ISSN 1813-1166. NAU Proceedings. 2008. Ne2 35

UDC 004.413:338.5
Nikolay O. Sidorov, D. E., Prof.
Vladimir A. Khomenko, assoc. Prof.
Viktor T. Nedovodeev, asst. Prof.

REENGINEERING OF THE AIR SIMULATORS LEGACY SOFTWARE

There are the technical complexes consisting of components, parts of which are actively used, but the rest has lost
working capacity owing to moral and physical deterioration. An example of such a complex is the aviation-flight
complex "plane-simulator”. High cost of components which continue to be used (plane) do the actual task of restoring
and supporting the out-of-order components (simulator). The considerable part of such complexes is the software,
which owing to replacement of the obsolete and physically worn out hardware requires the rework. The rework method
is reengineering.

Pozenanymo ycnaokoeani mexiuni KOMALEKCU, 5KI CKAAOQIOMbCS 3 KOMNOHEHMI8, HACMUHA SKUX aKMUBHO
BUKOPUCIMOBYEMbCA, d THWA 8MPAMUIA NPaye30amHicmy YHACIIOOK MOPAibHo20 ma Gizuunozo sHocy. Ilpuxiadom
MaKko20 KOMNIEKCY € asiayitiHo-niIoOmajiCHUull KOMNIEKC «imaxk-mpenasicepy. Bucoka eapmicmeo xomnonenmis, sKi uje
BUKOPUCMOBYIOMbCA (TIMAK) poOismeb AKMYAIbHUM 30A60AHHS GIOHOGNICHHS mMd RIOMPUMKU NPaAye30amHoCcmi
KOMNOHEHMIB, Wo SMpamuiy npaye30amuicms (mpenasicep). 3HauHol 4ACMUHOI MAKUX KOMNLEKCI8 € NpocpamHe
3abesneuents, siKe wepe3 3MIHEHHS MOPATIbHO 3ACMAPiNo20 ma (i3UUHO 3HOUEHO20 anapamHo2o 3aOe3nedeHHsl

nompebye 8i0nosioHoi nepepooKu MemoOoM peiHdiCceHepIi.

Software Reengineering

In general, the software reengineering requires two
processes - reverse and forward [1; 2].

Input of the reverse process (fig. 1) are the legacy
software and the additional information about the

domain.
Reverse Forward
engineering engineering

re9ney seftware

Reengineering
Fig.1. Processes of reengineering
is the model -

The result of this process
representation of the domain. This model then is
used in the forward process for the new software
creation.

In a context of engineering the domain of the
software is an application area for which the
software [3] is developed. The domain model is a
description of the domain which is created by
performance of one of the reverse engineering
methods — design information recovery [4] or the
domain analysis [3]. Irrespective of the method, for
creation of the domain model the combination of the
code, existing documentation, experience of staff,
the common knowledge of a problem and
application area [4] are used. Representation of
domain model, depending on solved tasks and a
domain maturity can be in the form of a taxonomy,
functional models or domain language [4].

If model construction is carried out by the first of the
specified methods of reverse engineering the legacy
software plays an important role.

Reengineering is an effective method of reuse of the
software — prolongations of the legacy software
useful period which can be applied to reuse in
different aspects — restoring, reuse and reworking of
the software [5].

Software restoring is usually fulfilled in the process
of its support. Reengineering appears as a method of
struggle against ageing of the software which is
characterised by number of symptoms [6]: code
"pollution", loss of knowledge of the software, a bad
lexicon (style) [7], easing of cohesion of the
components, architecture "stratification".
The reasons for these symptoms occurrence are
eliminated in the operating software [8].

Preparation for a reuse can be fulfilled in the
operating software (on its replication) or on the
liquidated. Usually separate components of the
software which are preliminary processed by
application reengineering are reused — owing to
changing of their functionality or owing to migration
(new computers, the operating system, programming
language).

Software rework at reuse is fulfilled when software
migration is carried out. The case of legacy software
migration to a new hardware platform is especially
hard. The migration task arises owing to
obsolescence and physical deterioration of the
hardware platform. It causes the impossibility of
using the computer and legacy software or its
separate working parts execution. In this case, as a
rule, both the operating system and the programming
language are replaced.

© Nikolay O. Sidorov, Vladimir A. Khomenko, Viktor T. Nedovodeev, 2008

36

ISSN 1813-1166. NAU Proceedings. 2008. No2

Implementation of reverse engineering processes is
associated wis two tasks solving [9]: evaluation of
the expenses necessary for construction of domain
model; estimation of quality of the reverse
engineering processes and whole reengineering. The
first task solving depends on the maturity of domain
and can be grounded on models of software cost
estimation requires [10]. Thus, the more mature
domain is needed the less cost for reverse
engineering processes realisation. Quality of reverse
engineering processes is usually estimated, showing
the developed software adequacy to the legacy
software or the subject domain model [9].

The article under consideration suggests the method
which is developed for application on the software,
that is in operation in the subject domain [11] and
presents the results of its usage for the aviation
simulator complex TL410M (airplane L1410)
software rework after the hardware platform was
replaced. The computer complex of the simulator
constructed on the computer “Robotron” basis, was
obsolete morally and physically, therefore requires
the replacement by the modern hardware. The
complex hasn’t been maintained for more than
fifteen years; there were disabled computers, units of
the data exchange system, a considerable part of
indicators in a cockpit and on the instructor console.
Thereof executing of the simulator legacy software
became impossible.

The rest of this article consists of three parts. In the
second part the method of object controlled
reengineering of legacy software is presented; in the
third - case study of simulator software
reengineering is described; in the fourth — adequacy
of the reworked software is considered.

Object controlled reengineering
of the legacy software

The article considers the method of reengineering of
legacy software which was created for work in a
subject domain. It is so-called E — programs [11],
that are used on automation of the person or society
activity. Thus, the software becomes a part of real
environment. As a rule, the software of this type
functions on hybrid (digital-analogue) computer
complexes, and its considerable part is related to
processing of the information circulating between
real object or its model and the computer complex
[12]. The structure of such complexes includes
analogue to — digital and digital-to-analogue
converters, sensors of real object or its model.

Features of a subject domain and E-programs define
that legacy software reengineering of the considered
type requires solving the traditional problems of
recovering the design information and information
about a real object or model. It also requires the
special approach to the problem solving of the
adequacy proof of the reworked software
functioning in the real object or its model behaviour.
Real object information recovered at the reverse
engineering process is the set of input parameters
and their characteristics; characteristics of sensors,
indicators and actuators of real objects or models.
Information recover requires the usage of the
traditional way: source code and documentation
analysis and experimental researches of the real
object or model.

Constructed software functioning adequacy proof
cannot be carried out in traditional ways -
comparison of the results of legacy and reworked
software execution or comparison of results of
reverse engineering with behaviour of corresponding
model of a subject domain [9]. The first way cannot
be used because there is no computing equipment on
which it is possible to execute the legacy software,
and the second — because the model of a subject
domain, presented at the documentation, as a rule,
contains errors. Besides, special position of the
E — programs in the real world specifies that the
basic attention at the adequacy proof should be
given to the detailed analysis of the program
behaviour in real operating conditions [11]. Thus,
proof of functioning adequacy of the developed
software real object or imitating model
characteristics and properties in the real object
should play the main role. It is the essence of the
suggested method of the software reengineering (fig. 2).

Domain object
Validation

Domain model

Forward
engineering

Reverse
enfineering

Reengineering

Legacy

New software
software

Fig. 2. The reengineering method scheme

ISSN 1813-1166. NAU Proceedings. 2008. Ne2

37

Reengineering of the legacy software
of aviation simulator TL 410M

The developed method was applied to the complex
aviation simulator TL 410M (fig. 3).

Sound and visual
Computer system .
environment

@ 4 4 L J

C Dynamic stand) C Cockpit)
C Instructors panel)

Fig.3. General scheme of simulator

The simulator computer system was built on the
basis of computer “ROBOTRON 4201” and the
analogue-digital data exchange system. The software
was written using autocode. Listings of the legacy
software are presented at the documentation that
includes seven volumes with total amount nearby
32000 LOC. The simulator had got the out-of-order
analogue sound surround simulator. For visual
environment imitation the television simulator on
the face-to-face monochrome projective system and
the stationary tablet on instructor workplace (co-
ordinators, an airdrome breadboard model) have
been used. The dynamic stand did not work, either.
The instructor panel contained the indicators that
duplicate one in a pilot’s cockpit and the television
receiver for visual environment picture. The pilot’s
cockpit simulated the cockpit of a real airplane
L410.

The general scheme of the implemented hardware
and software migration is shown on the fig. 4.

Industrial computer (data
exchange),

S Personal computer
(visualization and sound)
.

N Operating system MS DOS
S
———{(oromm g

Computer Robotron
4201, Data
exchange system

Programming r
language 1

b | h
SYPS 4200 kPrcgrammmg language C

Fig.4. Simulator hardware and software migration

The main computer “Robotron” and the object
communication device have been replaced by the
industrial computer. The visualisation television
system has been replaced by the computer system,
based on the personal computer and a projector. On
the industrial computer the MS DOS operating
system was used and on the personal computer it

was Windows. Migration of the legacy software was
done from the assembler language to the high level
language C. The restoration of the simulator
electrical equipment that provides communication
between computer system and a cockpit (cable
system, power supply, functional nodes and
intercom) was also executed.

As the created software could not be checked up on
correctness of functioning by performance of the
legacy software (there was no computer) the reverse
engineering, except traditional processes, included
process of additional mutual check of the legacy
code and model. Checking up of the domain
mathematical model and the legacy source code
were raised due to such reasons:

— the limited information about modelling principles
of airplane flight dynamics and systems which have
been used by the developer during creation of a
simulator (1972);

— presence of errors present in technical
documentation that was casually or deliberately
brought in the model descriptions and the source
code.

The following aspects were checked:

— scaling of variables — by the recalculation of
equations factors of the simulators mathematical
models (comparison of the expressions resulted in
the documentation and their interpretation in a code
listings has shown essential distinctions);

— realisations of factors - are used by the legacy
software developers due to the limited
characteristics of the modelling computers;

— realisations of the mathematical problems solving
methods.

The main bulk of the errors was in factors of the
model equations that describe dynamics of flight.
Thus, for the factors adjustment the parts of the
legacy source code were used in which calculation
factors were defined. Interpretation of these parts
«behind the table» allowed to define the values of
erroneous factors. The following example shows the
casual or deliberate error in mathematical model.

In power-plant mathematical model the analogue
parameter nv — number of the air screw rotors is
presented by the modelling equation

_k
Yol+tp

n (D
where

k is amplification factor;

T is screw time constant;

p is Laplas operator.

38

ISSN 1813-1166. NAU Proceedings. 2008. No2

After a transformation, the definition (1) has the
following differential equation form:
dn, k-n,

” - f(n,). 2
According to the algorithm, applied in the modelling
procedure, the equation (2) should be integrated by
Euler's method:

Nyony =0, + 0 f(ny,), 3)
where
h is an integration step.

In the source program procedure the equation
solving (2) is represented by the following text:

16334 01 02 0416 S27 LDA DEVP”
16335 100400 UVR
16336 140040 LOA

16337 0405 76 KAR 2
16340 00 04 0101 SPA AA2
16341 0405 75 KAR 3
16342 140401 EKA

16343 00 06 0101 ADD AA2
16344 00 06 1757 ADD K12
16345 01 07 0512 SUB NVP”
16346 0405 75 KAR 3
16347 01 06 0512 ADD NVP”
16325 01 04 0512 SPA NVP”

where

DEV is value that specifies control lever position of
the air screw;

K12 = 0,595 is the constant.

Comparison of figure (3) and result of interpretation
shows that the text does not include integration step
h (at engines work modelling it equals 0,12). This
error was due to the calculations ,,behind the table” -
the received transient process did not correspond to
physical sense. Similar errors are present in other
power-plant parameters calculation executed by
Euler's method.

The legacy software (fig. 5) characterises discrete
process of modelling with the 60 ms period.

Simulator of -
initial conditions
Simulator of - airplane moving equations
flight dynamics solving;
Simulator of - engines control logic realization;
power plant - power plant system equations solving;

Legacy software j

- entering the initial conditions;
- data transforming;
- general logic initializing;

Simulator of - flight track computing and visualization;
. . - radio compass bearing equations solving;
navigation - signalization of the marker beacon flight;
system - location of the glide ray deviation

Fig.5. Legacy software structure

This period is used for calculating four simulators
parameters and for finishing input-output operations.
Thus, necessary speed was reached due to the
following factors:

— simplification of the airplane flight dynamics and
systems mathematical models;

— replacement of the real (dynamic) processes
analytical description by dependences in the form of
decision tables;

— application of simple
interpolation methods;

— use of a simple method of differential equations
integration (Euler's method).

After the source code models check the
reengineering of the legacy software was carried out
in two stages: reverse engineering — creation of the
high level algorithmic representation; forward
engineering — creation of the new C-code software
based on this algorithms.

For the reverse engineering the special tool —
abstractor was built (fig. 6) [13; 14].

and fast functions

Output code
if (1N [odd])

{
No if (1 FTLS [odd]);
N1 [odd] = TLS [odd] ;
else

No Forward

&
; . TNI [odd] = -166
engineering

++TN1 [odd] ;
N1 [odd] = TN1 [odd] $$£TMO [odd] ;

Rlgorithm

Initial code

15031 0102 0365 LDA I

15032 100400 UVR

15033 0001 1041 SUN

15034 00 02 1721 LDA

15035 101400 Uvs Reverse Yes

15036 0001 1045 SUN : :

15037 0002 1654 LDA engineering

15040 01 04 1734 SPA

15041 0112 1734 ZUN

15042 101000 KOp

15043 0102 1734 LDA

15044 00 03 0331 UND

15045 01 04 0365 SPA

15046 00 04 0352 SPA

Yes | }}
‘/ m:Im“m*{ miise] | f‘l‘l=°l‘ CEfTNl[odd]:

N1 [odd] = TN1 [odd] $$ £IMO [odd] :

| }

Fig.6. Reverse engineering result (part of the code)

ISSN 1813-1166. NAU Proceedings. 2008. Ne2

39

Data exchange system

Components and structure of the new software of the
simulator computer system is defined by the
following:

— object of control is simulator, a real-time system,
which requires the defined recall time;

— the computing system of a simulator should
provide input and output of plenty of parameters
(nearly 120);

— visualization of the simulator flight environment
should be realized on the high-speed computer with
the special characteristics of a video subsystem.
These factors define the distributed architecture of
the simulator computer system, that includes several
specialized computers and peripheral devices (fig. 7):
an industrial computer for simulator models
computing and input-output of data; computer for
realization of the visual environment and noise
simulators; a computer for the instructor board.

kpi
Data exchange . Lou Okt
system Projector speakers

Industrial computer for

fligt model commputing environment and noise

and input-output sorround simulators
Py

>{Nemork switch>/v

Instructors computer

Computer of the viasual

Fig. 7. Hardware architecture of the simulator
modeling system

Data exchange between computers is organized
through a local computer network on the Ethernet
and protocol TCP/IP basis. Equipment of the
computing system includes the digital-analogue 10-
devices, the computer projector and the sound
amplifier and loudspeakers. IO-devices are
connected with one of the following types: analog-
digital converters (ADC); digital-to-analog
converters (DAC); logic signals 10-devices. All
devices are the boards which are installed on the
industrial computer on the ISA system bus.

The software of the data exchange system

The software of the data exchange system works on
an industrial computer and is designed to provide the
exchange of airplane simulators (models) with the
simulator cockpit equipment. This software was
created by adjustment of the specially developed
pattern [15]. The software provides the following
tasks:

— configuring of the IO-devices;

— control of the I0-devices;

— realization of network exchange under TCP/IP-
protocol;

— provision of the standard interface in normalized
parameters for exchange of 10-devices with models
of the airplane.

The two-level modular architecture of the software
provides the flexibility and scalability of a
1O-subsystem (fig. 8).

Airplane model

Flight dynamic Navigation
model model

Engine model

Normalized parameters (0...1)

Drivers of the input-output model parameters

Configurator of

Output

Enputanalogue](analogue](Input logic) (Output logic

parameters

___/

Digital data

Configuration
data

Drivers of the 10-devices

[ADC drivers j[DAC drivers j (Llec signals
drivers

TCP/IP -protocol
] Network adapter

Configurator of

d”ver 10-devices

S VY

10-devices

CeTeBoit
apanTep

e
S

To object (cockpit)

To computer network

Fig. 8. Architecture of the simulator data exchange system

40

ISSN 1813-1166. NAU Proceedings. 2008. No2

It includes the levels of I10O-device drivers and
drivers of parameters. Drivers functions provide
control of signal and data conversion and digit data
delivery. Driver level provides configuring of
10-devices during start and exchange control. The
level of parameters drivers provides configuring of
parameters which are inputted, outputted and
converted - digital values of signals to normalized
analogue values of models and vice versa.

The configurator of 10O-devices reads the
configuration data (numbers of boards, the
addresses, numbers of interruptions) for each of

configuration files, configures the devices
automatically and tests their functioning.
The configurator of parameters stores the

configuration and reads the data, necessary for
normalization of each parameter. Each analogue
parameter has the following configuration sets:
parameter number; minimal and maximal values of
parameter, minimal and maximal values of signals.

The software of the noise
and visual environment simulators

Imitation of a pilot’s sound surround in a simulator
cockpit provides the acoustical information about
simulated airplane modes. The sound in the airplane
cockpit has the complex character and is formed by
several sources of noise - engines and air screws, the
wind outside a cockpit, the equipment inside, the
landing gears and other equipment. The noise
parameters depend on the work modes of their
sources and flight modes. Noise simulators of legacy
aviation simulators have the hardware realization
based on mixture of sounds, created by several
special generators. Each generator creates a sound of

one airplane noise source and changes its
Legacy C 1)
simulator ~—r

characteristics depending on the source work
parameters, transferred to the noise simulator from
the simulator computer.

Three approaches were considered to restoration of
the noise simulator during simulator reengineering
(fig. 9). The essence of the first lies in the legacy
simulator usage. It is obvious, that it can be applied,
if it is possible to restore legacy imitator. In this case
one problem must be solved - joining the simulator
to the new computing system. The essence of the
second approach lies in the development of a new
noise simulator on the basis of the information about
old simulator structure and characteristics. Such an
approach demands the presence of the
documentation about the legacy simulator or
realization of the reverse engineering. The essence
of the third approach lies in the development of a
new imitator on the basis of the information received
from the object of modeling. This approach was
realized during the reengineering. It needs the
development of the own imitator structure and
measurement, analysis and formalization of the
airplane sounds.

Any of the specified approaches requires the check
of adequacy of the sound, received by means of the
restored simulator, to noise of the airplane. For this
purpose it is necessary to compare its characteristics
to the characteristics which have been got from
object (plane), or received by reverse engineering
from the legacy simulator (fig. 9).

The airplane sound samples were used at the new
noise simulator and reproduced by the player with
adjustable parameters (play speed, loudness, echo
effect, etc.). Such a method provides high speed of
simulator development due to library of standard
components (players, mixers, equalizers) and high
realness of noise.

Airplane
simulator

Reverse
engineering

Airplane

Adequacy
check

Fig. 9. Approaches to restoration of the noise simulator

ISSN 1813-1166. NAU Proceedings. 2008. Ne2

41

In the process of reengineering the visual
environment imitator was replaced [16]. It related to
the progress at the visualization technologies
obtained within last two decades. The first digital
visualization imitators of CGA type appeared in the
70-ies. In the 90-ies the obtained digital image
synthesizers qualities and working speeds allowed
their usage in simulators. In the restored simulator,
digital synthesis of images is carried out on the
computer, which receives parameters of flight
necessary for image formation (airplane coordinates,
course, roll, pitch) from flight dynamics model. For
the visual environment simulator integration into
system the software pattern of exchange data system
[15] is used.

Adequacy of the reworked software

For checking the reworked software functioning
adequacy on the real object the quantitative and
qualitative estimation are used.

The quantitative estimation was carried out in such
ways:

— point - comparison of values of the calculated
operational parameters with reference points in the
description of simulator TL410 by the simulator
developer technique;

— interval - comparison of the calculated
characteristics with characteristics which are
resulted in documents of the real airplane (flight
guidance, technical operation guidance, the
description of the plant system, the description on
the avionics, data of flight record system).
Estimation of a quality of simulator behavior in
different flight modes and stages is carried out by
experts - pilots. Results of point estimation
application are presented in the table, and results of
interval estimation - on fig. 10, 11.

There are two approaches to a quantitative estimation
of adequacy - determined and statistical [17].

Results of reworked software adequacy check based
on the determined approach have shown the
efficiency of the developed method of the legacy
software reverse engineering.

The statistical approach to an estimation of adequacy
is planned to be carried out after statistical
experiment.

Point estimation of the TL 410M simulator adequacy

400
300
200
100

60 65 70 75 80 85 90 95 100
NG, %

‘ calculated experimental ‘

Fig. 10. Engine power (throttle characteristic)

Flight part Controlled parameter Control value Defined value
Acceleration Time from the moment of release of block before t=14+2s 14.7 s
achievement of speed V = 150 km/h
Ascensional rate Vertical speed of rise of the plane V,=10% 1.5 m/s 10.72 m/s
Flight Cruising speed, rotation moment, pitch V=250 =+ 25 km/h; 258.7 km/h
characteristics M.=49+5%,; 45.7%; 4.19°
v =45°
Acceleration in Time of increase of the cruise speed of the plane t=32+4s 31.44 s
flight V=200 km/h, V= 300km/h
Braking in flight Time of decrease of cruise speed t=29+4s 31.14 s
V=300 km/h to V=200 km/h
v,
VKN, H km/h
700 : 350
600 ~ z 300 _
500 , 250 //;" VT

200

150 //
100 /

50
0

50 100 150

0
TL-410M model

t ¢200 250 300
L4170 YBI-E real fiight

350

Fig. 11. Flight speed (dynamic characteristics)

42

ISSN 1813-1166. NAU Proceedings. 2008. No2

The essence of the statistical approach is defined by
the following [17]:

— each of compared objects (the airplane and
simulator) has the statistical indeterminism;

— the volume of the information registered in flight
is limited and is given to the researcher irregularly;

— adequacy is represented as a random variable,
which probable distribution is formed consistently
(in process of flight information receipt) on the basis
of the statistical hypotheses test theory.

A method was developed for the statistical approach
realization which on an example of a separately
taken moment parameter adequacy estimation on the
defined stage of flight has a following view:

1) on the simulator the statistical experiment on
modeling of the defined flight situation is carried out
and for the chosen parameter the modeling

estimation of dispersion d is calculated;
2) the first real flight is carried out and is fixed the

X (t) - track of the chosen parameter change in
time;

3) providing the real flight conditions, the
researcher models a similar track on a simulator

yl(t);

4) for the chosen section of time ¢* is calculated
the closure

Z =X ")

which is considered as the first sample element of
the random variable z ;

5) as the random variable z 1is formed by a
combination of the large number of various random
elements (the rests, closure, errors) according to the
central limiting theorem of probability theory,
distribution of the random variable z submits to the
normal law

g.(z/a)= ! exp{— z” }
’ J2rd™ (1-a)/a 2d"(1-a)/a

Then posterior distribution of adequacy, on
receiving information z, is represented by the
formula:

g4(a/2) =/ (@g.(/a) = K ()" ex;{— ff"} @

a

where
K, is continuous coefficient of proportion;

a, =0,5;
B, =0,5(x _y1)2 1d™.

The second real flight is carried out and x, () - the
next track of the chosen parameter change is fixed
and the stimulator playbacks y,(#)- model track of
the same parameter and z, = x, — y, is calculated,

f,(a) is used as posterior distributor and now

posterior distribution (4), received at the previous
step is used.

New posterior distribution (taking into account z,

and z,) looks like:

g, (alz,)=K, (ﬁ)‘“*“ﬂ exp[—l_da(ﬁ1 +B2):|’

where
K, =const;;
o, =0,5;

BZZO,S-(xZ—yz)z/dM.

After items (2-7) multiplying repetition the posterior
distribution of adequacy comes nearer to the stable
form, and it’s mode defines true value of object
adequacy (airplane) and the software (simulator) on
the researched parameter.

Conclusion

Application of the software reverse engineering
allows not only to prolong the out-of-date scientific
and technical complexes use, but also to realize its
improving support.

For example, for a flight-modeling complex the
reverse engineering provides the following: an
opportunity of new functions addition; perfection of
simulators models; application of modern integration
methods.

References

1. Cudopos M.O., Ieanosa JIM., Xomenxo B.A.
MeroooriuHi NPUHLUIN peiHKeHepii NporpamMHOro
3a0e3neueHHs] yClaIKOBaHUX aBiallliHUX TpeHaxepis //
Marepiamm VIII mbkHap. Hayk.-TexH. KoH]. “ABia-2007". —
K.: HAY, -2007.-T.1. - C. 13.119-13.122.

2. Chikofsky E.J., Gross J.H. Reverse Engineering and
Design Recovery: Taxonomy // IEEE Software. — Jan.
1990. - P. 13-17.

3. Prietto-Diaz R.. Domain Analysis: An Introduction.-
Software engineering Notes. — 1990. — Vol. 15, Ne 2. —
P. 47-54.

4. Biggerstaff T.J. Design Recovery for Maintenance
and Reuse // Computer. — 1989. — July. — P. 36-49.

ISSN 1813-1166. NAU Proceedings. 2008. Ne2

43

5. Cuoopoé H.A. BoccranoBieHue, mnepepaboTka |
MIOBTOPHOE HCIIOJIb30BaHUE MIPOTPAMMHOTO 00ECIIeYeHHS
/I YCuM. — 1998. — Ne 4. — C. 71-79.

6. Visaggio G. Ageing of a Data Intensive Legacy
System: Symptoms and Remedies // J. Software
Maintenance and Evolution. — 2001. — Vol. 13, No 5. —
P. 281-308.

7. Cudopos HA. Crumuctuka TPOTPaMMHOTO
obecrieuenus // IIpobnemsr nporpammupoBanust. — 2006. —
Ne 2-3. — C. 245-255.

8. Bianci A., Caivano D., Visaggio G. lterative
Reengineering of Legacy Systems // IEEE Transactions of
Software Engineering. — 2003. — Vol. 29, No. 3. —
P. 225-241.

9. Rugaber S., Stirewale R. Model-Driven Reverse
Engineering // IEEE Software. — 2004. — Jul/Avg. —
P. 45-53.

10. Cuooposé H.A., Bayenxo [I.B., Bacunenxo IO.H,
HJebemun FO.B. Mopenu, MeToIpl U CPeACTBa OLEHKH
CTOMMOCTH mporpammuoro obecmneucuus // IIpoGiiemsr
nporpammupoBanust. — K., 2006. — Ne 2-3. — C. 290-299.

11. Jleman M.M. Tlporpammbl, >KU3HEHHbIE IUKIbl U
3aKOHBI OBOJIOLMHM IpOorpamMMHOro obOecriedeHus //
THUUSP. — Proc.IEEE. — 1980. — T. 68. — C. 26—46.

12. Cosemosé b.A., Arxoeres C.A. MopenupoBaHue
cucteM: YueO. 11g By30B. — M.: Bercm. mik., 2001. — 343 c.

13. Cudopos E.H. Meton peimxeHepii ycrnaaKOBaHOTO
MIPOrPaMHOTO 3a0e3MeUeHHs aBiaiiHOro TpeHakepa //

Te3. pom. Bceykp. KOH(]. acmipaHTiB 1 CTyIEeHTIB
«Imxenepis nporpamuoro 3abesneuennst 2007». — K.,
2007. - C. 26.

14. Maniykos M.K. 3BopoTHa iHXEHepis, SIK OCHOBa
TEXHOJIOTIi BIIHOBJICHHS pOOOTH aBiallifHOTO TpeHaxkepa //

Te3. nmom. Bceykp. KOH(]. acmipaHTiB 1 CTyIEHTIB
«Imxenepis mporpamuoro 3abesmedeHHs 2007». — K.,
2007. - C. 4.

15. Xomenxo B.A., Cuoopos E.H, Menoseoposckuii U.b.
[[Mabm0H MporpaMMHOTO 00ECTIEYeHHUS YCTPOICTB CBS3H C
OOBEKTOM aBHALIMOHHBIX TpeHakepoB // IIpoGiemsr
nporpammupoBanwms. — K., 2008. — C. 30-40.

16. Kysneyos C.B., Xonoo K.O. ®opmupoBaHre MaTpuI]
MPOEKLIUH ULt KOMITBIOTEPHBIX reHepaTopoB
n300pakeHHss TIPH HUCIOJb30BAaHUU MONyIpodeccHo-
HaJIBHBIX TPOEKIMOHHBIX cucteM // Martepiamn [V
MikHap. HayK. KOH(]. CTYAEHTIB Ta MOJOAMUX YYEHHX. —
K., 2004. -C. 35.

17. Heoosooees B.T. bailiceBckas OIICHKa aJ€KBaTHOCTH
mozenu noxnera // C6. Hayu. tp. — K.: KUUT'A, 1992. —
40-50 c.

The editors received the article on 3 June 2008.

