysis via 
LMI, when it is necessary to find a common positive 
definite matrix P, which would satisfy a set of 
Lyapunov Inequalities [3; 4]. The LMI approach 
permits to obtain a state feedback controller for a set 
of linear models received due to the linearization of 
the nonlinear model for different operating 
conditions. 
The model of the controlled plant with structured 
uncertainties and disturbances could be represented 
as follows: 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )ttutBBtxtAAtx ii ϕ+∆++∆+=ɺ ,   (1) 
where  

( ) nRtx ∈  is a state space vector; 

( ) mRtu ∈ is a control vector; 

( ) nRt ∈ϕ  denotes the unknown disturbances with a 
known upper bound  

( )tup ϕ≥ϕ ,                                                           (2) 

the state space matrices nxm
i

nxn
i RBRA ∈∆∈∆ ,  

describe all modelling uncertainties of 
nxmnxn RBRA ∈∈ ,  and 

2
 denotes the 2H – norm 

of external disturbances. 
We suppose that all uncertainties are bounded as 
described in [10] as follows: 

( )
( )

,

,

i ai ai ai

i bi bi bi

A t =H D N

B t =H N

∆

∆ ∆
                                           (3) 

where  

biaibiai NNHH ,,,  are known real constant matrices 
with appropriate dimensions; 

( ) ( )tt biai ∆∆ ,  are unknown uncertainties, which 
satisfy the classical boundedness conditions such 
that t :∀  

( ) ( ) ( ) ( )T T
ai ai bi bit t I t t I, .∆ ∆ ≤ ∆ ∆ ≤  

If all components of the state vector ( )x t  could be 

measured, then the control law for the system (1) is 
given as: 

( ) ( )tKxtu −= .                               (4) 
Thus, the closed inner loop system with 
uncertainties and external disturbances is obtained 
by substituting (4) into (3), and is given by: 

( ) ( )( ) ( )( )[ ] ( ) ( )ttKxtBBtAAtx ii ϕ+∆+−∆+=ɺ .     (5) 
Notice that the controlled plant considered in this 
paper contains the uncertainties and is subjected to 
the external disturbances ( )tϕ , hence the most 
convenient way to attenuate them is to use  

2H  – criterion, which is expressed by: 

( ) ( ) ( ) ( )dttttQxtx
ff t

t

T
t

t

T ϕϕη≤ ∫∫
00

2 ,                  (6) 

where  

ft is the final time; 

Q  is positive definite weight matrix and 
ηpredetermine the attenuation level. 

The objective now consists of evaluation the gain K  
in equation (4). This gain should ensure that 
requirements of the quadratic stability and robust 

2H − performance of the closed loop system (5) for 

all bounded disturbances ( )tϕ  (2) and for all 
parameters variations inside given structured 
uncertainties A∆  and B∆  would be satisfied. 
In the next section, the LMI robust stability 
condition for the closed loop system (5) is 
formulated. 
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Formulation of the Linear Matrix Inequality 
stability condition 

In order to formulate the LMI robust stability 
condition aforementioned control system, the 
following two well known lemmas are needed [10]: 
Lemma 1. For any real matrices HZ, and N  with 

appropriate dimensions and TZZ = , the following 
Lyapunov inequality  

0≤∆+∆+ TTT HNNHZ . 

Is satisfied for all real matrices ∆  satisfying 

( ) ( ) IttT ≤∆∆  [ ]∞∈∀ ,0t , if there exists the scalar 
0>σ such that 

01 ≤σ+σ+ − NNHHZ TT . 

Under the 2H criterion we are ready to formulate the 
robust stability condition for the closed loop system 
(5) in the following theorem. 
Lemma 2 (Schur’s lemma). For real matrices 

0,, >== TT EELLD , the following two 
conditions are equivalent  

 1) 01 >− − TDDEL ; 

2) 0>








ED

DL
T .  

Theorem. The uncertain and disturbed system (1) is 
quadratically stable and satisfies 2H criterion (6), if 

there exist a positive definite matrix 0>= TPP , 
the attenuation level η  and the gain matrix K  such 
that the following condition is satisfied: 

The condition (8) leads to the following inequality: 

( ) ( ) ( ){ } ( )

( ) ( ) ( ) ( ) ( ) ( )2 T 0

TT

T T

x t A-B K P +P A-B K Q x t

t P x t x t P t t t

+ +

+ϕ + ϕ − η ϕ ϕ ≤

ɶ ɶɶ ɶ

 

or it is equivalent to: 

( )
( )

( ) ( ) ( )
( ) 0

~~~~

2
≤








ϕ











η−
+−+−










ϕ t

tx

IP

PQKBAPPKBA
t

tx TT

,  (9) 

where 

( )
( )

,i

i

A=A+ A t

B=B+ B t .

∆

∆

ɶ

ɶ
 

We use the following change of variables 

PMKPKMPX === −− ,, 11 .  

Pre-multiplying and post-multiplying right and left 
sides of the inequality (9) by  

[ ]IXdiagX T=   

and [ ]IXdiagX =  respectively, we obtain: 

{ }
0

~~~~

2
≤








η−
+−−+

II

IXQXBMMBXAAX TT
i

T
iii

T
i

T
i . 

In order to solve the inequality (9), which contains 
the unknown uncertainties, the Lemma 1 is applied.  

Let: 










η−
=

IP

PY
F 2 , 

( ) ( ) QKBAPPKBAY ii
T

ii +−+−= . 

1 2

1

1

1

1 2

2

0 0 0 0 0

0 0 0 0 0

00 0 0 0 0

0 0 0 I 0 0

0 0 0 0 0

0 0 0 0 0

T T T T T T T T
i i i i i i ai bi ai bi

T
ai
T
bi

ai

bi

X A +A X-B M -M B H H X N X Q M N I

H

H

,N X

Q X

N M

I I

/

/

−

−

−

 
 −σ 
 −σ
 

≤−σ 
 −
 

−σ 
 −η 

            (7) 

where  
a change of variables such as 

PMKPKMPX === −− ,, 11  was used. 

Proof. Let ( ) ( ) ( )txPtxtxV T=,  with 0PP T >=  be 
a candidate Lyapunov function. The closed loop 
system (4) preserves stability and the 2H  
performance (6) with attenuation level η  if: 

( ) ( ) ( ) ( ) ( ) 0, 2 ≤ϕϕη−+ tttxQtxtxV TTɺ .                 (8)

Then the inequality (9) can be rewritten as: 

( ) ( )( ) ( ) ( )( )
0

00

0 ≤










 ∆−∆+∆−∆+ KtBtAPPKtBtA
F ii

T
ii  

Remind that parameters uncertainties are represented 
as given in (3), replacing these uncertainties by their 
bounded quantities as described in [11] and basing 
on the above mentioned Lemma, the following 
expression is obtained: 
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0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0 0

T T T T
ai bi ai ai ai ai ai

T T T T
bi bi bi bi bi

T
ai bi ai

T
bi

H H N X X N H

F N M -M N H F

H H H

H

     ∆ ∆     
          + ∆ − + ∆ = +          
                     

 
 + σ  
   

0 0 0 0 0 0 0 0
1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

T T T T
ai ai ai ai

T T T T
bi bi bi bi

X N H N X

M N H N M .

      ∆  
         + − ∆ − ≤         σ                

  (10) 

 
Since, ( ) ( ) Ittt ai

T
ai ≤∆∆∀ :  and ( ) ( ) Itt bi

T
bi ≤∆∆ , the inequality (10) becomes: 

0

000

00

00

000

00

00
1

000

00

00

000

000

0

≤
















−
















−
σ

+
































σ+ MN

XN

NM

NX

H

HHH

F bi

ai
T
bi

T

T
ai

T

T
bi

T
aibiai

.

The above inequality results in: 

0

0

0
1

1

2

2/1

2/1

≤























η−
σ

+−
σ

+σ+σ+−−+

II

MNNMIXQ

IQXXNNXHHHHBMMBXAXA

bi
T
bi

T

ai
T
ai

TT
bibi

T
aiai

T
i

T
iiii

T
i

. (11) 

After applying Schur’s lemma to the 

XNNXHHHH ai
T
ai

TT
bibi

T
aiai σ

+σ+σ=ξ 1
1  and 

MNNM bi
T
bi

T

σ
=ξ 1

2 in the inequality (11) we 

obtain the inequality (7). 

Design of the outer loop controller based  
on optimized Sugeno fuzzy inference 

The outer loop is devoted to the design of Sugeno fuzzy 
controller. The block-diagram of the overall closed loop 
system is depicted in fig.1, where the outer loop is 
represented by a Takagi-Sugeno Fuzzy Controller (TSFC). 
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Fig. 1. Block diagram of the overall closed loop system 
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The input to the TSFC is the error ( )te  between the 
reference altitude signal and the actual output of the 
UAV, ( ) ( ) ( )ththte ref −= . The output corresponds to 

the reference signal )t(refϑ  for the inner loop.  
The TSFC considered in this paper is of type zero, 
where the rule base is embedded in following form: 

ij bisuTHENXiseIF  
where 
i  is number of control rules; 

jX  is the linguistic values of the rule antecedent; 
ib  is the output membership function centers. 

We use the gaussian membership functions that are 
specified with the centers ic  and spreads iσ  for the 
premise part of control rules, the output is 
considered as singleton membership function. The 
gaussian membership function is given by: 

( )( ) ( )

























σ
−−=σµ

2

2

1
exp,,

i

i
ii

i

cte
cte .   (12) 

Using product for the premise and implication, and 
center-average defuzzification, the overall output of 
the TSFC is computed as [12]: 

( )( )

( )

( )
∑ ∏

∏∑

= =

==


























σ
−−


























σ
−−

=θϑ
R
i

n
j j

j

n
j j

j
R
i i

kref

cte

cte
b

te

1 1

2

1

2

1

2

1
exp

2

1
exp

,  (13) 

where  
Ri ,,1…= ; 
nj ,,1…= ; 

Rnk += . 
Recall that our goal is to optimize the shape of the 
input and the output membership functions in order 
to minimize the quadratic error function given by: 

( )( ) ( )( )2

2

1
thtehE kref −ψ= , 

where  
( )th  is the target output of the system; 

ψ  is vector of parameters to be optimized, namely 
jj

i cb σ,, .  
The tuning of the input and output membership 
function parameters of the TSFC is realized using 
the gradient descent method, which uses the partial 
derivatives of E  with respect to the input and output 
membership functions parameters.  
This idea was previously suggested and successfully 
realized with triangular membership functions for 
Mamdani fuzzy controller in [13].  

In the present work the procedure of tuning the 
membership function parameters is applied to the 
TSFC with membership functions (12) and their 
update laws are given below. 

Defuzzification parameters update law 

Firstly, let’s obtain the partial derivative of E  with 
respect to the output membership function. By using 
chain rule, we obtain: 

( )( ) ( )( ) ( )( )
i

kref
kref

i

t

b

te
thteh

b

E

∂
ψϑ∂

−ψ=
∂
∂

,  

where ( )( )kref te θϑ  is defined previously in (13). 

Taking the partial derivative we get the following 
equation: 

( )( ) ( )( )
( )

( )

2

j 1

2

1 1

1
exp

2

1
exp

2

t
ref k

i

j
n

j

j
nR

ji= j

E
h e t h t

b

e t c

e t c
.

=

=

∂
= ψ − ×

∂

  −
 −    σ  ×
  −
 −    σ  

∏

∑ ∏

                  (14) 

For convenience, we denote in (13) 

( )( ) ( )∏ = 
























σ
−−=µ n

j j

j

i

cte
te 1

2

2

1
exp  

and let  
( )( ) ( )( )thtehE kreft −ψ=   

denotes the instantaneous error.  
Thus, we get the gradient descent rule to update the 
output membership function: 

( )( )
( )( )∑ =

+
µ

µ
λ−=

R
i ki

ki
tkiki

te

te
Ebb

1 ,

,
1,1, .              (15) 

In general, the update law can be rewritten as: 

ki

t
kiki b

E
bb

∂
∂

λ−=+ 1,1, , 

where  

1, +kib  is the updated parameter; 

kib ,  is the parameter before optimization. 

Input membership function centers update law 

We would get the partial derivative of E with respect 
to the centers of the input membership functions in 
the same way as it is done in a previous section. 

( )( )
( )( )

( )( )
j

ki

ki

kref
tj

t

c

te

te

te
E

c

E

∂

µ∂
µ∂

ψϑ∂
=

∂
∂ ,

,

,  



ISSN 1813-1166. NAU Proceedings. 2009. №4 
 

 

38 

where 

( )( )
( )( )

( )( )( ) ( )( )( )
( )( )∑

∑∑

=

==

µ

µ−µ
=

=
µ∂

ψϑ∂

R
i ki

R
i kikiki

R
i ki

ki

kref

te

tebbte

te

te

1 ,

1 ,,,1 ,

,
  

thus, 
( )( )

( )( )
( )( )
( )( )te

teb

te

te

ki

krefki

ki

kref

,

,

, µ∂
ψϑ−

=
µ∂

ψϑ∂
 

and 

( )( ) ( )( ) ( )
( ) 














σ

−
µ=

∂

µ∂
2,

,

j
k

j
k

kij

ki cte
te

c

te
. 

So, the update law for ( )kc j  is represented by 
expression (14) 

( )( )
( )( )

( )( ) ( )
( ) 














σ

−
µ














µ

ψϑ−
λ−=

∑=
+ 2,

1 ,

,
21

j
k

j
k

kiR
i ki

krefki
t

j
k

j
k

cte
te

te

teb
Ecc .

(16) 
In general, the update rule is expressed as 

k
j
tj

k
j
k

c

E
cc

∂
∂

λ−=+ 21 . 

Input membership function spreads update law 

To update the ( )kjσ  we will follow the same steps 
as above: 

k
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k
j
k

E

σ∂
∂
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using chain rule, we obtain: 
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the update formula is described as: 
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In (15), (16) and (17) lλ , 3,2,1l =  is a step size of 
the gradient descent algorithm. This completes the 
gradient descent method that is utilized to adjust the 
parameters of the fuzzy system. 

Case study 
To illustrate the efficiency of the proposed approach 
a longitudinal channel of the UAV (Aerosonde 
UAV) is used as a case study. The state space vector 
of the longitudinal channel is  

[ ]Ωϑ= ,,,,, hqwuX ,  
where  
u  is horizontal velocity component;  
w  − vertical velocity component; 
q  is pitch rate; 
ϑ  is pitch angle; 
Ω  is the engine spin (r.p.m).  
The control vector consists of the elevator deflection and 
throttle. The nonlinear model of the Aerosonde model is 
linearized for three operating conditions: the nominal 
model at true airspeed of 26 m/s and two parametrically 
perturbed models at 23 m/s and 30 m/s. 
The linear state space models are represented by 
matrices A, B, C, D: 
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[ ]66×= IC , [ ]260 ×=D . 
In order to simulate the atmospheric turbulence a 
Dryden filter is used. Its state space description is 
given as follows [14]: 
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where the subscript w  corresponds to the true 
airspeed vertical component and u  for the 
longitudinal one. In our case the Aerosonde flies at 
an altitude of 200 m in moderate turbulence. The 
parameters appearing in the state space of Dryden 
filter are given as follows [14; 15]: 

( )VL2K uuu πσ= ,  

VLuu =λ ,  

42.1=wK ,  
67.6=λw ,  

VKq 1= , 

Vbq π=λ 4 ,  

where b  is the Aerosonde’s wing span: mb 9.2= .  
The same parameters are defined for different 
models corresponding to different true airspeeds. 
The inner loop is designed using LMI approach for uncertain 
model with external disturbances. The measured variables 
for the inner loop are [ ]Ωϑ= ,,,, qwuX . To apply LMI 
for inner loop design it is necessary to rewrite the matrices of 
uncertainties as ( ) aiaiaii NHtA ∆=∆  

with: 
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The attenuation level is estimated as η =  0,8010. 
The obtained gain matrix is defined as follows: 

0,0556 0,0593 0,7976 5,4622 0,0004

0,9842 0,1059 0,0204 1,6761 0,0025
K

− − − 
=  − − − − 

. 

The indices of performance and robustness of the 
inner loop control for the nominal and perturbed 
models are given in tab. 1. 

2H  and ∞H  of the closed loop system 

Plant 
2H   

 Deterministic 
case 

2H  

Stochastic 
case 

∞H -

norm 

Vn=26 m/s Nominal 0,6014 0,3543 0,5593 
Vp1=23 m/s Perturbed 1 0,5214 0,3698 0,6711 
Vp1=30 m/s Perturbed 2 0,7099 0,3453 0,5591 

 

As stated before, the outer loop controller is 
designed using TSFC for altitude hold mode at the 
reference signal. The error between the reference 
signal and actual position of the UAV is removed 
through the fuzzy controller by adjusting the 
parameters using the gradient descent algorithm. 
TSFC comprises one input and one output.  
Three input Gaussian shaped membership functions 
are used to represent the “crisp” values on the 
universe of discourse and singletons are used for 
output. Since there are a total two fuzzy variables 
(one input and one output) and each fuzzy variable 
have three membership functions. Thus, the total 
number of fuzzy parameters to be tuning is 9. 
The simulation results of the closed loop system, before 
and after the optimization, are given in the fig. 2. 
The maximum deflections of the angle of attack and 
pitch angle are enclosed within acceptable intervals: 

33 <α<− deg and 84 <θ<− deg, respectively. 
The altitude h  and velocity V  are also held at their 
reference signals h ref 50m_ =  and V ref 5m s_ =  
respectively with acceptable deflections. 
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Fig. 2. Simulation results for longitudinal channel of Aerosonde: 
non-optimized fuzzy controller: 
a − altitude of UAV nominal and perturbed models; 
c − pitch angle of UAV nominal and perturbed models; 
e − angle of attack of UAV nominal and perturbed models; 
optimized fuzzy controller: 
b − altitude of UAV nominal and perturbed models; 
d − pitch angle of UAV nominal and perturbed models; 
f − angle of attack of UAV nominal and perturbed models 
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Conclusion 

In this paper the robust combined autopilot 
consisting of inner and outer loops for plant with 
parameter uncertainties and external disturbances is 
considered. The inner loop is the system of angular 
motion and velocity stabilization, while the outer 
loop is the flight altitude control. The stability 
conditions have been obtained via a quadratic 
Lyapunov function. The outer loop is represented 
with fuzzy control approach. It is shown that the 
membership functions of the fuzzy controller can be 
optimized via the gradient descent method that 
results in adjusting (tuning) the fuzzy controller in 
an automatic mode. The simulation results 
demonstrate that all flight requirements are held.  
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