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Abstract

Purpose: To show that within the framework of the linear theory, it was possible to obtain formulas for axial critical
loads, the calculation results for which are in good agreement with experimental data. Method: An energetic solution
method using the general linear theory of thin-walled shells. Results: New formulas for the critical loads of cylindrical
shells are obtained. The analysis of the obtained results is carried out. Recommendations for their use are given.
Discussion: Difficulties in theoretical determination of the critical loads of cylindrical shells under axial compression,
which are close to the experimental data, forced researchers to seek empirical solutions. Many empirical relationships
have been obtained that give different results and describe known experiments. However, there remains a need to
theoretically find formulas that allow calculating the critical loads of cylindrical shells of any geometric parameters.
Such formulas have been obtained. A comparison of the critical loads calculated using these formulas with empirical
and experimental critical loads is carried out. The differences between them are minor.
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1. Introduction

Loss of stability of a structure as a whole, or of its
individual elements (shells, plates, rods) is one of
the reasons for the exhaustion of the bearing
capacity of engineering structures. However, there
are no exact formulas for the critical loads of plates
and especially shells. This article shows that such
formulas can be obtained within the framework of
linear theory.

2. Analysis of recent research and publications

The first results of studying the stability of structural
elements were obtained by L. Euler [1], Brian [2],
Lorentz [3] and S.P. Tymoshenko [4]. Leonard Euler
(1744) was the author of the theoretical formulation
of the problem of the stability of centrally
compressed rods. When solving the problem, he
used a linear approach and a static Euler criterion.
According to this criterion, the critical load is
calculated as the smallest load at which,
simultaneously with the initial form of equilibrium,
an adjacent form of equilibrium is possible,
infinitely close to it. Using this approach, he
obtained the famous Euler formula:
2

T
P=El

where P — compressive force; E — Young's modulus;
I — moment of inertia of the cross-section of the rod;
| — length of the rod.

For a long time (150 years), the correctness of
this approach was in doubt.

The carefully carried out experiments of
I. Bauschinger (1887), M. Consider (1891),
L. Tetmayer (1890, 1896) showed good agreement
between theoretical and experimental data and put
an end to the era of doubts in the theory and Euler's
formula. In his article "Some theoretical problems of
elastic stability” (1910), S. P. Timoshenko gives an
energy derivation of the Euler formula for the case
when the distance between the ends of the rod does
not change during the loss of stability and, as a
result, the longitudinal compressive force during
buckling slightly decreases. The critical state is
found from the condition of equality of the decrease
in the compression energy upon buckling of the
potential bending energy.

In case of loss of stability of the rod, two cases
are possible:

- the ends of the bar move along the axis;

- the distance between the ends of the bar does
not change.

In both cases, the stability criterion is the same [5].
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jw dx | (1)

|
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where w — rod deflection.

Assuming that when the rod buckles, the
compressive force P does not change, and setting the
displacement w satisfying the boundary conditions
determines the critical force P~.The P~ value is the
same for both cases, since the stability criterion is
the same. If both ends of the bar are freely
supported, the displacement is given in the form:

" 2El

szl“wsin %dx )

and the Euler formula is obtained.

Let's look at the second case in more detail.
When, during bending, the distance between the
ends of the bar does not change, as a result of this:
the axis of the bar lengthens, the compression force
decreases, the compression energy decreases. The
critical force is determined from the condition of
equality of the decrease in the compression energy
during bending of the potential bending energy, i.e.
from equality (1). Assuming that the compressive
force P decreases slightly, it is assumed to remain
constant. Using representation (2), we find P. Using
only the first term of the series, we get the smallest
value of P~ corresponding to the critical force, which
coincides with Euler's formula.

Let us solve this problem taking into account the
decrease in the compressive force during the
buckling of the rod. The decrease in the compression
energy during bending of the rod is equal to the
work of the compressive force on the approach of
the ends of the rod due to the curvature of the axis.
Taking into account the fact that the static problem
is considered and that P= P+ - P1, where P, is the
force that appears during the loss of stability, which
changes from 0 to P; during buckling, the work of
the force P is equal to:

AA=1(P* —lpljj(dwj dx
2 2 dx

0
The potential bending energy is equal to:

| 2 2
AV :Ej(d \;V] dx
2 o\ dx

The force Pi1 is numerically equal to the internal
forces T. at the ends of the bar. Taking

— fsin & , from the equality AA=AV we

2
find P, = E(I +%f2FjT—2. Considering that
the displacements are small (f is a small value)
and that | is expressed in units of length to the
fourth power, and F — in units of length in the

square power, then %sz is infinitesimal in

comparison with | and can be neglected. As a
result, we get the Euler formula.

Consequently, Leonard Euler and
S.P. Timoshenko were right in the assumption
P=const. However, this only applies to the rod.

It is believed that the effectiveness of the static
Euler criterion is indisputable. This approach is
widely used in solving problems of the stability of
rods, thin-walled plates, and shells. However, the
experimental critical loads of a closed circular
cylindrical shell compressed along the generatrix by
forces N uniformly distributed along the arc edges
are often several times less than the theoretical ones
obtained using the static Euler criterion. At the same
time, a circular shell, compressed along the
generatrix, is a kind of standard that serves to
compare theoretical and experimental data and to
test various approaches in the theory of shells
stability. This fact casts doubt on the fruitfulness of
the static Euler criterion. The correctness of the
statement that at a critical load simultaneously with
the initial form of equilibrium, an infinitely close
adjacent form of equilibrium is statically possible is
doubtful. The shells behave very differently. This is
shown in works [6,7,8] and will be shown in this
article.

J. Brian was the first to use the energy method to
solve stability problems and obtained a formula for
the critical forces of a hinge plate compressed in one

direction:
2

N _kb_ZD
(mb ajz Eh®
k=] —+— RETY,ERNERY
where a mb 12Q1-v );

v — Poisson's ratio; a — plate length; b — plate width.

Lorenz and S.P. Timoshenko in a linear
formulation based on the static Euler criterion
considered the stability of a hinged circular
cylindrical shell under axial compression. Rudolf
Lorentz (1908) found the critical compressive stress
of a thin cylindrical shell, but neglected the
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transverse compressibility of the material. This was
taken into account by S.P. Timoshenko (1910), who,
within the framework of the Kirchhoff - Love
hypotheses, obtained a formula for critical stress
bearing his name:

____ EN Eh

o 2 o, =0,605—
Ry3d-v7) o R atv=023,

where R and h are the radius and thickness of the
shell. The critical axial force is calculated by the
formula:

Eh?

NS =————
R/3(1-v?) ®)

It is called the classical or upper critical
compression force. This effort is the most famous
and most revealing in terms of the discrepancy
between theoretical and experimental values. The
critical loads observed in experiments are much less
than the upper critical loads.

All further development of the theory of shell
stability was aimed at identifying the reasons for this
discrepancy. Various directions of research
developed, but two directions aroused the greatest
interest.

The first direction is associated with the use of
the nonlinear theory of shells and recommendations
for assessing the stability of shells for the lower
critical load. These recommendations turned out to
be wrong.

The second direction is connected with the study
of the influence of the initial imperfections of the
shell on the value of the upper critical load.
Unfortunately, this line of research did not bring
positive results either. An analysis of the
experimental data shows that small deviations of the
shell geometry from the ideal shape reduce the
critical load, but not by several times, which is often
observed in experiments.

The most complete and detailed first, second and
other directions of the study of the stability of shells,
plates and rods are presented in [5,9,10,11]. No new
work has been found to help solve the problem of
the stability of a cylindrical shell under axial
compression.

The difficulties that have arisen forced the
researchers to look for empirical dependences for
calculating critical loads on the basis of
experimental data. There are many such
dependencies. We will dwell on some of them below
when analyzing the results of experimental studies.

A large number of research works did not solve

the problem. It is necessary to continue looking for
the cause of the large discrepancies between the
calculated and experimental data.

In [6,7,8], a new approach to solving the problem
of stability of a hinged supported cylinder is
proposed, which differs from the classical approach.

The classical approach assumes that the transition
from the initial to the curved form of equilibrium
occurs without changing the critical compression
force N-. This means that the length of the
generatrices of the shell L remains constant. In this
case, the edges of the shell receive some
displacement in the axial direction and the force
N-=const performs additional work 44#0. Due to
this work, additional energy of the shell appears
AV#£0, but the potential of the shell - external load
system does not change, i.e. AU=AV-4A4=0.

The proposed approach describes the process of
loss of stability in a completely different way. When
buckling, the edges of the shell remain in place
because the convergence of the edges due to radial
movements is compensated by the elongation of the
generatrices of the shell. The lengthening of the
generatrices occurs because the compression energy
decreases. In this case, the compressive forces also
decrease and become equal to N« - Ni. There is a
redistribution ~of the  compression  energy
accumulated in the subcritical state. Compression
energy decreases and bending and shear energies
appear. In this case, the potential energy of the shell
does not change, i.e. 4V=0. Since there are no end
displacements, additional work of forces
N+ - N1, 44=0. System potential U=const, because
AU=4V-44=0.To determine the critical forces, the
condition is used 04U=0. Thus, the general theorem
of mechanics, the beginning of possible
displacements of G. Lagrange (1788) and the
Lejeune-Dirichlet principle (1846), which underlie
the energy method, are fulfilled. Based on this, we
conclude: all the prerequisites for using the proposed
approach in determining the critical loads of thin-
walled structures are available.

In [11] the conclusion was made: “It is now quite
clear that good agreement between experiment and
calculation can be achieved within the framework of
linear theory. In this case, the classical linear theory
should be revised taking into account a number of
factors.”

In works [6,7,8] it is shown that the most important
factors are: taking into account changes in the external
load during buckling of the shell and boundary
conditions. The obtained theoretical values of the axial
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critical load of a cylindrical shells are in good
agreement with the experimental data given in [11].

In [6] the main results of solving the problem of
stability of a hinged cylindrical shell under axial
compression are briefly presented, taking into
account changes in the external load during buckling
of the shell. This paper provides a complete solution
to this problem. In addition, the formula for the
critical load of a cylindrical shell obtained on the
basis of the theory of shallow shells is given. The
analysis of the obtained results is carried out on the
basis of their comparison with the classical solution
and experimental data. A general conclusion is made
on the stability of cylindrical shells under axial
compression and the prospects for using the
proposed approach in studying the stability of plates
and shells.

3. Purpose of work

Demonstrate that within the framework of the linear
theory it was possible to obtain formulas for the
axial critical loads, the calculation results for which
are in good agreement with the experimental data.

4. Solution method

The energy solution method using the general linear
theory of thin-walled shells.

The accuracy of calculating critical loads by this
method depends on the accuracy of the description
of the behavior system the shell — external force
during buckling and on the successful choice of the
buckling shape. The selected shape of the bulging
surface must strictly observe the boundary
conditions and, if possible, correspond to the real
form of buckling, since the accepted expression for
the deflection imposes additional constraints on the
elastic surface of the shell, which leads to an
overestimation of the values of the found critical
values of the external force.

5. Solution of the problem

Cylindrical shell of length L, radius R, with wall
thickness h, loaded along the edges by uniformly
distributed compressive forces N (Fig. 1).

t
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Fig. 1. Cylindrical shell

Initial prerequisites: the shell is geometrically
perfect, ideally elastic, the subcritical state has no
moment, the edges freely rest on the diaphragms,
rigid in their plane and flexible out of their plane.

In this case, the boundary conditions are as
follows:

o’w
2

Here u, v, w are the displacements of the points
of the middle surface of the shell in the direction of
the coordinates x, y, z.

The displacements v and w corresponding to the
boundary conditions are given in the form:

v=f,sin %sin ﬂ;
L R

W—fsinm—ﬂxcosﬂ 4
o Sin =008 (4)

where m is the number of half-waves along the
length of the shell; n is the number of waves in the
circumferential direction; f;, f; — amplitudes of
displacements in the direction of the x and y axes.
We find the displacement u as follows. Let the
sum of the elongation of the median surface of a
single shell element in the axial direction due to
stretching and convergence of its opposite faces
during bending is equal to some function f1(x, y), i.e.
ou 1(ow)’
o 2( axj f (% y) (5)

By integrating expression (5) by .parts and
fulfilling the condition u(0)=u(L)=0 for u(x, y)#0 we
find:

u=-=f>—"sin 27X os2 Y (6)

L L R

Change in the potential energy of deformation of
the shell:

(e +2vee, +e2+ |
ami|1-V E 2
AV=2(1Ehz)H 2 R ey ()
—-v
C v+ +
_2(1_"))(122
where
ou N W, ov  au.
& =— &=t oy Ep =t
OX oy R ox oy
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From (7) we obtain:

2
Eh f“/1 3/12+1—n i
16 ° R? 2 —, (8)
) 4R
fra, +2f,f.a, + fla,

AV =
1

2
a, :1+(%j (2> +n°); 4 =¢,

Additional work 44 of external compressive

load:
1 c’iw2
N, | — | dxdy. 9
N

1 27R L
A== [N
2 00
External load N; is equal to internal forces T at
the edges of the shell:

Eh o Mz ? , ny
N, =- - Ccos” —. (10)
2(L-v°) L R
From (9), (10) and the conditions AA=0 we obtain

_Eh 3f4/1 PN PR | al
1-v216 ° R? 4R’
ifz/l_zz_l—vz
16 ° R? 3Eh *
Change in the potential energy 4U=4V-4A:
fra, +2f,f.a, +

1-v? (11)
f:f(a3 e N*aJ

a, =4 +1Tvn

AU =
1-v?

where

From the conditions for the minimum potential
energy for displacements

oAU _0: oAU

of, of,

=0

we obtain:

Eh a’
N,=—— |a,-2%
. (1—v2)a4(a3 al) (12)

The relative value of the critical compression force:
— N
N =

£

N/

The minimization of expressions (12) and (13)
with respect to integer parameters m and n allows
one to find the critical loads of cylindrical shells of

any geometric dimensions. The results are shown in
Fig. 2.
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Fig. 2. Theoretical relative axial critical forces of
cylindrical shells

There are many empirical dependencies for
calculating critical loads. These formulas are
obtained by processing numerous experiments. They
are different and are recommended for different
shells. Let's carry out calculations for some of them.
The dependence that gives the maximum values of
ke [11].

Kemae = 0,5—35*107°(R/h)"* +4,6(1/ R)""*

. (19)
The formula that gives the minimum k. values [11]:

Kemin = 3,87(n/R)Y? +107°(R/h)"?

(15)

Formula, which is recommended for practical
calculations [12]:
1R
_1_ _pa 16\Vh
k. =1-09(1-e )_ (16)
In Fig. 3. the dotted line shows the results of
calculations using these formulas and the theoretical
curves obtained from (13) for L/R=1 and L/R=12.
Most of the experimental data fall within this range.
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Fig. 3. Theoretical and empirical relative axial critical
forces of cylindrical shells

Using the relations of the theory of shallow shells

ou N W, oV ou.
6‘1:—;82:_+_,812:_+_,

OX oy R ox oy

2w _ o%w, 0w

4! :_y; X2 __W’ Z12 :_8x6y

we get a simpler formula for critical loads:

Eh 1_7‘/12 +n? . (17)

1-v
(l—vz)[/12+n2j
6 1["‘)(&2 +n?)?
12\ R

NN
Critical loads calculated by formulas (17) and
(18) differ little from the results of calculations by

formulas (12) and (13).
Error for relatively thick shells (R/A<50) is equal to:

f f—
u100 <5%

N, =

(18)

A =

6
£

The rest of the shells have a smaller error.
Formulas (17) and (18) are simpler and can be
recommended for practical calculations.

6. Results

Analyzing the results obtained, we see:

1. Found theoretically, on the basis of the general
linear theory of thin shells, formulas (12) and (13)
allow calculating the axial critical loads of
cylindrical shells with specific values;

2. Theoretical critical loads are in good agreement
with empirical and, therefore, with experimental
critical loads;

3. A large dependence of the relative values of the

critical load on the parameter revealed
according to the classical theory;

4. A large dependence of the relative values of the
critical load on the parameter was revealed. For a
long time, it was believed that length has no or little
effect on the magnitude of the critical load.

5. Simplified formulas for critical loads (17) and
(18) are obtained on the basis of the theory of
shallow shells. The results of calculations using
exact and simplified formulas differ little.

was

7. Conclusions

1. The formulas obtained for the axial critical loads
of cylindrical shells can be recommended for
practical calculations.

2. The proposed approach can be used to study the
stability of thin-walled structures.
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Mera: [lokazatu, mo B paMKax JiHIIHOI Teopii Bramocss oTpuMatd (HOPMYyIIH OCHOBHX KPHUTHUHHX
HaBaHTAXXEHb, PE3YJIbTATH PO3PAXYHKIB 32 SIKUMH J00PE y3TOKYIOTHCS 3 EKCIIEPUMEHTATbHIMU TaHUMH.
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