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DESIGN OF UAV ROBUST AUTOPILOT BASED
ON ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV
longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This
data were obtained from the modeling of a “crisp” robust control system. The synthesis of this system is based
on the separation theorem, which defines the structure and parameters of LOG-optimal controller, and further
H, / H - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the
rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system
controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of
UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of
proposed design procedure.

Posensinymo cunmes Hetiponeuimkoi Oacamosumiproi cucmemu YnpaeninHs noavomom mainoeo BIIJIA 3a ymosu
3HAXOOMNCEHHsT KOMNPOMICY Midc sKicmio ma pobdacmuicmio yiei cucmemu. Ax pobacmuuii npomomun, sKuil
BUKOPUCMOBYEMBCA ONISL HABYAHHSA HEUPOHEYImKOL cucmemu, 3aCmoco8yemvbCs 0A2amosuMIpHull YimKuti pe2yismop,
CUMME306aHUll 3a 00NOMO20I0 meopemu PO30iNeHHsl 3 HACMYNHOIO POOACMU3AYIEI0 OMPUMAHO20 DIUEHHSI HA OCHOSI
pobacmmuoi H, / H - onmumizayii, suxopucmogyiouu eenemuynuii aneopumm. 3MiHu 6XIOHUX MA GUXIOHUX KOOPOUHAM
YimKkoi cucmemu 8UKOPUCIOBYIOMbCA OISl HABUAHHS HeUpPOHeUimKoi Mepexci, KA 3dCOCO8YEMbCA OIS AN2OPUMMY
360POMHO20 PO3NOGCIOOINCEHHS NOXUOKU OISl HANAWMYBAHHS NAPAMEMPI6 QYHKYIN NPUHALEHCHOCTT XIOHUX CUSHANIB
ma epadienmnoi onmumizayii 0 HalawmyeaunHs napamempie aneopummy OJepazzugirayii Cyeeno. Haeedeno
pesyiomamu  MOOENIOBANHS  HEeUPOHeUimKoi cucmemu Kepy8auHs No3008x4cHiM  pyxom manozo bBIIJIA,  sxi
niomeepoicyloms il eghexmueHicms.

Introduction creation of the inference rule base and tuning the
fuzzification and defuzzification parameters are
supported by proper software in MATLAB, thus
facilitating design of the control system. As it is
known [8—11], the adaptive neuro—fuzzy inference
system (ANFIS) consists of fuzzy Takagi-Sugeno
(FTS) type, which has the ability of learning.
The construction of the FTS system is a complex
task [7; 12], especially in the area of unmanned
aerial vehicles, due to the complexity of the flight
dynamic nonlinear model and to the unavailability of
perfect model. Some methods, to create the FTS
models were exposed in the literature, these models
depend on the objectives expected from the designer.
In this paper, the synthesis of the FTS model is
based on the ANFIS approach [7; 9—11]. ANFIS is
an adaptive neuro-fuzzy inference system, which

Essential parametrical uncertainty of the small UAV
mathematical models is one of the most difficult
problems arising in the process of the UAV control
system’s design. Modern robust control theory
proposes very effective methods to overcome this
difficulty [1-4]. These methods use the “crisp”
robust control approach [1-3], as well as usage of
the fuzzy logics [5].

Some previous works were devoted to the design of
the robust control systems based on the combination
of the “crisp” and fuzzy principles [5; 6]. In these
systems internal control loop for the angular
stabilization was designed on the basis of the

H,/H,, - robust control [5; 6], meanwhile the outer

loop for the altitude stabilization used fuzzy
controllers. This design approach can produce

systems using the simplest fuzzy controllers, USES the advantage of the fuzzy logic system and
because usage of the fuzzy controllers for artificial neural networks and constructs the hybrid
multivariable  angular, altitude and  speed intelligent system [7; 9—11].

stabilizations requires development of large amount
of inference rules and makes problem of creation the
knowledge base of fuzzy controller practically
unsolvable.

In order to overcome this hindrance the method
based on the application of adaptive neuro-fuzzy
control principles [7-9] can be applied, because
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The design of this system is based on the observed
input/output data produced by linear multivariable
robust control system. This system is used as the
generator of training input/output time histories. The
synthesis of the training system consists of 2 stages.
The first one uses the separation theorem [13]
applied to the model of the UAV at some nominal
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flight conditions augmented with Dryden model of
the turbulent wind [14] in order to find the linear
quadratic Gaussian (LQG) controller. The second
stage is based on H,/H, - robust optimization

[1-3] of closed loop system with LQG-controller.
The paper gives out the training methodology of
such adaptive networks based on ANFIS under
MATLAB. Its implementation in the autopilot’s
control law and simulation results are given for the
longitudinal channel of Aerosonde UAV [15], which
is widely used for the meteorological surveillance.

Structure of Adaptive Neuro-Fuzzy
Inference System

Adaptive neuro-fuzzy inference system was first
initiated by Jang’s PhD thesis supervised by Zadeh
at school of Berkley of California University [7].
ANFIS approximates any linear or nonlinear
function using input/output data [7]. The fuzzy
inference is used to set the existing relations
between these data, and the neural network applies
its learning capability to adjust parameters of the
fuzzy inference.

As an example, ANFIS model with two inputs, two
rules and one output is depicted in the fig. 1.

1,0
:<Zx)

/uAZ(

y :uB[(y

/uBZ (y 014
Layer 1

Layer 2

Layer3 Layer4 Layer 5

Fig. 1. ANFIS structure with 2 rules, two inputs and one
output

It uses a hybrid learning, which combines two
training methods: the least-squares method and the
back-propagation [7; 16]. Back-propagation is
applied to the learning the antecedent parameters,
while the least-squares method is learning the
consequent parameters.

Typical fuzzy rules in a Takagi — Sugeno model
corresponding to the graph represented in fig. 1 are
expressed as follows:

IF x is A, and y is B, then y, =f1(x,y);

IF x is A, and y is B, then u, :fz(x,y),

where

{A1 , B, 4,,B, } are fuzzy sets in the antecedent:

u, = fl.(x,y) , i=1,2 is a crisp function in the
consequent.

The function fi(x, y) can be any function that
approximates the output of the system within fuzzy
region specified by the antecedent of the rule [7; §;
16]. When f;(x,y) is a first order polynomial, we
have the first order FTS fuzzy model.

The fig. 2 shows the first order FTS, where {x, y} is
the input vector. aj are the normalized ratio of each

firing strength to the total of all firing strengths.

The architecture shown in fig. 1, is known as a
multilayer feed forward network [7]. In ANFIS, the
FTS is synthesized knowing some parameters of the
antecedent and the consequent, as the number and
shape of the input membership function of the fuzzy
sets, and parameters of the output function f; (x, y) .

For the first order FTS functions f;(x,y) have the
following form:

fi=px+qy+r, i=12.

In the next section, the function of each layer in the
fig. 1 is given, where:

5 _ Oy
12 —
0, + 0y
and
- _ 0,,
n= 0 -
0, +0y,
Layer 1: node i has the output function
Oy =n, (x) i=12;
0, = Ug , (J/) i=34,

where O,; are the membership grades of 4, and B, .
They show the degree that x and y belong to 4,
and B;. The membership functions could have any

shape, but most used in ANFIS [7-10] are
generalized “bell-type functions”, their equation is
as follows [17]:

)]

the parameters {ai,bl., ci} are the parameters of the
antecedent, which will be tuned by the ANFIS.

MA[(xj)z
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Fig. 2. First order Sugeno model

Layer 2: this layer computes the firing strength of
each rule using t-norm operator

0,, :/uA,(x)X/uB,(y) i=12,

where x stands for probabilistic product operator.
Layer 3: in this layer the normalized ratio of i —th
rule’s firing strength to the total firing strength is
computed as follows:
QFL i=12. )
0, + 0y
Layer 4: this layer computes the contribution of each
rule toward the overall output, and is done using the
following node function

O, =0s 1 :O3i(plx+q[y+rl) i=12, 3)
where {p[,qi,ri} are the consequent parameters to
be tuned by the ANFIS.

Layer 5: the node of this layer computes the overall
output as the summation of contribution from each
rule, using the following formula'

21 fi
0,=>0 (0]
5i Xl: 4i — z 3lfz ZI:O11 +022

(M

0,, (

= p1x+q1y+r1)+

0, +0yp
0y,

Oll +022

4)

(sz+‘]2y+”2)zwlf1 +W, .

Adaptive neore-fuzzy inference system
Training algorithm

In the above section, the ANFIS is represented
graphically, which displays the computations steps
of Takagi-Sugeno procedure. This representation is
useful for control law synthesis if it is equipped with
a learning algorithm. The most used learning
algorithm in neural network is back-propagation
[18] to learn the weight of the connecting arrows
between neurons from input/output information.

In the ANFIS structure, the adjusted or synthesized
parameters are the parameters of the antecedent

{ai,bi,ci}, which are initially given parametrically,

as explained before. The parameters of the
consequent are also adjusted and initially given by
the structure of the Sugeno model (type 0 or type 1).
As stated before, the training algorithm used for
synthesis the Sugeno model is hybrid [7; 19]. The
least-squares algorithm is applied for training
consequent parameters, and back propagation is used
to tune the antecedent parameters {ai,b,.,ci}

describing the generalized bell shaped membership
function, width, slope, and center, respectively. The
hybrid algorithm can be partitioned into the
following two steps [7; 11; 19]: The first step is
designated for adjustment of the output consequent
FTS parameters {quz'””i} by least square training
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algorithm. Suppose that training robust system
generates the training set as the input/output data,
which can be represented as vector time series

{(xl,yll---,(xK,yK )} where x* = (xlk,---,x,'f)e RF
and yk € R* . In order to approximate the control

law from this given set, a fuzzy If-Then rules are
used. Let R,, i=1,---,m be the i—th rule of the

form:
R:If x)is A and ... and x* is 4" then

f kL0
y=2zlx; +z), &)

where A/ are fuzzy membership function and z/

are real numbers, which depend on parameters

p,q,r.
Note that the algorithm described graphically for
two rules in the last section, is generalized to
m rules.

Let O be the output from the fuzzy system

corresponding to the input x*. The antecedent of the
i —th rule is defined by:

ui =TT 4/ (). ©)
j-l

As it is shown, the #-norm operator used in (6) is the

probabilistic product.

Using formulas (1)—(5), the output of the system is
computed as follows:

m k n Jjk 0
hInTE (Zj:lzi X;+z; )

oF = =
pINTS

T ) )
B Zi:l (Hj:l 4 (xj je1Zi X I
- m o 4 k)

i=1 Hj:l Ai (xj

define the error for the k —th training pattern as:

Sot@)-»). ™)

E*(2)=

where

0%(Z) is the computed output from the fuzzy

system corresponding to the input pattern x* ;

y* is the desired output, k =1,---,K depending on
vector Z .

Using the least squares estimate, we can gain the
optimal solution by minimizing the summation of
the error given in (7), using gradient descent
optimization procedure over variable vector Z:
oE"(z ok

a—Z()ZO’ Z ot :argg]g}lE (2). (8)

The second step is to train the antecedent parameters
using the back-propagation (BP). Basing on the
consequence parameters obtained in the first step,
we can compute the error. The BP algorithm of the
forward fee network is used to propagate the error
backward, from output layer to input layer.
The parameters a,,b,,c; of the membership

functions are updated using the gradient descent
[8; 9]. Then, the shape of the input membership
function will change.

Adaptive neuro-fuzzy inference

Training system

system

To train the Sugeno model some training data should
be presented to the input and output. Consequently,
the ANFIS can interpolate between inputs/output
data to generate the control law. The best source of
acquiring the training data is naturally coming, from
the trial of the actual UAV in fly; however, this
method is very difficult and seems to be not realistic.
Therefore, the training data used in this paper are
obtained from the simulation of the training system.
It is well known, that the Sugeno model can be
viewed as special case in gain scheduling or state
feedback [7; 8], where the gains depends on the
input membership function. For this reason, a
stochastic state feedback, based on robust
multivariable LQG technique, seems an appropriate
choice to generate the training data for the ANFIS
algorithm, especially in the area of UAV flight
control, due to the exposition of the UAV to many
disturbances.

The robust multivariable LQG technique used in this

paper is based on H, /HOO - robust optimization,

well studied in [1-3]. The first stage of this method
is to design an LQG regulator baser on the
separation theorem, which consist on the Kalman
filter and linear quadratic regulator (LQR). In the
second stage the “robustization” of the control law
using genetic algorithms (GAs) is adopted. The
fitness function used in GAs optimization is
composed from /H, - norm of the sensitivity
function, to estimate the performances of the closed
loop system, and H - norm of the complementary

sensitivity function, which is used to estimate the
robustness of the closed loop. This method is used to
find the trade-off between the performance and the
robustness of the control system. The fig. 3 gives the
scheme used to robustify the LQG controller using
genetic algorithms.
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Fig. 3. Closed loop system (p is a vector of adjustable parameters of controller)

The model used in this study is the longitudinal
dynamic of the Aerosonde UAV [19]. Notice that
the nonlinear model is trimmed at several operating
conditions, resulting in the nominal model and
disturbed models. The state space models N -
operating condition are described by the quintuple of
matrices |4, B, C,, D,, G,],

where:

Ai c Rnxn’

B, e R™,

C, e R,

D, e R”,

Gi c Rnxl ,

where the index i represents the i—th operating
condition. The state space representation is given as
follows:

X =4,X +BU +Gw,

)
Y=CX+DU +v.

The vector w represents the process disturbances,
and here it is given by the wind turbulence described
by the outputs of the Dryden filter [6], v is the white
noise of measurement the separation theorem is
applied to the extended model formed by the UAV
model and the Dryden forming filter. Let the
quadruple  of  matrices [A ar>Bars Cars Dy, ]
represents the state space model of the forming filter,

where 4, eR"™,B, eR™*,C, R ,D, eR"™ .

The extended state space model of the overall
system is described in the following way:

A B Anom GnomCdr B nom Gmm dr
|:C D :| = 0r><n Adr Ol’><q Bdr : (10)
“ “ Cnom 0 pxr | D nom 0 px2
The subscript nom stands for nominal.
After forming the extended model (10), the

separation theorem [13], which state, as it is well
known, that optimal stochastic observer using
Kalman filter to restore the full states vector of (9),
an optimal deterministic controller based on the
LQR can be applied to the restored states.
The optimal Kalman filter is designed to restore the
nominal state vector and defined as:

X= A, X, +B,U +L(Y—ng)?ex —DexU)5

MR

where
L is the Kalman gain matrix given by the following
expression:

L=PCI Ry,
where P is the unique positive-definite solution to
the following Algebraic Riccati Equation (ARE):

A, P+PAl +B,Q,Bl —PC!R)'C,P=0,

Oy and R, are the covariance matrices associated

with  the and process
respectively.

measurement noises
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The state feedback K is given in the following
expression:

K=R'BlS,

where S is the unique positive definite matrix of
(ARE) associated with the optimal feedback
problem:

AL S+S4, -SB,R'B.S+0=0
and the optimal control law minimizing the
performance index, is as follows:

U=-KX, .

The connection of the Kalman filter and the optimal
regulator leads to the following state space model of
the closed loop system:

X [ 4, -B, K X
X| |Lc, A, -LC, -B,K|X|

where X is the restored state vector.
The H,/H, - robust optimization consists of

minimization of certain cost function computed for
different models; nominal and perturbed controlled
by the same controller designed above. The terms of

the fitness function are computed using /7, - norm

of the sensitivity function, to measure the
performances of the closed loop system, and

H,_ - norm of the complementary sensitivity

function. These norms are function of the Kalman
gain matrix L and the LQR gain matrix K, since
they are computed to closed loop system including
the controller. The performance index is found as
follows:

J(L’K): kdnHHUZHZn + x‘anHUZH;” + x‘oonHTwZH:O +

N-1 B
)+ kZ::] }‘Spk Q‘HUZ Hzpk )+

N-1
+ xdpkaUZHZpk

S )

where ||H UZ”jn defines the H, — norm of the

nominal model in deterministic case;

NEIHH vz ||d” * stands for summation of the
k=1

H, —norms of (N —1) perturbed models;

TwZ

of the robustness of the nominal controlled plant,

|: is the H_— norm and gives the estimation

Ni”T 7 ||Zk computes the summation of the
k=1

H, —norm for all (N —1) parametrically disturbed

plants. ||HUZ||‘;" defines the performances of the

nominal stochastic model, the same summation of
the H, — norm being defined for all perturbed

N-1 .
models with the expression Z"H 1z ;p ‘

k=1
The LaGrange factors A, A, A dpk» kspk,
Min> Moy Weight the contribution of each term in

the cost function. After optimization the designed
control law is able to control a wide range of
operating conditions.

Once this control law is deigned it can be used to
train the ANFIS. During the simulation process of
the robust control system, described before, we can
write down the system inputs, the system outputs,
the values of the state variable and the output of the
optimal controller, and use these data as training
data for the ANFIS.

The ANFIS used in this paper is based on first-order
Sugeno model and, therefore allow only a single
output. The longitudinal dynamic of the Aerosonde
UAYV has two control variables [68,6”1], elevator
deflection and throttle setting. This requires the
design of two independent fuzzy controllers, one for
each control variable.

The state space models are calculated by imposing
the uncertainty for the true airspeed, which is given
by the following expression

V=Au®+v* +w? s

where v defines the lateral velocity component.

For the sake of simplicity and without loss of
generality two models (N =2) are defined, the
nominal model is taken at ¥, =30m/s and one

perturbed model 7, =35 m/s . The following

matrices give the respective states models:

0293 038 -055 -978 0 0.0l
~0.55 536 30 -018 0 0
L | 033 56 -619 0 0 0 |
" 0 0 1 0 0 0
001 -1 0 30 0 0
| 4153 078 0 0 -063 -3.85]
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[-03 0
-37 0
B - =500 |,
0 0
0 0
| 0 2664
[-035 028 -005 -982 0 0.01 |
-0.55 —625 35 —001 0 0
4 028 -643 -721 0 0 -001].
P 0 0 1 0 0 0
0 -1 0 35 0 0
| 485 008 0 0 -078 —443]
[ —0.5 0 |
-5 0
5 - -682 0
’ 0 0
0 0
| 0 30403

In series the models of actuators are connected to the
model of the UAV and are approximated by the first
order model given in the following:

Auc't Bact — _]/Té'act I/Té‘act
Cou| D 1o

act
where 15,, = 0.25 s stands for the time constant of

the actuator and the subscript dact can be either for
elevator or throttle.

In this case study only four states are measured:

X = [u qg © h],

so the observation matrix is given as follows:
C:l[l 05 ]T 04 [01><4 I35 O3y ]T J’ where 1
represents the unity matrix with appropriate
dimension. According to [14], the Dryden filter has
two inputs: horizontal and vertical wind gests, the
outputs are the longitudinal turbulent speed u, ,
vertical turbulent speed w, and turbulent pitch rate

q, - State space of the Dryden filter is defined by the

following matrices:
-1/, 0 0
A,=| 0 -1/, 0 |
0 -K,/x -1/2,

15
K,/ 2, 0
B,=| 0 KA, |
0 0
7 0 o
c,=l0 1 0P
0 K2, 1

where the subscript w corresponds to vertical
components and u# for the longitudinal. In our case
the Aerosonde flies at an altitude of 200 m, and in
moderate turbulence. The parameters appearing in
the state space of Dryden filter are given in the
following:

K,=0,/CL,/nV); A, =L, [V;

K,=22;x,=0.6;

K, =1V ;i\, =4b/nV,

where b is the wing span for the Aerosonde
b=29m L, is the horizontal turbulence scale
lengths;

o, is turbulence intensities.

The same parameters are defined for different
models with different true airspeed V' .

The ANFIS model has 4 training inputs for each pair
(x, y) , the vector

x:[eu eq el eh],

where eu is the velocity error between the reference
and the velocity output of the UAV plus the sensor
noises; eq ;

ef are the pitch rate and angle, respectively,
contaminated by sensor noises and e/ is the altitude
error between the reference signal and the altitude
output.

The outputs of the fuzzy controllers are elevator J,

and throttle o, .
The simulation results are shown in the fig. 4.

Conclusion

The simulations results prove the efficiency of the
control law designed using Adaptive Neuro-Fuzzy
Inference system. As it can be seen from the figures
all flight requirement are respected for the nominal
as well as for the perturbed model. All ranges of the
angles variations for the Aerosonde are satisfied,
altitude is stabilized at the reference signal (50 m),
as well as the velocity (5 m/s), as it is shown in the
first and second figures, respectively.

One can also conclude that the autopilot designed
using ANFIS holds the property of the robustness.
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