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SPECIFIC SOLUTIONS OF ODE SYSTEM FOR MODELING STATIONARY
COMPRESSIBLE FRICTION FLOW OF PERFECT GAS
IN CONSTANT-AREA CHANNEL

In the paper some specific solutions of the general solution taken in [1] are considered to model a
one-dimensional stationary flow of a compressible gas in the constant-area channel. New
analytical solutions and interpretations of the known ones are given.

In [1] the general solution of the following autonomous ODE (ordinary differential equation
system) is demonstrated which has been obtained also in [1]. It describes a stationary flow of perfect
gas with the given constant heat flux, friction and mass forces that can perform work in the constant-
area channel:
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where P - pressure; A - friction factor; w=4; T - temperature; ¢, - specific heat at constant
pressure; g — acceleration due to gravity; R — gas constant; f, — mass force; G — flow-rate; D, —

hydraulic diameter; p — density; v — gas velocity; g, — heat flux density referred to the mass flow-
rate unity:
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Q - heat flux; L — channel length. It is also shown that the energy ODE for such a general kind of flow
takes the following form
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which general solution is defined by the following integral [1]
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Specific solutions of the ODE system (1)—(2) are identified by equating to zero the variables that
contribute to the system different forces or energy forms, or its singularities. The denominator of the
system (1)-—(2) makes it singular under the following condition:
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Formula (5) is nothing but a kind of the second Newton law. Its square root addend has inverse
velocity dimension, and PF corresponds to the force which pushes gas. Such a flow-rate value at
which singularity takes place is called as critical with the gas velocity equal to sonic. This statement
results from the critical flow-rate formula (5). In fact, let’s rewrite it as follows
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hence it follows from the above formula
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1.e. is a definition of the local sonic velocity in gas flow. It should be noted that the critical flow-rate as
a phenomenon has the same meaning and form for all flow models ( with heat exchange or without,
adiabatic or isentropic).
Let’s substitute the critical flow-rate formula (5) in (3). Making some simplifications we obtain
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The last ODE one may easily convert to the form
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Integration of the last ODE being one with separable variables gives
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then after some simple conversions we can obtain
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and finally we have
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Thus pressure and temperature at a choke for the general case of a nonisentropic flow with heat
exchange, mass forces influence and mass forces work are connected by the Poisson law.

The possibility to obtain the solution of the energy equation for the general flow case in the final
form, i.e. in elementary functions, is achieved by solving two integrals In (4). The first of these
integrals has the following form
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It is easily shown, that the given integral splits into two integrals
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Integrating (6) — (7) we have
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We consider the solution of the next integral in equation (4) that, when substituted in it the solu-
tion of the first integral obtained above, takes the following form
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After some simple transformations the last integral may be represented by a sum of the following
integrals
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The above integrals have binomial differentials as integral functions

Further, we obtain a general form of integrals (10, 11) under conditions z > 0, that is sufficient
to obtain all the specific solutions as the above condition holds true. We convert integral I, with the
following substitution
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Simple transformations reduce the last integral to the form
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Similar substitution into 7, reduces to the following integral
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As one can see, both integrals have singularity at x =1. It may occur at a® =1, that is evident
from substitution formula (12) used above, i.e. at
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If gravitation forces are used as mass forces, this condition by considering these forces work,
will have the form
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in case this work is absent, we have
c
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Hence we can make a conclusion that, the solution of the initial problem statement when mass
forces and parameters invoking heat exchange are equal to zero each or compensate each other in a
way the condition (13) holds true, leads to degeneration of the initial problem flow into nonisentropic
adiabatic one.

Nonisentropic adiabatic flow in a constant section area channel. In this case from (6)—(11}
follows
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hence from (4) we have
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being the equation which defines stagnation temperature 7" = const of nonisentropic adiabatic flow.
The general solution of the intitial problem, obtained in [], when w_ = f, =0 substituted, is con-

verted in the following ODE
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finally, we have
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The solution (15) obtained in pressure-temperature variables is analogous to equation [2]
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in (15).

Let’s consider one more type of flow which generalizes nonisentropic adiabatic flow. For com-
pleteness sake this flow is supplemented with mass forces influence. At present, the analysis of such
solution is absent in literature.

Nonisentropic adiabatic flow in a constant section area channel with mass forces. The
following assumption corresponds to this case w, = 0. Then it is obvious
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is obtained at
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Integration of the last integral and performing some reductions let us obtain the solution of the
energy equation for this flow type. The solution is as follows
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If we substitute in this solution the formula of a; (8), then the expression in brackets of it will be
identically equal to zero, i.e. the stagnation formula for this flow type is analogous to the formula of
nonisentropic adiabatic flow in case of mass forces absence. The result obtained is obvious immedi-
ately from the energy equation for this flow type. But such a procedure of getting solution let us test
the validity of equations derived.

At w, =0 and excluding pressure from (2) with the formula defining the stagnation temperature
(14) and performing simple reductions we have
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Integral solutions of (16) depend on the discriminant sign of the quadratic equation X = 0. Let’s
verify the following inequality fulfillment
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Taking the square and making some reductions, we have
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It is evident that the discriminant will always be positive, consequently, an analytical solution for
nonisentropic adiabatic flow with mass forces influence will have the following form
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The solution obtained together with the equation defining the stagnation temperature forms a
nonlinear algebraic equation system to determine pressures and temperatures in nonisentropic adia-
batic flow with the given constant mass forces influence.

Thus, specific solutions to model stationary compressible gas flow in the constant section area
channel are given in the paper, in particular, a new analytical solution without heat exchange but with
a mass force. The specific solution of the energy equation of the initial problem with heat exchange is
considered in the paper [3].
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PO3PAXYHOK BHMIPIOBAJIbHOI'O BJIOKA
BHYTPIIITHBOMOJIE/IbBHUX TEH3OMETPUYHUX BAT'
Y CEPEJOBHIII MATHCAD

3anpononosano memoouxy i anzopumm ONMUMI306AHO20 PO3PAXYHKY HA MIYHICMb | yymausicme
Qioka am eumipy cum 10606020 Onopy mMA MemOOUKy i al2opumm HepesipHUX PO3PAXYHKIE
BUMIPIOBATLHO20 GIOKA 20MOSUX MEHIOMEMPUYHUX 62 3a 3A0GHUMU 20MEMPUYHUMU DOIMIPAMU. |
HasanmasicenHam y cepedosuyi MathCAD.

Beryn. AktyamsHOR mpoOneMOI0 IIpH CTBOPeHHI IH(GOpMAIHHHX TEXHOJIOrH NPOeKTHHX IO-
caipkers (ITTI) cxnammmx TexHiuanx 06’extiB (TO), 30kpeMa, aBiauifiHOl TEXHIKH, € NPOEKTYBaHHS
niepBUHHMX pkepen iHdopmari (IT1I) [1; 2; 3]. Jo I1I BimHOCATH pi3HiI IPUCTPOI IS BU3HAYECHHSA 3HA4YCHb
GbI3MYHAX BEIMYMH, 30KpeMa, aepoiaMHaMivHi TeHsoMerpuuHi Baru (TB), ski BHKOPHCTOBYIOTH ISt
BHMMIPIOBAaHHS 3HaYCHb CKJIAZIOBHX MOMEHTY i CHJIM NPH eKCIiepuMeHTanbHuX pociipkenHax (EJ) moneneit
TO, 30xpema, mozen mtansHOro anapary (MJIA) B 3anaHOMy Aiana3oHi apaMeTpiB AOCIIKEHb [4-6].

Haii6inpim mommpenooo cxemoo 610ka Ui BUMIPY CHIM J1000BOro omopy € OaraTtoiaHkoBa
CTaTHYHO HEBH3HAYCHA paMa 3 JBOMa BUMIpIOBaILHUMH Oankamu [4; 6-8].

IpoexryBanns TB moumHaeTses 3 BUOOPY THITY IPYXKHOTO ONIOKY 1 po3paxyHKy HOro napaMmerpiB, sKi
3HAYHOK MIpOI0 BM3HAYAalOTh XapakTepucTukd TB. Ilapamerpu eneMeHTIB MpYXHOTO OOKa 3HAXOIATH
METOJIOM TOCITIAOBHHX HaOMKeHb MIIHOCTI 1 YYTIMBOCTI. AJle TAaKHid MIJXiA HE 3aBXIH MPH3BOIUTH JI0
OaxxaHoro pe3ynbTaTy. ToMy JOIUIEHO 3aCTOCOBYBAaTH METOZ OE3I0CepeHbOr0 BU3HAUYEHHS XapaKTepUCTHK
TB, sxuit 103BOJA€ 3HAHTH TapaMETpPH MILHOCTI 1 YyTIMBOCTI OJHOYACHO. Y KIHIEBOMY MIJACYMKY
IpOEKTYIOThCs TB 3 onTHMATBEHIMH NTapaMeTpaMH, a TAKOK 3HAYHO KOPOUYETHCS 9ac iX MPOEKTyBaHHA.
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