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Abstract 

Purpose: To show that within the framework of the linear theory, it was possible to obtain formulas for axial critical 

loads, the calculation results for which are in good agreement with experimental data. Method: An energetic solution 

method using the general linear theory of thin-walled shells. Results: New formulas for the critical loads of cylindrical 

shells are obtained. The analysis of the obtained results is carried out. Recommendations for their use are given. 

Discussion: Difficulties in theoretical determination of the critical loads of cylindrical shells under axial compression, 

which are close to the experimental data, forced researchers to seek empirical solutions. Many empirical relationships 

have been obtained that give different results and describe known experiments. However, there remains a need to 

theoretically find formulas that allow calculating the critical loads of cylindrical shells of any geometric parameters. 

Such formulas have been obtained. A comparison of the critical loads calculated using these formulas with empirical 

and experimental critical loads is carried out. The differences between them are minor. 
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1. Introduction  

Loss of stability of a structure as a whole, or of its 

individual elements (shells, plates, rods) is one of 

the reasons for the exhaustion of the bearing 

capacity of engineering structures. However, there 

are no exact formulas for the critical loads of plates 

and especially shells. This article shows that such 

formulas can be obtained within the framework of 

linear theory.  

2. Analysis of recent research and publications  

The first results of studying the stability of structural 

elements were obtained by L. Euler [1], Brian [2], 

Lorentz [3] and S.P. Tymoshenko [4]. Leonard Euler 

(1744) was the author of the theoretical formulation 

of the problem of the stability of centrally 

compressed rods. When solving the problem, he 

used a linear approach and a static Euler criterion. 

According to this criterion, the critical load is 

calculated as the smallest load at which, 

simultaneously with the initial form of equilibrium, 

an adjacent form of equilibrium is possible, 

infinitely close to it. Using this approach, he 

obtained the famous Euler formula: 
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where P – compressive force; E – Young's modulus; 

I – moment of inertia of the cross-section of the rod; 

l – length of the rod. 

For a long time (150 years), the correctness of 

this approach was in doubt.   

The carefully carried out experiments of 

I. Bauschinger (1887), M. Consider (1891), 

L. Tetmayer (1890, 1896) showed good agreement 

between theoretical and experimental data and put 

an end to the era of doubts in the theory and Euler's 

formula. In his article "Some theoretical problems of 

elastic stability" (1910), S. P. Timoshenko gives an 

energy derivation of the Euler formula for the case 

when the distance between the ends of the rod does 

not change during the loss of stability and, as a 

result, the longitudinal compressive force during 

buckling slightly decreases. The critical state is 

found from the condition of equality of the decrease 

in the compression energy upon buckling of the 

potential bending energy. 

In case of loss of stability of the rod, two cases 

are possible:  

- the ends of the bar move along the axis;  

- the distance between the ends of the bar does 

not change.  

In both cases, the stability criterion is the same [5]. 
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where w – rod deflection.      

Assuming that when the rod buckles, the 

compressive force P does not change, and setting the 

displacement w satisfying the boundary conditions 

determines the critical force P*.The P* value is the 

same for both cases, since the stability criterion is 

the same. If both ends of the bar are freely 

supported, the displacement is given in the form:  
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and the Euler formula is obtained. 

Let's look at the second case in more detail. 

When, during bending, the distance between the 

ends of the bar does not change, as a result of this: 

the axis of the bar lengthens, the compression force 

decreases, the compression energy decreases. The 

critical force is determined from the condition of 

equality of the decrease in the compression energy 

during bending of the potential bending energy, i.e. 

from equality (1). Assuming that the compressive 

force P decreases slightly, it is assumed to remain 

constant. Using representation (2), we find P. Using 

only the first term of the series, we get the smallest 

value of P* corresponding to the critical force, which 

coincides with Euler's formula. 

Let us solve this problem taking into account the 

decrease in the compressive force during the 

buckling of the rod. The decrease in the compression 

energy during bending of the rod is equal to the 

work of the compressive force on the approach of 

the ends of the rod due to the curvature of the axis. 

Taking into account the fact that the static problem 

is considered and that P= P* - P1, where P1 is the 

force that appears during the loss of stability, which 

changes from 0 to P1 during buckling, the work of 

the force P is equal to:   
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The potential bending energy is equal to:   
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The force P1 is numerically equal to the internal 

forces T1 at the ends of the bar. Taking 
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the displacements are small (f is a small value) 

and that I is expressed in units of length to the 

fourth power, and F – in units of length in the 

square power, then Ff 2

4

1
 is infinitesimal in 

comparison with I and can be neglected. As a 

result, we get the Euler formula. 

Consequently, Leonard Euler and 

S.P. Timoshenko were right in the assumption 

P=const. However, this only applies to the rod. 

It is believed that the effectiveness of the static 

Euler criterion is indisputable. This approach is 

widely used in solving problems of the stability of 

rods, thin-walled plates, and shells. However, the 

experimental critical loads of a closed circular 

cylindrical shell compressed along the generatrix by 

forces N uniformly distributed along the arc edges 

are often several times less than the theoretical ones 

obtained using the static Euler criterion. At the same 

time, a circular shell, compressed along the 

generatrix, is a kind of standard that serves to 

compare theoretical and experimental data and to 

test various approaches in the theory of shells 

stability. This fact casts doubt on the fruitfulness of 

the static Euler criterion. The correctness of the 

statement that at a critical load simultaneously with 

the initial form of equilibrium, an infinitely close 

adjacent form of equilibrium is statically possible is 

doubtful. The shells behave very differently. This is 

shown in works [6,7,8] and will be shown in this 

article. 

J. Brian was the first to use the energy method to 

solve stability problems and obtained a formula for 

the critical forces of a hinge plate compressed in one 

direction:  
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ν – Poisson's ratio; a – plate length; b – plate width. 

Lorenz and S.P. Timoshenko in a linear 

formulation based on the static Euler criterion 

considered the stability of a hinged circular 

cylindrical shell under axial compression. Rudolf 

Lorentz (1908) found the critical compressive stress 

of a thin cylindrical shell, but neglected the 
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transverse compressibility of the material. This was 

taken into account by S.P. Timoshenko (1910), who, 

within the framework of the Kirchhoff - Love 

hypotheses, obtained a formula for critical stress 

bearing his name: 
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 at ν = 0,3, 

where R and h are the radius and thickness of the 

shell. The critical axial force is calculated by the 

formula: 
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It is called the classical or upper critical 

compression force. This effort is the most famous 

and most revealing in terms of the discrepancy 

between theoretical and experimental values. The 

critical loads observed in experiments are much less 

than the upper critical loads.  

All further development of the theory of shell 

stability was aimed at identifying the reasons for this 

discrepancy. Various directions of research 

developed, but two directions aroused the greatest 

interest. 

The first direction is associated with the use of 

the nonlinear theory of shells and recommendations 

for assessing the stability of shells for the lower 

critical load. These recommendations turned out to 

be wrong. 

The second direction is connected with the study 

of the influence of the initial imperfections of the 

shell on the value of the upper critical load. 

Unfortunately, this line of research did not bring 

positive results either. An analysis of the 

experimental data shows that small deviations of the 

shell geometry from the ideal shape reduce the 

critical load, but not by several times, which is often 

observed in experiments. 

The most complete and detailed first, second and 

other directions of the study of the stability of shells, 

plates and rods are presented in [5,9,10,11]. No new 

work has been found to help solve the problem of 

the stability of a cylindrical shell under axial 

compression. 

The difficulties that have arisen forced the 

researchers to look for empirical dependences for 

calculating critical loads on the basis of 

experimental data. There are many such 

dependencies. We will dwell on some of them below 

when analyzing the results of experimental studies. 

A large number of research works did not solve 

the problem. It is necessary to continue looking for 

the cause of the large discrepancies between the 

calculated and experimental data. 

In [6,7,8], a new approach to solving the problem 

of stability of a hinged supported cylinder is 

proposed, which differs from the classical approach. 

The classical approach assumes that the transition 

from the initial to the curved form of equilibrium 

occurs without changing the critical compression 

force N*. This means that the length of the 

generatrices of the shell L remains constant. In this 

case, the edges of the shell receive some 

displacement in the axial direction and the force 

N*=const performs additional work ΔA≠0. Due to 

this work, additional energy of the shell appears 

ΔV≠0, but the potential of the shell - external load 

system does not change, i.e. ΔU=ΔV-ΔA=0. 

The proposed approach describes the process of 

loss of stability in a completely different way. When 

buckling, the edges of the shell remain in place 

because the convergence of the edges due to radial 

movements is compensated by the elongation of the 

generatrices of the shell. The lengthening of the 

generatrices occurs because the compression energy 

decreases. In this case, the compressive forces also 

decrease and become equal to N* - N1. There is a 

redistribution of the compression energy 

accumulated in the subcritical state. Compression 

energy decreases and bending and shear energies 

appear. In this case, the potential energy of the shell 

does not change, i.e. ΔV=0. Since there are no end 

displacements, additional work of forces  

N* - N1, ΔA=0. System potential U=const, because 

ΔU=ΔV-ΔA=0.To determine the critical forces, the 

condition is used δΔU=0. Thus, the general theorem 

of mechanics, the beginning of possible 

displacements of G. Lagrange (1788) and the 

Lejeune-Dirichlet principle (1846), which underlie 

the energy method, are fulfilled. Based on this, we 

conclude: all the prerequisites for using the proposed 

approach in determining the critical loads of thin-

walled structures are available. 

In [11] the conclusion was made: “It is now quite 

clear that good agreement between experiment and 

calculation can be achieved within the framework of 

linear theory. In this case, the classical linear theory 

should be revised taking into account a number of 

factors.”  
In works [6,7,8] it is shown that the most important 

factors are: taking into account changes in the external 
load during buckling of the shell and boundary 
conditions. The obtained theoretical values of the axial 
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critical load of a cylindrical shells are in good 
agreement with the experimental data given in [11]. 

In [6] the main results of solving the problem of 
stability of a hinged cylindrical shell under axial 
compression are briefly presented, taking into 
account changes in the external load during buckling 
of the shell. This paper provides a complete solution 
to this problem. In addition, the formula for the 
critical load of a cylindrical shell obtained on the 
basis of the theory of shallow shells is given. The 
analysis of the obtained results is carried out on the 
basis of their comparison with the classical solution 
and experimental data. A general conclusion is made 
on the stability of cylindrical shells under axial 
compression and the prospects for using the 
proposed approach in studying the stability of plates 
and shells. 

3. Purpose of work 

Demonstrate that within the framework of the linear 

theory it was possible to obtain formulas for the 

axial critical loads, the calculation results for which 

are in good agreement with the experimental data. 

4. Solution method 

The energy solution method using the general linear 
theory of thin-walled shells. 
The accuracy of calculating critical loads by this 
method depends on the accuracy of the description 
of the behavior system the shell – external force 
during buckling and on the successful choice of the 
buckling shape. The selected shape of the bulging 
surface must strictly observe the boundary 
conditions and, if possible, correspond to the real 
form of buckling, since the accepted expression for 
the deflection imposes additional constraints on the 
elastic surface of the shell, which leads to an 
overestimation of the values of the found critical 
values of the external force. 

5. Solution of the problem 

Cylindrical shell of length L, radius R, with wall 
thickness h, loaded along the edges by uniformly 
distributed compressive forces N (Fig. 1). 

Fig. 1. Cylindrical shell 

Initial prerequisites: the shell is geometrically 

perfect, ideally elastic, the subcritical state has no 

moment, the edges freely rest on the diaphragms, 

rigid in their plane and flexible out of their plane.     

In this case, the boundary conditions are as  

follows: 
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Here u, v, w are the displacements of the points 

of the middle surface of the shell in the direction of 

the coordinates x, y, z.  

The displacements v and w corresponding to the 

boundary conditions are given in the form: 
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where m is the number of half-waves along the 

length of the shell; n is the number of waves in the 

circumferential direction; f2, f3 – amplitudes of 

displacements in the direction of the x and y axes. 

We find the displacement u as follows. Let the 

sum of the elongation of the median surface of a 

single shell element in the axial direction due to 

stretching and convergence of its opposite faces 

during bending is equal to some function f1(x, y), i.e. 
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By integrating expression (5) by parts and 

fulfilling the condition u(0)=u(L)=0 for u(x, y)≠0 we 

find: 
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Change in the potential energy of deformation of 

the shell: 
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From (7) we obtain:   
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Additional work ΔA of external compressive 

load: 
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External load N1 is equal to internal forces T1 at 

the edges of the shell: 
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From (9), (10) and the conditions ΔA=0 we obtain  
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Change in the potential energy ΔU=ΔV-ΔA:    
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where 
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From the conditions for the minimum potential 

energy for displacements  
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The relative value of the critical compression force:    
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The minimization of expressions (12) and (13) 

with respect to integer parameters m and n allows 

one to find the critical loads of cylindrical shells of 

any geometric dimensions. The results are shown in 

Fig. 2. 

 

Fig. 2. Theoretical relative axial critical forces of 

cylindrical shells 

There are many empirical dependencies for 

calculating critical loads. These formulas are 

obtained by processing numerous experiments. They 

are different and are recommended for different 

shells. Let's carry out calculations for some of them.  

The dependence that gives the maximum values of 

kc [11]. 
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The formula that gives the minimum kc values [11]: 
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Formula, which is recommended for practical 

calculations [12]: 
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In Fig. 3. the dotted line shows the results of 

calculations using these formulas and the theoretical 

curves obtained from (13) for L/R=1 and L/R=12. 

Most of the experimental data fall within this range. 

N
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Fig. 3. Theoretical and empirical relative axial critical 

forces of cylindrical shells 

Using the relations of the theory of shallow shells 
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we get a simpler formula for critical loads: 
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Critical loads calculated by formulas (17) and 

(18) differ little from the results of calculations by 

formulas (12) and (13).  

Error for relatively thick shells (R/h≤50) is equal to: 
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The rest of the shells have a smaller error. 

Formulas (17) and (18) are simpler and can be 

recommended for practical calculations. 

6. Results 

Analyzing the results obtained, we see: 

1. Found theoretically, on the basis of the general 

linear theory of thin shells, formulas (12) and (13) 

allow calculating the axial critical loads of 

cylindrical shells with specific values; 

2. Theoretical critical loads are in good agreement 

with empirical and, therefore, with experimental 

critical loads; 

3. A large dependence of the relative values of the 

critical load on the parameter was revealed 

according to the classical theory; 

4. A large dependence of the relative values of the 

critical load on the parameter was revealed. For a 

long time, it was believed that length has no or little 

effect on the magnitude of the critical load.  

5. Simplified formulas for critical loads (17) and 

(18) are obtained on the basis of the theory of 

shallow shells. The results of calculations using 

exact and simplified formulas differ little. 

7. Conclusions 

1. The formulas obtained for the axial critical loads 

of cylindrical shells can be recommended for 

practical calculations. 

2. The proposed approach can be used to study the 

stability of thin-walled structures.  
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Мета: Показати, що в рамках лінійної теорії вдалося отримати формули осьових критичних 

навантажень, результати розрахунків за якими добре узгоджуються з експериментальними даними. 

Метод: Метод вирішення енергетичний з використанням загальної лінійної теорії тонкостінних 

оболонок. Результати: Отримано нові формули критичних навантажень циліндричних оболонок. 

Проведено аналіз отриманих результатів. Дано рекомендації по їх використанню. Обговорення: 

Труднощі визначення теоретичним шляхом критичних навантажень циліндричних оболонок при 

осьовому стисненні близьких до експериментальних даних змусили дослідників шукати рішення 

емпіричним шляхом. Отримано багато емпіричних залежностей, які дають різні результати і 

описують відомі експерименти. Необхідність теоретично знайти формули, які дозволяли б 

обчислювати критичні навантаження циліндричних оболонок будь-яких геометричних параметрів, 

залишається. Такі формули отримані. Проведено порівняння, обчислених за цими формулами,  

критичних навантажень з емпіричними і експериментальними критичними навантаженнями. 

Відмінності між ними незначні. 
 

Ключові слова: вигин, критичне навантаження, зміщення, стійкість, експеримент, енергія 
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Цель: Показать, что в рамках линейной теории удалось получить формулы осевых критических 
нагрузок, результаты расчетов по которым хорошо согласуются с экспериментальными данными. 
Метод: Метод решения энергетический с использованием общей линейной теории тонкостенных 
оболочек. Результаты: Получены новые формулы критических нагрузок цилиндрических оболочек. 
Проведен анализ полученных результатов. Даны рекомендации по их использованию. Обсуждение: 
Трудности определения теоретическим путем критических нагрузок цилиндрических оболочек при 
осевом сжатии близких к экспериментальным данным вынудили исследователей искать решение 
эмпирическим путем. Получено много эмпирических зависимостей, которые дают разные результаты 
и описывают известные эксперименты. Необходимость теоретически найти формулы, которые 
позволяли бы вычислять критические нагрузки цилиндрических оболочек любых геометрических 
параметров, остается. Такие формулы получены. Проведено сравнение, вычисленных по этим 
формулам, критических нагрузок с эмпирическими и экспериментальными критическими 
нагрузками. Различия между ними незначительны. 
 

Ключевые слова: изгиб, критическая нагрузка, смещение, устойчивость, эксперимент, энергия 
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