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STRUCTURED PARAMETRIC OPTIMIZATION OF MULTIVARIABLE ROBUST CONTROL 
BASED ON GENETIC ALGORITHMS 

This paper is devoted to the parametric robust HH 2 - optimization of the LQG- controller designed for 

multivariable flight control system. At the 1St stage LQG- regulator is designed using the separation theorem. At the 2nd 
stage this controller was parametrically optimized on the basis of HH 2  -criterion using genetic algorithm to find 

the trade-off between the performance and robustness. The sensitivity theory is applied to reduce the number of 
parameters involved in the optimization procedure. 

Розглянуто параметричні робастні HH 2 -оптимізації лінійно-квадратично-гаусового регулятора, 

синтезованого для багатовимірної системи керування польотом. На першому етапі лінійно-квадратично-
гаусів регулятор визначається за допомогою теореми розділення. На другому етапі цей регулятор 
параметрично оптимізується на основі HH 2 -критерія з використанням генетичного алгоритму для 

знаходження компромісу між якістю та робастністю. Теорію чутливості застосовано для пониження 
кількості параметрів оптимізаційної процедури. 
 

Introduction 

The design of flight control system, which is capable 
to provide good aircraft handling qualities over a 
wide range of operating conditions, suppress 
different internal and external disturbances to enable 
effectively diverse flight missions has always been a 
challenge for designer [1–4].  
In recent years, many methods of designing have 
been developed in the area, starting from simple 
structures to more complicated and using advanced 
control techniques [1; 3; 4; 5].  
In this paper, the robust parametric multivariable 
optimal control is investigated; the method is 
divided into two stages. In the first stage consists in 
linear quadratic Gaussian (LQG) regulator design, in 
the second task an optimization procedure is used to 
“robustify” the optimal controller found at the first 
stage. This problem was solved in [4] for SISO 
systems.  
The application of this approach for MIMO systems 
required usage additional efforts and some new 
approaches due to significant increases in dimension 
of optimization problem and necessity to apply more 
robust and advanced search procedures. 
The HH 2 optimization of the sensitivity and 
complementary sensitivity function based on genetic 
algorithm has been adopted in this paper.  
The use of the genetic algorithms optimization has 
been largely overlooked, particularly as an 
optimization technique for the processes that are 
difficult to solve.  
Genetic algorithms (GAs) are stochastic global 
methods that mimic the process of natural evolution. 

GAs have been shown to be capable of locating high 
performance areas in complex domains without 
experiencing the difficulties associated with high 
dimensionality or local optima as may occur with 
traditional techniques [6–9]. The case study and 
simulation results devoted to stabilization of the 
longitudinal motion of the Aerosonde UAV have 
proved that the used method is very efficient for 
multivariable control from the viewpoint of its 
robustness and performance. 

Synthesis of the linear quadratic Gaussian 
regulator based on the separation theorem 

The state space model of the controlled plant is 
given by the quintuple of matrices  GDCBA ,,,, , 
where 

lnqpnpqnnn RGRDRCRBRA   ,,,, , 
and is given as follows: 

vDUCXY

GwBUAXX




    

the vector w  represents the process disturbances, 
and here it is given by the wind turbulence described 
by the outputs of the Dryden filter [2–4].  
In order to perform the design of the controller based 
on the separation theorem it would be necessary to 
include the model of the Dryden filter in the state 
space model of the plant and to form an extended 
model. Let the quadruple of matrices 
 drdrdrdr DCBA ,,,  represents the state space model 
of the forming filter, where 

rl
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dr RDRCRBRA   ,,, 2 .  
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Then the extended state space model of the overall 
model is described in the following way: 
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At this stage we are ready to apply the separation 
theorem [10], which states, as it is known, that 
optimal stochastic controller for the plant (1) 
consists of optimal stochastic observer – Kalman 
filter to restore the full state vector of (1) and 
optimal deterministic controller – state feedback. 
The optimal Kalman filter is defined as: 
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where  
L is the Kalman gain matrix given by the following 
expression: 

1 N
T
exRPCL ; 

P  is the unique positive-definite solution to the 
following Algebraic Riccati Equation (ARE): 

01   PCRPCBQBPAPA exN
T
ex

T
exNex

T
exex ;  

NQ  and NR  are the covariance matrices associated 
with the measurement and process noises 
respectively.  
The state feedback K  is given in the following 
expression: 

SBRK T
ex

1 ,                                                         (2) 

where  
S  is the unique positive definite matrix of (ARE) 
associated with the optimal feedback problem: 

01   QSBRSBSASA T
exexex

T
ex  

and the optimal control law minimizing the 
performance index, is as follows: 

exXKU
~

 . 

The state space model of the closed loop system 
shown in fig.1 is given by the following equations: 
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Parameterization and robustization of the linear 
quadratic Gaussian controller 

The robustness in flight control system design is the 
most crucial property one should care about [1–4]. 

During flight various uncertainties occur due to 
the parameters change.  
These uncertainties could be external and/or internal, 
structural and/or unstructured, which produce certain 
deviation from the nominal behavior to perturbed 
one.  
The main task of the robust control is to allow the 
control of any perturbed plant with a single 
controller designed for nominal plant. Many 
methods were proposed in the literature to recover 
the robustness of the closed loop system [11]. In this 
paper multi-objectives optimization procedure is 
proposed to ‘’robustize’’ (to increase robustness) of 
the optimal controller designed in the first section 
[1; 3–6; 11].  
The nonlinear model of the UAV is linearized for 
some N  operating conditions inside the flight 
envelope, and N  models associated with certain 
operation modes were found [2–4]. The problem is 
to find the same control law for the N  linear models 
that assures the stability and the expected 
performances.  
The solution to this problem can be achieved by the 
multi-objective optimization procedure [6], where 
several objectives should be taken into account. In 
this case, one can seek the compromise between the 
performances and the robustness objectives of the 
overall system. 
A composite performance index is formed from the 
estimation of the performances and the robustness 
for the N  models based on the HH 2 - norms 
computed for the different transfer functions of the 
block diagram depicted in fig.1, with corresponding 
LaGrange factors weighting the contribution of each 
estimated term. 
As known in control system theory [6–8; 11], the 
performance can be estimated with 2H -norm and 

the robustness – with H -norm. Therefore the 
performances are estimated for both stochastic and 
deterministic transfer functions, for stochastic case 
the transfer function is computed from   to Z and 

deterministic case is computed from U  to Z ; these 
computations are repeated for N  models in order to 
find the trade-off between the performances in 
deterministic and stochastic cases for the nominal 
and perturbed models [3–6; 12].  
Eventually we have: 
for deterministic case: 

 



0

2
dtRUUQXXH TTdn

UZ , 
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Fig. 1. Closed loop system (p is a vector of adjustable parameters of controller) 

where Q  and R  are diagonal matrices weighting 
each state and control input respectively, and for 
stochastic case:  

 



0

2
dtRUUQXXEH TTsn

UZ , 

where E stands for expected value.  
The H  will be computed for the matrix transfer 
function from w to Z  that is to estimate the 
robustness of the control law relative to any noises 
input and is given by the following expression:  

  


jTT wZwZ sup  

where  

   jTwZ  is the maximal singular value of the 

matrix  jTwZ  at the current frequency : 

N0 ; 

N  is the Nyquist frequency.  

Computation of these norms could be performed on 
the basis of the following quadruple of matrices for 
deterministic nominal model: 
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Quadruples of matrices for parametrically disturbed 
models can be derived from (3) by replacement of 

matrices  no
UZ

no
UZ

no
UZ

no
UZ DCBA ,,,  with matrices 

 pk
UZ

pk
UZ

pk
UZ

pk
UZ DCBA ,,, ,  

where k is a number of perturbed model:  
k=1,…,N.  

Then the state space model of closed loop system for 
the stochastic case can be defined as series 
connection of the closed loop system “plant + 
controller” and the Dryden filter: 
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The same closed loop model is computed for all N  
perturbed models. At this point we are ready to 
formulate the cost function to be optimized using 
genetic algorithm. The performance indices for each 
model of closed loop system are computed using 

2H  norm of the system matrices (3), (4) using the 

controllability Gramian [12]. The H  – norm is also 
performed using the system matrices (4) [12]. As is 
shown the above block matrices the closed loop 
systems are dependent on the Kalman gain matrix L  
and controller gain matrix K , so are the 2H – norm 

and H – norm.  
The multi-objective functional is given in the 
following expression
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where  
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dn
UZH

2  defines the 2H  – norm of the nominal 

model in deterministic case; 
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dpk
UZH stands for summation of the 2H  – 

norms of  1N  perturbed models; 
n
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 is the H – norm and gives the estimation of 

the robustness of the nominal controlled plant; 
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 defines the performances of the nominal 

stochastic model, the same summation of the 2H  – 
norm being defined for all perturbed models with the 

expression 
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The LaGrange factors ,dn   ,sn ,dpk ,spk ,n  

pk  weight the contribution of each term in the 

cost function.  
So far as the computation of 2H  is based on the 
controllability Gramian the closed loop system 
defined in the equations (3), (4) should be stable and 
fully controllable over the whole optimization 
procedure, therefore the total cost function should 
include another term called penalty function, 
restricting location’s area of the closed loop system 
poles in the predefined region in the complex plan 
given in fig. 2, a [3]. The penalty  dmPFi  as a 
function of minimal distance could be graphically 
shown in fig.2, b and defined over area D for its 1st 
border as follows [3]: 
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where  
P  is a very large value (for example,  

64 1010 P ).  
This function is smooth and differentiable inside the 
unit circle. It is necessary to find the minimal value 
dm of all distances from all poles of nominal and 
perturbed models to the 1st and the 2nd borders of 
area D in complex plane z.  
Penalty function of this type is described in more 
details in [3]. 

After adding this term to the objective function 
defined in (5), the total cost function to be optimized 
becomes:  

iPFJJ  .                                                         (6) 

The amount of parameters involved in the 
optimization procedure increases with the number of 
estimated states and the number of perturbed 
models. Therefore the optimization could take very 
long time and large memory space. In order to 
reduce the number of variable parameters in the 
optimization procedure, the determination of 
sensitivity of the cost function to small variations of 
the optimization variables is proposed. The method 
is based on small deviation of each entry of L and 
K  matrices from their nominal values, defined after 
LQG-synthesis, and compute the increment of total 
cost function (6) for each change:  
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Fig.2. Penalty function in the complex z-plane 



ISSN 1813-1166. NAU Proceedings. 2008. №2 
 

© Anatoliy A. Tunik, Mohand Achour Touat, 2008 

14

If cost function increment is significant, then this 
parameter is taken as the optimization variable, 
otherwise it is set to constant. As it was mentioned 
before, complicated cost function (5) in practical 
cases is not convex, that is why local minima could 
take place.  
As it is shown in [7–9], genetic algorithm 
optimization procedure is the most adequate and 
suited procedure to solve such problems. 
Overview of genetic algorithms optimization 

Genetic algorithms are a search procedure based on 
Darwinian “survival of the fittest” theory.  
GAs were developed to solve difficult problems with 
objective function that do not possess ‘’nice’’ 
properties such as continuity, differentiability, etc. 
based on the idea of natural selection and genetics [8].  
GAs are part of broad class of search techniques 
within the field of evolutionary algorithms or 
evolutionary computing [8; 9; 13].  
These algorithms maintain and manipulate a family, 
or population of candidate solutions and implement 
a ‘’survival of the fittest’’ strategy in their search for 
better solution. GAs work from a population 
comparing to other methods work from a single 
point, this provides an implicit as well as explicit 
parallelism that allows for the exploitation of several 
promising areas of the solution space at the same 
time [9].  
In our case the initial population is generated for the 
Kalman gain matrix L  and static gain matrix K , 
the fitness function given in the equation (6).  
Several selection methods were developed, in our 
case the normalized geometric distribution [9] is 
used.  
In this study the arithmetic crossover was adopted as 
a crossover function.  
The multi-non uniform mutation distribution is used 
to mutate the individual.  

Case study 
In this paper we consider longitudinal channel of 
nonlinear Aerosonde UAV model linearized in 
different trimmed conditions [14]. The state space 
vector of the linearized model is given by 

 hqwuX  ; u , w  are horizontal 

and vertical velocity components, respectively; q  is 

pitch rate,    is pitch angle, h  is altitude and   is 
engine spin (r.p.m.).The control vector is given by 

 theU 


, where e  is elevator angle 

deflection, th  is thrust control (engine throttle 

deflection). 
The range of the uncertainty is made for the true 
airspeed, which is given by the following expression  

222 wvuV  ,  

where  defines the lateral velocity component.  

We suppose that V changes in the interval 
s/m3525 V , for the sake of simplicity and 

without loss of generality three  3N models 

were defined in our study, the nominal model is 
taken at s/m30nV , the first perturbed model is 

defined for s/m25nV  and for the second 

perturbed model s/m35nV .  

The following matrices give the respective states 
models: 
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In series the models of actuators are connected to the 
model of the UAV and are approximated by the first 
order model given in the following: 
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where  
s25.0act stands for the time constant of the 

actuator and the subscript act can be either for 
elevator or throttle.  
In our design only four state variables are measured:  

 hquX  ,  
so the observation matrix is given as follows: 

    TT IC 1333411413 00001  , 

where  
I  represents the unity matrix with appropriate 
dimension. According to [2–4], the Dryden filter has 
two inputs: horizontal and vertical wind guests, the 
outputs are the longitudinal turbulent speed gu , 

vertical turbulent speed gw  and turbulent pitch rate gq .  

State space of the Dryden filter is defined by the 
following matrices: 
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where the subscript w  corresponds to vertical 
components and u  for the longitudinal. 
In our case the Aerosonde flies at an altitude of 

m200 , and in moderate turbulence. The parameters 
appearing in the state space of Dryden filter are 
given in the following [2–4]: 

 VLK uuu  2 ;  

VLuu  ; 

2.2wK ; 

6.0w ; 

VKq 1 ; 

Vbq  4 , 

where  
b  is the wing span for the Aerosonde: m9.2b .  
The same parameters are defined for different 
models with different true airspeed V . The 
covariance matrices of the process noises and 
measurement noises are equal to  

  55diagRn  ,  

  22.01.02diagQn  ,  

and are defined by the corresponding accuracy of the 
sensors. 

The weighting matrices rr RQ ,  for the optimal 
deterministic performance are given as:  

  1.01.01.01.008.080011100850diagQr   

  11diagRr  ,  

using the above models an extended model is 
defined containing 11 states, so the Kalman filter is 
using 4 measured states to restore 11 ones. On the 
basis of separation theorem the restored states are 
controlled by the deterministic optimal controller 
and the gain matrix in the (2) is found as follows: 










;197.249.714.04.075.11

;48.145.19247.744.245.1
K  








43.1204.005.035.151.212.0

07.013.1243.533.461.0002.0
  

For the sake of brevity in this paper the Kalman 
gain L  is not given. As it is shown the dimension of 
the matrix K is of 112 , and for the matrix L is 

114  , 66)dim()dim(  KL , the cost function is 
depending on 66 parameters, that makes the 
optimization procedure slow and deteriorates its 
convergence.  
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To reduce dimension of the optimization problem 
the sensitivity of the cost function to each parameter 
is computed using (6) and (7).  
Selection of parameters with significant sensitivity 
could decrease the number of parameters to 25. 
These parameters constitute the initial values to the 
optimization procedure.  

After execution this procedure the optimal values of 
these parameters have been defined and they were 
used for simulation of controlled longitudinal 
dynamics. The simulation results are given in the 
fig. 3, and table defines the HH2 -norms for 
nominal and perturbed models. 

Table 1 

2H  and H  of the closed loop system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                       

 
c 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                 
   

b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                      

d 
Fig. 3. longitudinal channel simulation results: 
a – velocity of the UAV nominal and perturbed models; 
b – altitude of the UAV nominal and perturbed models; 
c– pitch angle of the UAV nominal and perturbed models; 
d – angle of attack of the UAV nominal and perturbed models 

Plant 2H Deterministic  2H  Stochastic H  

Vn=30 [m/s] Nominal 2.1619 0.5377 0.7474 

Vp1=25 [m/s] Perturbed 1 1.2058 0.5648 2.1990 
Vp2=35 [m/s] Perturbed 2 3.8100 0.5836 0.7415 
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Conclusion 

The simulation results prove the efficiency of the 
proposed approach. The flight requirement was 
respected for the nominal as well as for the perturbed 
models. The maximum angles deflections are all 
respected 55  ; 164  , and the altitude h 
is held at the reference signal (50 m) as shown in the 
last figure. The velocity reference signal (5 m/s) is 
also tracked and is given in the first figure. The rade-
off between performance and robustness is guaranteed 
as it is shown in the table.  

Authors deeply appreciate assistance of Professor 
O.M. Akmaldinova in editing the Eglish text of this 
paper.  
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