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STRUCTURED PARAMETRIC OPTIMIZATION OF MULTIVARIABLE ROBUST CONTROL
BASED ON GENETIC ALGORITHMS

This paper is devoted to the parametric robust H, / H_ - optimization of the LQOG- controller designed for
multivariable flight control system. At the 1% stage LOG- regulator is designed using the separation theorem. At the 2"
stage this controller was parametrically optimized on the basis of H, / H_ -criterion using genetic algorithm to find
the trade-off between the performance and robustness. The sensitivity theory is applied to reduce the number of
parameters involved in the optimization procedure.

Posensmymo  napamempuuni - pobacmui  H, /Hw -onmumizayii  JHIHO-K8AOPAMUYHO-2AYCOB020  Pe2yIsmopd,

CUHME308aH020 O 6a2amosUMIpHOI cucmemu Kepysanusa noiavomom. Ha nepuiomy emani ninilino-xeaopamuuno-
2aycie pe2yisimop BUBHAYAEMbCSL 30 OONOMO20I0 meopemu posdinenns. Ha Opyesomy emani yeil pecyisimop

napamempuuno onmumizyemvcsi na ochosi H, /H o “KpUumepisi 3 GUKOPUCMAHHAM 2EHEMUYHO20 aN2OPUMMY OISl
3HAXOOJICEHHS KOMIpOMIcY Midc sakicmio ma pobacmuicmio. Teopito yymaueocmi 3acmoco8aHo Onst NOHUINCEHHS

KibKOCMI napamempis onmumizayitiiHoi npoyeoypu.

Introduction

The design of flight control system, which is capable
to provide good aircraft handling qualities over a
wide range of operating conditions, suppress
different internal and external disturbances to enable
effectively diverse flight missions has always been a
challenge for designer [1-4].

In recent years, many methods of designing have
been developed in the area, starting from simple
structures to more complicated and using advanced
control techniques [1; 3; 4; 5].

In this paper, the robust parametric multivariable
optimal control is investigated; the method is
divided into two stages. In the first stage consists in
linear quadratic Gaussian (LQG) regulator design, in
the second task an optimization procedure is used to
“robustify” the optimal controller found at the first
stage. This problem was solved in [4] for SISO
systems.

The application of this approach for MIMO systems
required usage additional efforts and some new
approaches due to significant increases in dimension
of optimization problem and necessity to apply more
robust and advanced search procedures.

The H,/H, optimization of the sensitivity and

complementary sensitivity function based on genetic
algorithm has been adopted in this paper.

The use of the genetic algorithms optimization has
been largely overlooked, particularly as an
optimization technique for the processes that are
difficult to solve.

Genetic algorithms (GAs) are stochastic global
methods that mimic the process of natural evolution.
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GAs have been shown to be capable of locating high
performance areas in complex domains without
experiencing the difficulties associated with high
dimensionality or local optima as may occur with
traditional techniques [6—9]. The case study and
simulation results devoted to stabilization of the
longitudinal motion of the Aerosonde UAV have
proved that the used method is very efficient for
multivariable control from the viewpoint of its
robustness and performance.

Synthesis of the linear quadratic Gaussian
regulator based on the separation theorem

The state space model of the controlled plant is
given by the quintuple of matrices [A, B,C,D, G] ,
where

AeR"™ BeR™ ,CeR”,DeR",GeR™,
and is given as follows:

X=AX +BU+Gw

Y=CX+DU+v

the vector w represents the process disturbances,
and here it is given by the wind turbulence described
by the outputs of the Dryden filter [2—4].

In order to perform the design of the controller based
on the separation theorem it would be necessary to
include the model of the Dryden filter in the state
space model of the plant and to form an extended
model. Let the quadruple of matrices
[Adr ,B,,C,,D, | represents the state space model

of the forming filter, where

rxr rx2 Ixr Ixr
A, €R7,B,eR",C,,eR”,D,, eR™.
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Then the extended state space model of the overall
model is described in the following way:

A B A GC,|B GB,
[Cex Dex}: 0,, A, | 0. By | (O
ex ex C Opxr |D 0p><2

At this stage we are ready to apply the separation
theorem [10], which states, as it is known, that
optimal stochastic controller for the plant (1)
consists of optimal stochastic observer — Kalman
filter to restore the full state vector of (1) and
optimal deterministic controller — state feedback.
The optimal Kalman filter is defined as:

X=4,%, +BU+Ly-C X, -DU}

{ Q _ [CI@X }? ; [’ﬂu

where

L is the Kalman gain matrix given by the following
expression:

L=PC!R;

P is the unique positive-definite solution to the
following Algebraic Riccati Equation (ARE):

A, P+PA. +B, OB -PC/R,/C,P=0;

Oy and R, are the covariance matrices associated
with the measurement and process noises
respectively.
The state feedback K 1is given in the following
expression:
K=R"'BlS, )

where

S is the unique positive definite matrix of (4RE)
associated with the optimal feedback problem:

Al S+S4, —SB,R'BIS+0=0

and the optimal control law minimizing the
performance index, is as follows:

U=-KX,, .

The state space model of the closed loop system
shown in fig.1 is given by the following equations:

X] [ 4, -B, K X
X| |LCc, A4,-LC, -B,K|X|

Parameterization and robustization of the linear
guadratic Gaussian controller

The robustness in flight control system design is the
most crucial property one should care about [1-4].

During flight various uncertainties occur due to
the parameters change.

These uncertainties could be external and/or internal,
structural and/or unstructured, which produce certain
deviation from the nominal behavior to perturbed
one.

The main task of the robust control is to allow the
control of any perturbed plant with a single
controller designed for nominal plant. Many
methods were proposed in the literature to recover
the robustness of the closed loop system [11]. In this
paper multi-objectives optimization procedure is
proposed to ‘’robustize’’ (to increase robustness) of
the optimal controller designed in the first section
[1;3-6; 11].

The nonlinear model of the UAV is linearized for
some N operating conditions inside the flight
envelope, and N models associated with certain
operation modes were found [2—4]. The problem is
to find the same control law for the N linear models
that assures the stability and the expected
performances.

The solution to this problem can be achieved by the
multi-objective optimization procedure [6], where
several objectives should be taken into account. In
this case, one can seek the compromise between the
performances and the robustness objectives of the
overall system.

A composite performance index is formed from the
estimation of the performances and the robustness

for the N models based on the H,/H, - norms

computed for the different transfer functions of the
block diagram depicted in fig.1, with corresponding
LaGrange factors weighting the contribution of each
estimated term.

As known in control system theory [6-8; 11], the

performance can be estimated with H,-norm and

the robustness — with A _ -norm. Therefore the
performances are estimated for both stochastic and
deterministic transfer functions, for stochastic case
the transfer function is computed from 1 to Z and

deterministic case is computed from U to Z ; these
computations are repeated for N models in order to
find the trade-off between the performances in
deterministic and stochastic cases for the nominal
and perturbed models [3-6; 12].

Eventually we have:

for deterministic case:

"= \/T (x"ox +UTRU Jat ,
0

|
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w= Cer +Ddr’7

— w
- Adr Xdl‘ + Bdrn

——N X=AX+BU+GW:(>
Z=C,X +D,U
- NY=C, +D,U+v

Z

Genetic Algorithm

optimization

XC =A-(p) Xc+B(p)Y]
U=CA(p) Xo+D(p)Y

T

Fig. 1. Closed loop system (p is a vector of adjustable parameters of controller)

where O and R are diagonal matrices weighting

each state and control input respectively, and for
stochastic case:

"= \/E]O (x"ox +UTRU it ,
0

where E stands for expected value.
The H_, will be computed for the matrix transfer
function from wto Z that is to estimate the

robustness of the control law relative to any noises
input and is given by the following expression:

||TwZ||OO = SupE(TwZ (](’0))

where

0

5(7,,(jo)) is the maximal singular value of the
matrix 7,,(jo) at the current frequency o:

0<o<oy,;

®,, is the Nyquist frequency.

Computation of these norms could be performed on
the basis of the following quadruple of matrices for
deterministic nominal model:

Ao [ g A" _B™K B"™
|: ,[l/;)Z Z/OZi| — Lcwyo Ano —LC;O _BnoK Oplxq . (3)
CUZ DUZ Cno 0 Dno
zZ pbxn

Quadruples of matrices for parametrically disturbed
models can be derived from (3) by replacement of

matrices |4, Biyy,Cirys Dl with
pk ppk ok k]

[ 2 Bliz, Clz Dz

where k is a number of perturbed model:

k=1,....N.

matrices

Then the state space model of closed loop system for
the stochastic case can be defined as series
connection of the closed loop system “plant +
controller” and the Dryden filter:

Ay O, 0, By O
{Aﬁz BL’Z}_ o, A -BK |GD, B |(4)
c, oy, | 0, IC A-IC-BK |0, O,

0, C 0, [0, D

The same closed loop model is computed for all N
perturbed models. At this point we are ready to
formulate the cost function to be optimized using
genetic algorithm. The performance indices for each
model of closed loop system are computed using
H, norm of the system matrices (3), (4) using the

controllability Gramian [12]. The H_ — norm is also

performed using the system matrices (4) [12]. As is
shown the above block matrices the closed loop
systems are dependent on the Kalman gain matrix L
and controller gain matrix K , so are the H,— norm
and H_— norm.

The multi-objective functional is given in the
following expression

dn sn n

J:A’dn HUZz +9\’sn HUZz +>\’oon TWZOO+
N-1 q dpk) N-1 q Spk)

+Z7”dpk |HUZ||2 +Z}‘Spk |HUZ Al
k= k=1

).
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||HUZ||;I" defines the H, — norm of the nominal

model in deterministic case;

N-1
Z"HUZVME stands for summation of the H, -
k=1

norms of (N —1) perturbed models;

||T wZ”" is the H —norm and gives the estimation of
0

the robustness of the nominal controlled plant;

N-1
ZHTM":; ‘ computes the summation of the H, —
k=1

norm for all (N - 1) parametrically disturbed plants.
||HUZ ||;n defines the performances of the nominal

stochastic model, the same summation of the H, —
norm being defined for all perturbed models with the

spk

N-1
expression Z”HUZ X

k=1

The LaGrange factors A,

8 }\‘dpk’ }\‘spk’ }\‘oon’

sn?

M. weight the contribution of each term in the

cost function.
So far as the computation of H, is based on the

controllability Gramian the closed loop system
defined in the equations (3), (4) should be stable and
fully controllable over the whole optimization
procedure, therefore the total cost function should
include another term called penalty function,
restricting location’s area of the closed loop system
poles in the predefined region in the complex plan
given in fig. 2, a [3]. The penalty PFi(dm) as a
function of minimal distance could be graphically
shown in fig.2, b and defined over area D for its 1st
border as follows [3]:

0ifd,>d,,
PFi(d,)= Pl cob ™n =) ifdy<d, <d, (5)
2 dml _dO
Pifd, <d,
where
P is a very large value (for example,
P=10*+10%).

This function is smooth and differentiable inside the
unit circle. It is necessary to find the minimal value
di, of all distances from all poles of nominal and
perturbed models to the Ist and the 2nd borders of
area D in complex plane z.

Penalty function of this type is described in more
details in [3].

After adding this term to the objective function
defined in (5), the total cost function to be optimized
becomes:

Jy =J +PF,. (6)

The amount of parameters involved in the
optimization procedure increases with the number of
estimated states and the number of perturbed
models. Therefore the optimization could take very
long time and large memory space. In order to
reduce the number of variable parameters in the
optimization procedure, the determination of
sensitivity of the cost function to small variations of
the optimization variables is proposed. The method
is based on small deviation of each entry of L and
K matrices from their nominal values, defined after
LQG-synthesis, and compute the increment of total
cost function (6) for each change:

J. —J
S, =L =0 i=1:length(L); 7
L=TEAL gth(L) (7)
J.—J
S, =—L "% i=1:length(K).
xR rak gth(K)
& |
O il

—I--dﬂ

_-"'dm1}'-_

Fig.2. Penalty function in the complex z-plane
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If cost function increment is significant, then this
parameter is taken as the optimization variable,
otherwise it is set to constant. As it was mentioned
before, complicated cost function (5) in practical
cases is not convex, that is why local minima could
take place.

As it is shown in [7-9], genetic algorithm
optimization procedure is the most adequate and
suited procedure to solve such problems.

Overview of genetic algorithms optimization

Genetic algorithms are a search procedure based on
Darwinian “survival of the fittest” theory.

GAs were developed to solve difficult problems with
objective function that do not possess ‘’nice’’
properties such as continuity, differentiability, etc.
based on the idea of natural selection and genetics [§].
GAs are part of broad class of search techniques
within the field of evolutionary algorithms or
evolutionary computing [8; 9; 13].

These algorithms maintain and manipulate a family,
or population of candidate solutions and implement
a “’survival of the fittest’’ strategy in their search for
better solution. GAs work from a population
comparing to other methods work from a single
point, this provides an implicit as well as explicit
parallelism that allows for the exploitation of several
promising areas of the solution space at the same
time [9].

In our case the initial population is generated for the
Kalman gain matrix L and static gain matrix K,
the fitness function given in the equation (6).

Several selection methods were developed, in our
case the normalized geometric distribution [9] is
used.

In this study the arithmetic crossover was adopted as
a crossover function.

The multi-non uniform mutation distribution is used
to mutate the individual.

Case study

In this paper we consider longitudinal channel of
nonlinear Aerosonde UAV model linearized in
different trimmed conditions [14]. The state space
vector of the linearized model is given by

X=u w q 6 h 2]; u, w are horizontal
and vertical velocity components, respectively; ¢ is

pitch rate, O is pitch angle, /4 is altitude and €2 is
engine spin (r.p.m.).The control vector is given by

U=[5, 8,], where o, is elevator angle

deflection, O, is thrust control (engine throttle
deflection).

The range of the uncertainty is made for the true
airspeed, which is given by the following expression
V=~u®+v’ +w?,

where v defines the lateral velocity component.

We suppose that V' changes in the interval
25<V <35 m/s, for the sake of simplicity and
without loss of generality three (N = 3)m0dels
were defined in our study, the nominal model is
taken at ¥, =30 m/s, the first perturbed model is
defined for V, =25 m/s

perturbed model 7, =35 m/s.

and for the second

The following matrices give the respective states
models:

[-0.293 038 -0.55 -9.78 0 0.01 |
—-0.55 -5.36 30 —-0.18 0 0
4| 033 -5 -619 0 0 0
" 0 0 1 0 0 0
0.01 -1 0 30 0 0
| 41.53 0.78 0 0 —-0.63 —3.85J
[-03 0 |
-37 0
-50 0
B,=
0 0
0 0
| 0 2664 ]
[—024 053 —1.19 —9.80 0 0.01 ]
—0.56 —447 25 —047 0 0
Ap1= 043 —-448 -5.15 0 0 0
0 0 1 0 0 0
0.04 -1 0 25 0 0
| 35 1.68 0 0 -0.03 -3.23]
[ 035 0 |
-254 0
2 -3521 0
Pl 0
0 0
|0 390 |
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[-035 028 -0.05 -982 0 0.01 |
-055 -625 35 -001 0 0
A, - 028 —643 -721 0 0 -001
0 0 1 0 0 0
0 -1 0 35 0 0
| 485 0.08 0 0 -078 —4.43
[ 05 0 |
-5 0
B - —68.2 0
”2olo 0
0 0
0  3040.3]

In serie_s the models of actuators are connected to the
model of the UAV and are approximated by the first
order model given in the following:

Aact Bact — — I/T:Sact I/TSact
Cact | D act 1 | 0
where

Tseee = 0.25 sstands for the time constant of the

actuator and the subscript dact can be either for
elevator or throttle.

In our design only four state variables are measured:
X=[u q 0 hl],

so the observation matrix is given as follows:

C= l[l 03, ]T 041 [01><4 I35 03y ]TJa

where

I represents the unity matrix with appropriate
dimension. According to [2—4], the Dryden filter has
two inputs: horizontal and vertical wind guests, the
outputs are the longitudinal turbulent speed u,,

vertical turbulent speed w, and turbulent pitch rate g, .

State space of the Dryden filter is defined by the
following matrices:

—1/ku 0 0
Adr = 0 _1/}Lw 0 5
2
0 -K,/% -1,
(K, /X, 0
Bdr = 0 Kw/7\‘w >
| 0 0
1 0 0
C, =0 1 0
_O Kq/kq 1

where the subscript w corresponds to vertical
components and u# for the longitudinal.

In our case the Aerosonde flies at an altitude of
200m, and in moderate turbulence. The parameters
appearing in the state space of Dryden filter are
given in the following [2—4]:

K, =o,CL,/nV);
hy =L,V

K, 6=22;

. =0.6;
K,=1/V;

A, =4b/nV,

where

b is the wing span for the Aerosonde: b=2.9m .
The same parameters are defined for different
models with different true airspeed V. The
covariance matrices of the process noises and
measurement noises are equal to

R, =diag([5 ]),

0, =diag(2 0.1 02 2]),

and are defined by the corresponding accuracy of the
Sensors.

The weighting matrices Q,,R, for the optimal
deterministic performance are given as:

0, = diag([850 100 1 1 800 0.08 0.1 0.1 0.1 0.1])

R, =diag([1 1)),

using the above models an extended model is
defined containing 11 states, so the Kalman filter is
using 4 measured states to restore 11 ones. On the
basis of separation theorem the restored states are
controlled by the deterministic optimal controller
and the gain matrix in the (2) is found as follows:

[145 244 -747 -192.5 -14.48;
11175 04 -0.14 -749 2.197;
0.002 —061 —433 —543 12.13 0.07
012 -251 135 -0.05 004 1243

For the sake of brevity in this paper the Kalman
gain L is not given. As it is shown the dimension of
the matrix K is of 2x11, and for the matrix Lis
4x11, dim(L)+dim(K) =66, the cost function is
depending on 66 parameters, that makes the
optimization procedure slow and deteriorates its
convergence.
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To reduce dimension of the optimization problem
the sensitivity of the cost function to each parameter
is computed using (6) and (7).

Selection of parameters with significant sensitivity
could decrease the number of parameters to 25.
These parameters constitute the initial values to the
optimization procedure.

After execution this procedure the optimal values of
these parameters have been defined and they were
used for simulation of controlled longitudinal
dynamics. The simulation results are given in the
fig. 3, and table defines the H,/H, -norms for

nominal and perturbed models.

Table 1
H, and H_ of the closed loop system
Plant H, Deterministic H, Stochastic H,
Vn=30 [m/s] Nominal 2.1619 0.5377 0.7474
Vp=25 [m/s] Perturbed 1 1.2058 0.5648 2.1990
Vp,=35 [m/s] Perturbed 2 3.8100 0.5836 0.7415
} 60 \ \
: : I SR A R .
[ O A — | |
: : nominal : : nominal
I il e | perturbed 1 (- ol ____ [ ‘ perturbed 1| _|
: : perturbed 2 : : perturbed 2
6 , l 10 : :
5 0 100 150 0 50 100 150
time in second
time in second
a b
° i i 16 ‘ e
| | | | nominal
: : nominal Bl T T T T T - perturbed 1 [
1 I CTT T T T T M perturbed 1 | | ol - - L ,,,,,,,,,, L | T perturbed 2 |
: : perturbed 2 “‘ : :
- | | ol -~ Fmmmm - — A ——
i T T o | } }
£ #L}M ‘ ; ! g 8 U‘j ”””””” i e
§ ol 1 4+ 4 - - — <=k - - — R I I I E 6l — — — - _ L ,,,,,,,,,, L ,,,,,,,,,,,
: “ \\ | \‘ ] M m i = 1) ‘ ‘
° i I il 5 oo R A —
Ea ‘HW ‘L!H M“‘ ‘HN gl H“ M\ ) \\ ‘1 \‘\N | ‘W“ ‘n‘ ‘M‘;M‘Um‘u‘\‘l g i ! !
© u‘ i “ w w‘ w \w w il ww\h‘w“ Ww i ‘ H‘M“ W 1\ i uw H of Mo b e —
-47777 ! 77: 777777 H‘ 7‘ ‘ ‘H Mhuw‘\ H | } H ‘ ‘ ™ “ H
; ! SN ‘i‘ ﬁm win‘ w ﬂ MW‘M du.ﬂm‘m“‘\\hunﬂ‘r ‘““‘!‘J'{WW ‘\‘M W \vh“m‘w“m ‘JHJ‘JMJ
) 50 100 15( “ 50 150 15(
time in second time in second
c d

Fig. 3. longitudinal channel simulation results:

a — velocity of the UAV nominal and perturbed models;

b — altitude of the UAV nominal and perturbed models;

c— pitch angle of the UAV nominal and perturbed models;

d — angle of attack of the UAV nominal and perturbed models
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Conclusion

The simulation results prove the efficiency of the
proposed approach. The flight requirement was
respected for the nominal as well as for the perturbed
models. The maximum angles deflections are all
respected —5<a<5;-4<06<16, and the altitude A
is held at the reference signal (50 m) as shown in the
last figure. The velocity reference signal (5 m/s) is
also tracked and is given in the first figure. The rade-
off between performance and robustness is guaranteed
as it is shown in the table.

Authors deeply appreciate assistance of Professor
OM. Akmaldinova in editing the Eglish text of this
paper.

References

1. Robust Flight Control. A Design Challenge. J.-F.
Magni, S. Bernani, J. Terlouw eds. Springer, London, 1997.
— 649 p.

2. McLean D. Automatic Flight Control Systems. —
Prentice Hall Inc., Englewood Cliffs, 1990. — 593 p.

3. Tunik A.A., Abramovich E.A. Parametric Robust
Optimization of Digital Flight Control Systems // Proc. of
the National Aviation University. 2003. — Ne 2. — Pp.31-37.
4. Tunik A.A., Galaguz T.A. Robust Stabilization and
Nominal Performance of the Flight Control System for
Small UAV // Applied and Computational Mathematics. —
2004. — Vol. 3, Ne 1. — Pp. 34-45.

5. Srinivasan K. Control System Design Using State
Space Methods // Instrumentation, Systems, Controls, and
Mems. Mechanical Engineers Handbook edited by M.
Kutz, the 3rd edition. John Wiley & Sons Inc., 2006. —
Pp. 757-788.

6. Geromel G.C., De Souza C.C., Skelton R.E.
Static Output Feedback Controllers: Stability and
Convexity // IEEE Transactions on Automatic Control.
—Vol.43, Ne 1, January, 1998. — Pp. 120-125.

7. Schoemig E., Sznaier M. Mixed H2/H,, Control of
Multi-model Plants // Journal of Guidance, Control and
Dynamics. — Ne 3, — May-June, 1995. — Pp. 525-531.

8. Houk C. R, Joine J., Kay M. A Genetic algorithm
for Function Optimization: A MatLab Implementation.
ACM Transaction on Mathematic Software 1996. — 14 p.
9. Yi-Bo Hu, Yu-Ping Wang, Fu-Ying Guo. A New
Penalty based Genetic algorithm for Constrained
Optimization Problems // Proc. of the Fourth
International Conference on Machine Learning and
Cybernetic, Guangzhou, 18-21 August 2005. — Pp.
3025-3029.

10. Ksakepnaax X., Cuean P. JIluneliHble ONTUMAaIILHBIE
cucTeMsl ynpasneHus. — M.: Mup, 1977. — 653 c.

11. Ackermann J. Parameter Space Design of Robust
Control Systems // IEEE Transaction of Automatic
Control. — Vol. AC-25, Ne 6, December 1980. —
Pp. 1058-1072.

12. Doyle J.C., Glover K., Khargonekar P.P., Francis B.A.
State Space Solution to Standard H, and H-infinity
Control Problems // IEEE Transaction of Automatic
Control. — Vol. 34, No 8, August 1982. -
Pp. 831-847.

13. Fleming P. J., Purshouse R. C. Genetic algorithm
in control systems Engineering // Research Report
Ne796, Department of Automatic Control and System
Engineering, University of Sheffield, UK, , August
2001. —44 p.

14. Aerosim Blockset, www.u-dynamics.com.

The editors received the article on 22 May 2008.



