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DESIGN OF UAV ROBUST AUTOPILOT BASED  
ON ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM  

This paper is devoted to the application of adaptive neuro-fuzzy inference systems to the robust control of the UAV 
longitudinal motion. The adaptive neore-fuzzy inference system model needs to be trained by input/output data. This 
data were obtained from the modeling of a ”crisp” robust control system. The synthesis of this system is based  
on the separation theorem, which defines the structure and parameters of LQG-optimal controller, and further 

HH 2 - robust optimization of this controller, based on the genetic algorithm. Such design procedure can define the 

rule base and parameters of fuzzyfication and defuzzyfication algorithms of the adaptive neore-fuzzy inference system 
controller, which ensure the robust properties of the control system. Simulation of the closed loop control system of 
UAV longitudinal motion with adaptive neore-fuzzy inference system controller demonstrates high efficiency of 
proposed design procedure.  

Розглянуто синтез нейронечіткої багатовимірної системи управління польотом малого БПЛА за умови 
знаходження компромісу між якістю та робастністю цієї системи. Як робастний прототип, який 
використовується для навчання нейронечіткої системи, застосовується багатовимірний чіткий регулятор, 
синтезований за допомогою теореми розділення з наступною робастизацією отриманого рішення на основі 
робастної HH 2 - оптимізації, використовуючи генетичний алгоритм. Зміни вхідних та вихідних координат 

чіткої системи використовуються для навчання нейронечіткої мережі, яка застосовується для алгоритму 
зворотного розповсюдження похибки для налаштування параметрів функцій приналежності вхідних сигналів 
та градієнтної оптимізації для налаштування параметрів алгоритму дефаззифікації Сугено. Наведено 
результати моделювання нейронечіткої системи керування поздовжнім рухом малого БПЛА, які 
підтверджують її ефективність. 
 

Introduction 

Essential parametrical uncertainty of the small UAV 
mathematical models is one of the most difficult 
problems arising in the process of the UAV control 
system’s design. Modern robust control theory 
proposes very effective methods to overcome this 
difficulty [1−4]. These methods use the “crisp” 
robust control approach [1−3], as well as usage of 
the fuzzy logics [5]. 
Some previous works were devoted to the design of 
the robust control systems based on the combination 
of the “crisp” and fuzzy principles [5; 6]. In these 
systems internal control loop for the angular 
stabilization was designed on the basis of the 

HH2 - robust control [5; 6], meanwhile the outer 
loop for the altitude stabilization used fuzzy 
controllers. This design approach can produce 
systems using the simplest fuzzy controllers, 
because usage of the fuzzy controllers for 
multivariable angular, altitude and speed 
stabilizations requires development of large amount 
of inference rules and makes problem of creation the 
knowledge base of fuzzy controller practically 
unsolvable.  
In order to overcome this hindrance the method 
based on the application of adaptive neuro-fuzzy 
control principles [7−9] can be applied, because 

creation of the inference rule base and tuning the 
fuzzification and defuzzification parameters are 
supported by proper software in MATLAB, thus 
facilitating design of the control system. As it is 
known [8−11], the adaptive neuro–fuzzy inference 
system (ANFIS) consists of fuzzy Takagi-Sugeno 
(FTS) type, which has the ability of learning.  
The construction of the FTS system is a complex 
task [7; 12], especially in the area of unmanned 
aerial vehicles, due to the complexity of the flight 
dynamic nonlinear model and to the unavailability of 
perfect model. Some methods, to create the FTS 
models were exposed in the literature, these models 
depend on the objectives expected from the designer.  
In this paper, the synthesis of the FTS model is 
based on the ANFIS approach [7; 9−11]. ANFIS is 
an adaptive neuro-fuzzy inference system, which 
uses the advantage of the fuzzy logic system and 
artificial neural networks and constructs the hybrid 
intelligent system [7; 9−11].  
The design of this system is based on the observed 
input/output data produced by linear multivariable 
robust control system. This system is used as the 
generator of training input/output time histories. The 
synthesis of the training system consists of 2 stages. 
The first one uses the separation theorem [13] 
applied to the model of the UAV at some nominal 
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flight conditions augmented with Dryden model of  
the turbulent wind [14] in order to find the linear 
quadratic Gaussian (LQG) controller. The second 
stage is based on HH 2 - robust optimization  
[1−3] of closed loop system with LQG-controller. 
The paper gives out the training methodology of 
such adaptive networks based on ANFIS under 
MATLAB. Its implementation in the autopilot’s 
control law and simulation results are given for the 
longitudinal channel of Aerosonde UAV [15], which 
is widely used for the meteorological surveillance.   

Structure of Adaptive Neuro-Fuzzy  
Inference System 

Adaptive neuro-fuzzy inference system was first 
initiated by Jang’s PhD thesis supervised by Zadeh 
at school of Berkley of California University [7]. 
ANFIS approximates any linear or nonlinear 
function using input/output data [7]. The fuzzy 
inference is used to set the existing relations 
between these data, and the neural network applies 
its learning capability to adjust parameters of the 
fuzzy inference.  
As an example, ANFIS model with two inputs, two 
rules and one output is depicted in the fig. 1.  
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Fig. 1. ANFIS structure with 2 rules, two inputs and one 
output 

It uses a hybrid learning, which combines two 
training methods: the least-squares method and the 
back-propagation [7; 16]. Back-propagation is 
applied to the learning the antecedent parameters, 
while the least-squares method is learning the 
consequent parameters. 
Typical fuzzy rules in a Takagi – Sugeno model 
corresponding to the graph represented in fig. 1 are 
expressed as follows: 
IF x  is 1  and y  is 1  then  yxfu ,11  ; 

IF x  is 2  and y  is 2  then  yxfu ,22  , 

where  
 22,11 ,, BAB  are fuzzy sets in the antecedent: 

 yxfu ii , , 2,1i  is a crisp function in the 
consequent.  
The function  yxfi ,  can be any function that 
approximates the output of the system within fuzzy 
region specified by the antecedent of  the rule [7; 8; 
16]. When  yxf i ,  is a first order polynomial, we 
have the first order FTS fuzzy model. 
The fig. 2 shows the first order FTS, where {x, y} is 

the input vector. ijO  are the normalized ratio of each 

firing strength to the total of all firing strengths.  
The architecture shown in fig. 1, is known as a 
multilayer feed forward network [7]. In ANFIS, the 
FTS is synthesized knowing some parameters of the 
antecedent and the consequent, as the number and 
shape of the input membership function of the fuzzy 
sets, and parameters of the output function  yxfi , . 

For the first order FTS functions  yxfi ,  have the 
following form: 

iiii ryqxpf  ,   2,1i . 
In the next section, the function of each layer in the 
fig. 1 is given, where:  
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Layer 1: node i  has the output function 
 xO

iAi 1           2,1i ;    

 yO
iBi 21 

           4,3i ,    

where iO1 are the membership grades of iA  and i . 

They show the degree that x  and y  belong to iA  

and i . The membership functions could have any 
shape, but most used in ANFIS [7−10] are 
generalized “bell-type functions”, their equation is 
as follows [17]: 
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the parameters  iii cba ,,  are the parameters of the 
antecedent, which will be tuned by the ANFIS.  
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Fig. 2. First order Sugeno model 
Layer 2: this layer computes the firing strength of 
each rule using t-norm operator 

   yx
ii BAi2       2,1i ,     (1) 

where   stands for probabilistic product operator. 
Layer 3: in this layer the normalized ratio of thi   
rule’s firing strength to the total firing strength is 
computed as follows: 

2211

2
3 




O
i

i     2,1i .      (2) 

Layer 4: this layer computes the contribution of each 
rule toward the overall output, and is done using the 
following node function 

 iiiiiii ryqxpfO  334      2,1i ,    (3) 

where  iii rqp ,,  are the consequent parameters to 
be tuned by the ANFIS. 
Layer 5: the node of this layer computes the overall 
output as the summation of contribution from each 
rule, using the following formula: 
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  (4) 

Adaptive neore-fuzzy inference system  
Training algorithm  

In the above section, the ANFIS is represented 
graphically, which displays the computations steps 
of Takagi-Sugeno procedure. This representation is 
useful for control law synthesis if it is equipped with 
a learning algorithm. The most used learning 
algorithm in neural network is back-propagation 
[18] to learn the weight of the connecting arrows 
between neurons from input/output information. 
In the ANFIS structure, the adjusted or synthesized 
parameters are the parameters of the antecedent 
 iii c,b,a , which are initially given parametrically, 

as explained before. The parameters of the 
consequent are also adjusted and initially given by 
the structure of the Sugeno model (type 0 or type 1). 
As stated before, the training algorithm used for 
synthesis the Sugeno model is hybrid [7; 19]. The 
least-squares algorithm is applied for training 
consequent parameters, and back propagation is used 
to tune the antecedent parameters  iii cba ,,  
describing the generalized bell shaped membership 
function, width, slope, and center, respectively. The 
hybrid algorithm can be partitioned into the 
following two steps [7; 11; 19]: The first step is 
designated for adjustment of the output consequent 
FTS parameters  iii rqp ,,  by least square training 
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algorithm. Suppose that training robust system 
generates the training set as the input/output data, 
which can be represented as vector time series 
    KK yxyx ,,,, 11   where   kk

n
kK Rxxx  ,,1   

and kk Ry  . In order to approximate the control 
law from this given set, a fuzzy If-Then rules are 
used. Let iR , mi ,,1  be the thi   rule of the 
form: 

iR : If k
1x  is 1

iA  and   and k
nx  is n

iA  then 
0
11 zxzy k

j
n
j

j
i    ,       (5) 

where j
iA  are fuzzy membership function and j

iz  

are real numbers, which depend on parameters 
rqp ,, . 

Note that the algorithm described graphically for 
two rules in the last section, is generalized to 
m rules. 

Let k  be the output from the fuzzy system 

corresponding to the input kx . The antecedent of the 
thi   rule is defined by: 
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As it is shown, the t-norm operator used in (6) is the 
probabilistic product.  
Using formulas (1)−(5), the output of the system is 
computed as follows: 

 

    
  

 


 

 

 



 










m
i

n
j

k
j

j
i

m
i

n
j i

k
j

j
i

n
j

k
j

j
i

m
i

k
i

m
i i

k
j

n
j

j
i

k
ik

xA

zxzxA

zxz

1 1

1 1
0

1

1

1
0

1

    

define the error for the thk   training pattern as: 

    2
2

1 kkk yZOZE  ,      (7) 

where  
 ZOk  is the computed output from the fuzzy 

system corresponding to the input pattern kx ; 
ky  is the desired output, Kk ,,1  depending on 

vector Z . 
Using the least squares estimate, we can gain the 
optimal solution by minimizing the summation of 
the error given in (7), using gradient descent 
optimization procedure over variable vector Z: 

 
0




Z

ZE k

,  )(minarg
1

ZEZ k

Rp
opt k

 .     (8) 

The second step is to train the antecedent parameters 
using the back-propagation (BP). Basing on the 
consequence parameters obtained in the first step, 
we can compute the error. The BP algorithm of the 
forward fee network is used to propagate the error 
backward, from output layer to input layer.  
The parameters iii cba ,,  of the membership 
functions are updated using the gradient descent  
[8; 9]. Then, the shape of the input membership 
function will change. 

Adaptive neuro-fuzzy inference system  
Training system 

To train the Sugeno model some training data should 
be presented to the input and output. Consequently, 
the ANFIS can interpolate between inputs/output 
data to generate the control law. The best source of 
acquiring the training data is naturally coming, from 
the trial of the actual UAV in fly; however, this 
method is very difficult and seems to be not realistic. 
Therefore, the training data used in this paper are 
obtained from the simulation of the training system. 
It is well known, that the Sugeno model can be 
viewed as special case in gain scheduling or state 
feedback [7; 8], where the gains depends on the 
input membership function. For this reason, a 
stochastic state feedback, based on robust 
multivariable LQG technique, seems an appropriate 
choice to generate the training data for the ANFIS 
algorithm, especially in the area of UAV flight 
control, due to the exposition of the UAV to many 
disturbances.  
The robust multivariable LQG technique used in this 
paper is based on HH2 - robust optimization, 
well studied in [1-3]. The first stage of this method 
is to design an LQG regulator baser on the 
separation theorem, which consist on the Kalman 
filter and linear quadratic regulator (LQR). In the 
second stage the “robustization” of the control law 
using genetic algorithms (GAs) is adopted. The 
fitness function used in GAs optimization is 
composed from 2H - norm of the sensitivity 
function, to estimate the performances of the closed 
loop system, and H - norm of the complementary 
sensitivity function, which is used to estimate the 
robustness of the closed loop. This method is used to 
find the trade-off between the performance and the 
robustness of the control system. The fig. 3 gives the 
scheme used to robustify the LQG controller using 
genetic algorithms. 
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HH 2

 
Fig. 3. Closed loop system (p is a vector of adjustable parameters of controller) 

 
The model used in this study is the longitudinal 
dynamic of the Aerosonde UAV [19]. Notice that 
the nonlinear model is trimmed at several operating 
conditions, resulting in the nominal model and 
disturbed models. The state space models N - 
operating condition are described by the quintuple of 
matrices  iiiii GDCBA ,,,, ,  
where: 
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where the index i  represents the thi   operating 
condition. The state space representation is given as 
follows: 

.

;

vUDXCY

wGUBXAX

ii

iii


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       (9) 

The vector w  represents the process disturbances, 
and here it is given by the wind turbulence described 
by the outputs of the Dryden filter [6], v  is the white 
noise of measurement the separation theorem is 
applied to the extended model formed by the UAV 
model and the Dryden forming filter. Let the 
quadruple of matrices  drdrdrdr DCBA ,,,  
represents the state space model of the forming filter, 

where rl
dr

rl
dr

r
dr

rr
dr RDRCRBRA   ,,, 2 . 

The extended state space model of the overall 
system is described in the following way: 
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The subscript nom  stands for nominal. 
After forming the extended model (10), the 
separation theorem [13], which state, as it is well 
known, that optimal stochastic observer using 
Kalman filter to restore the full states vector of (9), 
an optimal deterministic controller based on the 
LQR can be applied to the restored states.  
The optimal Kalman filter is designed to restore the 
nominal state vector and defined as: 
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where 
L is the Kalman gain matrix given by the following 
expression: 

1 N
T
ex RPCL ,        

where P  is the unique positive-definite solution to 
the following Algebraic Riccati Equation (ARE): 

01   PCRPCBQBPAPA exN
T
ex

T
exNex

T
exex ,             

NQ  and NR  are the covariance matrices associated 
with the measurement and process noises 
respectively.  
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The state feedback K  is given in the following 
expression:    

SBRK T
ex

1 ,       

where S  is the unique positive definite matrix of 
(ARE) associated with the optimal feedback 
problem: 

01   QSBRSBSASA T
exexex

T
ex     

and the optimal control law minimizing the 
performance index, is as follows: 

exXKU
~

 .      

The connection of the Kalman filter and the optimal 
regulator leads to the following state space model of 
the closed loop system: 
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where X
~

 is the restored state vector.  
The HH 2 - robust optimization consists of 

minimization of certain cost function computed for 
different models; nominal and perturbed controlled 
by the same controller designed above. The terms of 
the fitness function are computed using 2H - norm 

of the sensitivity function, to measure the 
performances of the closed loop system, and  

H - norm of the complementary sensitivity 

function. These norms are function of the Kalman 
gain matrix L  and the LQR gain matrix K , since 
they are computed to closed loop system including 
the controller. The performance index is found as 
follows: 
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where 
dn

UZH
2   defines the 2H  – norm of the 

nominal model in deterministic case; 
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dpk
UZH stands for summation of the  

2H  – norms of  1N  perturbed models; 
n

wZT


 is the  H – norm and gives the estimation 

of the robustness of the nominal controlled plant,  
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wZT  computes the summation of the  

H –norm for all  1N  parametrically disturbed 
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sn
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2

 defines the performances of the 

nominal stochastic model, the same summation of 
the 2H  – norm being defined for all perturbed 

models with the expression 




1

1
2

N

k

spk
UZH .  

The LaGrange factors ,,,, spkdpksndn   

pkn   ,  weight the contribution of each term in 

the cost function. After optimization the designed 
control law is able to control a wide range of 
operating conditions.  
Once this control law is deigned it can be used to 
train the ANFIS. During the simulation process of 
the robust control system, described before, we can 
write down the system inputs, the system outputs, 
the values of the state variable and the output of the 
optimal controller, and use these data as training 
data for the ANFIS. 
The ANFIS used in this paper is based on first-order 
Sugeno model and, therefore allow only a single 
output. The longitudinal dynamic of the Aerosonde 
UAV has two control variables  the  , , elevator 

deflection and throttle setting. This requires the 
design of two independent fuzzy controllers, one for 
each control variable. 
The state space models are calculated by imposing 
the uncertainty for the true airspeed, which is given 
by the following expression  

222 wvuV  ,  

where v defines the lateral velocity component.  
For the sake of simplicity and without loss of 
generality two models  2N  are defined, the 

nominal model is taken at sm30nV  and one 

perturbed model sm35pV . The following 

matrices give the respective states models: 
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000100

00019.663.533.0

0018.03036.555.0

01.0078.955.038.0293.0

nA ; 
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































26640

00

00

050

07.3

03.0

nB ;     




































43.478.00008.05.48

0035010

000100

01.00021.743.628.0

0001.03525.655.0

01.0082.905.028.035.0

pA ; 

































3.30400

00

00

02.68

05

05.0

pB .     

In series the models of actuators are connected to the 
model of the UAV and are approximated by the first 
order model given in the following: 



















0

1

1

1

D

B

C

A actact

act

act

act

act  
,    

where s25.0act stands for the time constant of 

the actuator and the subscript act can be either for 
elevator or throttle.  
In this case study only four states are measured:  

 hquX  ,  
so the observation matrix is given as follows: 

    ,00001 1333411413
TT IC 

 where I  
represents the unity matrix with appropriate 
dimension. According to [14], the Dryden filter has 
two inputs: horizontal and vertical wind gests, the 
outputs are the longitudinal turbulent speed gu , 

vertical turbulent speed gw  and turbulent pitch rate 

gq . State space of the Dryden filter is defined by the 

following matrices: 























q
2
qq

w

u

dr

1K0

010

001

A





; 


















00

K0

0K

B ww

uu

dr 


;    


















1K0

010

001

C

qq

dr



, 

where the subscript w  corresponds to vertical 
components and u  for the longitudinal. In our case 
the Aerosonde flies at an altitude of m200 , and in 
moderate turbulence. The parameters appearing in 
the state space of Dryden filter are given in the 
following: 

 VLK uuu  2 ;  VLuu  ; 

2.2wK ; 6.0w ; 

VK q 1 ; Vbq  4 ,  

where b  is the wing span for the Aerosonde 
m9.2b   uL is the horizontal turbulence scale 

lengths; 

u  is turbulence intensities.  

The same parameters are defined for different 
models with different true airspeed V . 
The ANFIS model has 4 training inputs for each pair 
 y,x , the vector  

 eheeqeux  ,  
where eu  is the velocity error between the reference 
and the velocity output of the UAV plus the sensor 
noises; eq ;  

e  are the pitch rate and angle, respectively, 
contaminated by sensor noises and eh  is the altitude 
error between the reference signal and the altitude 
output.  
The outputs of the fuzzy controllers are elevator e  

and throttle th .  

The simulation results are shown in the fig. 4. 

Conclusion 

The simulations results prove the efficiency of the 
control law designed using Adaptive Neuro-Fuzzy 
Inference system. As it can be seen from the figures 
all flight requirement are respected for the nominal 
as well as for the perturbed model. All ranges of the 
angles variations for the Aerosonde are satisfied, 
altitude is stabilized at the reference signal (50 m), 
as well as the velocity (5 m/s), as it is shown in the 
first and second figures, respectively.  
One can also conclude that the autopilot designed 
using ANFIS holds the property of the robustness.  
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Fig. 4. ANFIS simulation results: 
a is velocity of the UAV nominal and perturbed model in m/sec; 
b is altitude of the UAV nominal and perturbed model in m; 
c is pitch angle of the UAV nominal and perturbed model in 
deg; 
d is pitch rate of the UAV nominal and perturbed model in 
deg/sec; 
e is angle of attack of the UAV nominal and perturbed model in 
deg 
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