S. Vladov. Algorithms for Diagnostic and Parameter of Failures of Channels of Measurement of TV3-117 Aircraft Engine 27
Automatic Control System in Flight Modes Based on Neural Network Technologies

MODERN AVIATION AND SPACE TECHNOLOGIES

UDC 629.735(045)
DOI: 10.18372/2306-1472.84.14950

Serhii Vladov

ALGORITHMS FOR DIAGNOSTIC AND PARAMETER OF FAILURES OF CHANNELS OF
MEASUREMENT OF TV3-117 AIRCRAFT ENGINE AUTOMATIC CONTROL SYSTEM IN
FLIGHT MODES BASED ON NEURAL NETWORK TECHNOLOGIES

Kremenchuk Flight College of Kharkiv National University of Internal Affairs,
17/6, Peremohy str., Kremenchuk, 39605, Ukraine
E-mail: ser26101968@gmail.com

Abstract

The solution of the reliability increasing problem of the TV3-117 aircraft engine automatic control system (ACS)
through the use of the algorithmic redundancy is offered. The purpose of research is development of algorithms of
measuring channels’ fault diagnostics and counteraction for input parameters of linear adaptive on-board engine
model (LABEM) built into the ACS. The LABEM basic mathematics is shown. The static model is based on the throttle
characteristics of the individual engine. The throttle characteristics was obtained in the acceptance tests or "race" in
the operation after the service. The lower level dynamic linear mathematical model of a gas-turbine engine is obtained
by state space method. The technical and theoretical difficulties of practical implementation of algorithmic reservation
by the model are associated with the high dimensionality of the engine state space, that are significantly higher than the
dimension of the vector of parameters measured on board. There is a problem of identification of sensor fault with
subsequent replacement of the value by modeling information. The necessity of fault detection and isolation algorithms
in is justified. To improve the reliability of the fuel circuit input information the Kalman-filtering algorithms with
integrated fault detection and isolation logic for the measuring channels are used. The fault detection and isolation
algorithms for sensors’ channels measurement in dosing needle loop based on Kalman filters were described. The
algorithms are based on the calculation of the fault signature as weighted sum of the squares of residuals (WSSR),
which is compared with the selected threshold value. The practice results of engines’ stand tests and MatLab simulation
showed the high reliability and quality of TV3-117 aircraft engine ACS based on proposed algorithms.

Keywords: aircraft engine, automatic control systems, noisy environments, identification, built-in linear adaptive on-
board engine mathematical model, measurement channel, algorithms of fault diagnostics and counteraction, fault
detection and isolation, Kalman filter, fault signature

failure, followed by replacing the information with a

1. Introduction I e s
model value and recognizing a “failure

In modern digital of aircraft engines automatic
control systems (ACS), the increase in reliability in
flight conditions is achieved through the creation of
algorithmic information redundancy using the
onboard mathematical model of the engine
integrated in the ACS.

There is no exception and TV3-117 aircraft
engine. Technical and theoretical difficulties in the
practical implementation of redundancy using the
model are associated with a high dimension of the
state space of the engine, significantly exceeding the
dimension of the vector of parameters measured on
board. There is a problem of identifying a sensor

(configuration change) of the engine, which is
general theoretical, regardless of the level of the
used engine model. Therefore, increasing the level
of the model does not automatically lead to an
increase in the reliability of the self-propelled guns,
and when performing the functions of identifying a
faulty information channel and a failure of the
engine assembly with its replacement in the self-
propelled guns using the on-board mathematical
model, adaptability to the mentioned changes in the
state of the object is an important property. Thus, the
urgent task of modern digital systems of aircraft
engines ACS is to ensure the fault tolerance of
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algorithms [1]. In particular, the problem arises of
identifying the failure of measuring sensors with the
subsequent replacement of incorrect information.

To solve this problem, it is proposed to use the
onboard mathematical model of TV3-117 aircraft
engine, which should be adaptive to the mentioned
changes in the state of the object [2, 3].

2. Linear adaptive on-board model of TV3-117
aircraft engine

LABEM (Linear Adaptive Onboard Engine Model)
meets the requirements for compactness, speed and
accuracy of displaying engine parameters in statics
and dynamics in a wide range of operating modes,
flight conditions and engine conditions. LABEM is
built-in and is designed to work in conjunction with
TV3-117 aircraft engine ACS in a real environment
under engine operating conditions. In particular, in
the event of a sensor failure, information from the
faulty sensor should be replaced with a model value.

As the basis of the static model of the engine, the
throttle characteristic of the individual engine is

U

[
|

used, obtained on acceptance tests or on the “race”
in operation after maintenance [4].

Let’s consider the problem of identifying the
characteristics of aviation engine on steady modes of
its operation. In these modes, the engine is described
by the equations of the form [5]:

fi(A, U) = 0; Q)

Y = (A, X); (2)
where f; and f; are nonlinear vector functions; A and
U are vectors of engine parameters.

The identification problem reduces to the finding
of a function f*, which, with a given degree of
accuracy, would correspond to the dependence:

Y* =f(A, X). (3)

Procedure identify characteristics of aircraft
engine TV3-117 with the help of the neural network
shown in fig. 1, where ;... &, the deviation between
the measured parameters of individual aircraft and
engine parameters calculated using the neural
network with the same control effects U;... Un; E —
learning error for the neural network.
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Fig. 1. Scheme of building a neural network identifier

Thus, the task of identifying the engine TV3-117
is based on the training of the neural network, which
is to adjust its weight based on the condition:

Ezi(yi—yf)zamin. (4)

In this paper, the method of the identification
problem solution in the neural network basis is used
to identify the multi-mode model of the aircraft
engine TV3-117.

It is assumed that the set of stable operating
modes of aviation engine TV3-117 is described by a
set of functional dependencies with respect to the
values of the following engine parameters:

Ny, = f1 (GTsp ); GairSp = fz (GTSp ); P2:p = f3 (GTSp );
T, =, (G, ); T, = fS(GTSp ); Ry = s (GTSP ); (5)

sp

where GTSP — specific value of fuel consumption (kg/s);

ns — Specific value of the rotor frequency of the
turbine compressor (%);
Gairsp — specific value of the air consumption (kg/s);

*

PZSP and Tz; — respectively, the pressure (kPa) and

temperature (K) are calculated for the turbine
compressor;

T, - specific value of the gases temperature behind
sp

the compressor turbine (K);

Rsp — specific value of the engine thrust is shown.
The process of transition from the physical

parameters of the engine to the given values (and

back), carried out using the neural network model of

the aircraft engine TV3-117, shown in fig. 2, where

the conversion of the measured (physical)
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parameters of the engine to the reduced, which
correspond to the standard atmospheric conditions
T, =288,15K, P, =760 mm Hg is carried out with
the help of the operator F(e), which is described by
the expressions (1) and (2), and the inverse
transition — using the operator F(e) by the formulas
of the gas-dynamic similarity:

Ny =N 2_S:C.;;(-\"“air = G ‘*760 2_8*8; Pz* = Pz* '7_69;
Ty ¥ Py Ty N Py

- . 288 __« . 288 760
T2 :T2 ._I__*;T3sp =T3 .T_*;Rssz. — (6)

sp

N N N
and the influence of flight conditions on the parameters of
the air entering the engine is thus considered as:

T, =T, (1+—k2_1|v|2);

()

k
Pl =P,0,, [1+k7_1 M 2]” . (8)
where Ty and Py — respectively, the temperature (K)
and pressure (mm Hg) air at a given flight altitude;
T, and P, are inhibited values of these parameters
at a given altitude; k — adiabatic index; M — the
number of flaps the flight; arec — full recovery rate of

full pressure in the air intake.
oA L
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Fig. 2. The scheme of transition from the neural network
model of the aircraft engine TV3-117 in the given
parameters to the model in physical quantities

Let’s consider the example of the identification
characteristics problem solution of the aircraft
engine TV3-117 based on its operation, recorded
regarding the standard atmospheric conditions.

The linear structure of this model gives high
performance and reliability of the account, and the
introduction of non-linear coefficients of the
coupling matrices helps to achieve the necessary
identification accuracy in a wide range of engine
operating modes and control actions.

Of particular importance for the reliable
operation of ASC is the validity (conditionality) of
the input information LABEM. The hardware
redundancy implemented in practice provides for
duplication of measurements of all input parameters
using a two-channel system.

To ensure the fault tolerance of the LABEM
algorithms, it is proposed to implement additional
logic blocks designed to determine the possible
uncontrolled failure of one of the measurement
channels.

3. Choice of neural network topology

The choice of neural network topology is described
in detail in [5]. For the solution of the problem of
identification the multi-model aircraft engine
TV3-117 in neural basis as basic architectures were
selected and perceptron neural networks radial basis
function (RBF). The expediency of using these
architectures of neural networks is based on the
analysis of the neural network and the classical
methods of identification error. At this stage, the
optimal structure of the neural network of the
perceptron type should be chosen to solve the
identification problem of the multi-mode aviation
engine model TV3-117 based on the neural network.

In fig. 3 the experimental dependence E = f(N) is
constructed, where E — error of training of the neural
network; N — the number of neurons in the hidden
layer (it is assumed that the number of neurons in
the input layer is equal to 1, in the output layer — 6).
In the same figure, a similar dependence for a neural
network of the RBF type is given.

Change the error on the output of the neural network,
depending on the number of neurons in the hidden layer
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Fig. 3. The choice of optimal complexity of neural
networks structures for solving the direct identification
problem: 1 — perceptron; 2 — RBF

As can be seen from fig. 4, the optimal structures of
neural networks are:

— for the perceptron — the structure (1-4-6), that
is, 1 neuron — in the input layer; 4 neurons — in a
hidden layer and 6 neurons — in the original layer of
the neural network;

—for RBF — the structure (1-12-6), that is, 1
neuron in the input layer; 12 neurons in the radial
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(hidden) layer and 6 neurons in the original layer.

These neural network models allow you to calculate
the six listed above engine parameters as a function
of the indicated fuel consumption G; . As an

activation function of the neural network, the

perceptron uses a sigmoid function.

he neural network RBF is a two-layer network
(fig. 4), in which the first layer carries a nonlinear
transform of the input parameter G, without the

use of adjustment weights, and the initial layer
combines the received outputs of the 1st layer by
calculating their linear weighted combination.
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Fig. 4. Structure of RBF neural network

Outputs of the neural network RBF described by
the equation:

Y =W, +Zn:Wij fj (U ); ©)
j=1

wherei=1,2,...,n; U :GTsp — input signal;

W;; — weights of connection (i = 1, 2, ..., 6;
j=1,2, ..., 12); W, — offset value at the i-th output
of the neural network; fj(U) — activation functions of
the neural network, which are defined in the class of
Gaussian functions:

(10)
where C; — value that determines the position of the
center (standard) j-th class; o; — the width of the
Gaussian function fj(U).

Adjusted parameters of the neural network RBF in
fig. 4 is the weights Wi, Wei (Ii=1,2, ..., 6;j=1,2, ...,
12), since they are linearly related to the outputs of
the neural network and, therefore, with a learning
error, then their values can be found directly using
the method of least squares, while minimizing the
total square error of the neural network:

E= %ZR:ZHZ(Yi(r) _Yit()r) )2;

r=1 i=1

(11)

where Yi(r) — the output of the neural network in the
r-th experiment, that is, upon presentation of the
network r-th input image U®; Y." _ i-th desired
output of the neural network for the input U®;
R — the number of different experiments (the size of
the training sample); n = 6.

Calculating the value of partial derivatives

io r=1
& Sy
ij or=l

i=1,2,..,nj=1,2,...,m;
and equating them to zero based on the expression:

w0
i=1

i=1,2,..,n;
we arrive at a system with n(m + 1) linear
equations for n(m + 1) unknown coefficients
Wij, Woi (i =1,2, ..., n;j =1,2,..., m).

Unlike the frequent situation, when the use of
gradient methods for adjusting the parameters of the
perceptron leads only to the achievement of local
minima, here the finding of the weight of
connections is faster and more accurate.
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4. Diagnostics and parry failures of fuel flow
sensors

Diagnostics and parry failures of fuel flow sensors
(Gr) are based on the application of Kalman filtering
algorithms with built-in logic for detecting and
localizing a measuring channel failure. The
possibility of using Kalman filters in LABEM of the
class under consideration has been proved on the
basis of statistical processing of field engine test
data [6].

At the input of the mathematical model of the
engine, a fail-safe Kalman-filtration unit is
connected, including a mathematical model of the
channel of the metering needle (MN), which allows
to obtain the calculated value of fuel consumption
from the control signal of the position of the piston
of the metering needle (Xs) received from the ACS.
The output signal of the MN model is the predicted
(model) value of the position of the piston x, which
is fed to the input of the differential valve model
(differential pressure controller), where it is
converted into a Gr signal.

A Kalman recursive filter is connected at the
output of the metering needle model. Its necessity is
due to the presence of external and internal
interference in the channel of the metering needle.
The Kalman filter is a proportional link with a
variable gain, which is determined in real time as a
result of solving the problem of minimizing the
mathematical expectation of the squared error of the
identifiable parameter X, taking into account the

obtained optimal estimate Xopt at the previous

moment. The Kalman coefficient sets the
probabilistic ratio of the model (calculated predicted)
and measured components by the sensor in the
optimal assessment of the piston displacement [7].

Since the measured value is used to obtain the
optimal estimate, the urgent task is to ensure reliable
detection and localization of faulty measuring
channels for fault detection and localization, for
which it is proposed to include additional logic in
Kalman filtering algorithms. It is also proposed to
use Kalman filter banks (fig. 5) [8] to estimate the
accuracy of the measurement of a group of sensors,
which allow generating a vector (matrix-column) of
deviations:

£ =Xopt —Z'; (15)

where for i-sensor: & — estimate error, Xl)pt —
optimal estimate (at the output of the corresponding
Kalman filter), z;,, — measured piston displacement.
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Fig. 5. Structure of bank of Kalman filters

To identify the sensor failure, the matrix of
weighted sums of squares of deviations WSSR
(Weighted Sum of the Squares of Residuals) is
calculated, which is also called the sign or signature
of the failure [9, 10], using the matrix equation:

(i) o
WSSR! _Wie) @ (;) °.

(16)
where matrix X' =diag [c' ]2.

The vector ¢' represents the standard (passport)
deviations of the i-sensor and normalizes the
deviation vector. The matrix of scalar weights W,
includes engineering settings that are selected so that
the level of the elements of the WSSR matrix does
not exceed a predetermined threshold value in a state
when all the sensors are operational. o

If W, — identity matrix and the equality &' = ¢' is
observed, the corresponding element of the WSSR
matrix is equal to the number of measuring channels
in the group under consideration. For the case &' # ',
the simplified formula is applicable:

2
&
WSSR = Z?. (17)

It should be noted that expression (17) is also
valid for one channel of a two-channel sensor.

To detect channel failure of one sensor, the
corresponding WSSR is compared with a threshold
value, the value of which is selected by expert
judgment based on statistical processing of
experimental data for an individual engine. It should
be borne in mind that a small threshold value can
lead to false alarms, a large one can reduce the
sensitivity of the system to failures. In [10, 11], it is
recommended to choose a failure signature in the
range of 1.5 ... 2. In the present work, a threshold
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equal to 2 was chosen. The algorithm for detecting
and localizing the channel failure of the piston
stroke sensor channel is illustrated in table.

Table
Algorithm for detecting and localizing the channel
failure of a two-channel sensor

5. Integration of bank of Kalman filters with
neural network technologies

The general architecture of the developed system
is shown in fig. 6. The functionality of the Kalman
filter bank with the advanced state vector is

WSSR; | WSSR, | Situation The output is summarized as follows [8]: _
<2 <2 Both channels Filtered (Kalman) 1. When there is no sensor or actuator fault, with
working channel or without component faults, all Kalman filters
measurement with | should retain low fault indicator signals, indicating
th.e smallest WSSR there is no sensor/actuator fault, and should generate
<2 >2 Second Filtered (Kalman) te health t timat
channel failure | measurement of the | CCurate nealth parameter estimates. .
first channel 2. When one of the sensors or actuators failed,
>2 <2 First channel Filtered (Kalman) | with or without component faults, only the one filter
failure measurement of the | ith the correct hypothesis should generate a low
_second channel fault indicator signal and accurate health parameter
>2 >2 Both channels | Piston displacement timat
failed model value x estimates.
o Onboard Parameter | Fault Irﬁica_torggra ______ ‘“TSS_ B ___ 1 Fault Isolation
Ul | i Identification | | Generation Process WSSR, Process
7 " Aircraftengine [, [ i |
| - TV3-117 Yo R N c WSSR' * e |
Un™ " Y [ % oy T No Fault
| “a L1y |3 5|
| / v 5 Ve Sensors Fault Ve 2 WSSR"™ | S
| : APpX: — Detection Filters > & wssR™ 0| & | |
| - ¥i (2 i)é‘ i Ll 3 > 5 —|>Fault Detected
n 2]
: Neural network e &% =
| » yn;J | | 8 SSRm+k = |
| [ ym+k Actuator Eault ym+k = L‘E —H» Fault Isolated
E e
| ( : : »| Detection Filters > SSR™P :
I
| || — |
| L |
- - - - - - ____________‘ T+t _____1

Fig. 6. FDI system architecture

The fault indicator signals generated by the above
approach must be further processed in order to
identify a fault. The FDI process can be completed
by integrating the bank of Kalman filters with fault
isolation logic as shown in fig. 6. In general, fault
isolation logic is constructed from detection
thresholds and decision rules. The decision rules
check for fault indicator signal violation of the pre-
established detection thresholds. If the necessary
rules for the existence of a fault are satisfied, then
the fault isolation logic declares a fault. Fault
isolation is achieved if a fault is declared for all the
fault indicator signals except for the one
corresponding to a correct fault hypothesis. The
development of fault isolation logic is application-
dependent. An example will be given in the

following section where the FDI design methodology
is applied to an aircraft engine model [8].

6. Neural network training using the extended
Kalman filter method

The Kalman filter is an effective recursive filter
that, based on a number of noisy and incomplete
measurements, allows you to evaluate the internal
state of a dynamic system and is used in a wide
range of technical devices, from car speedometers to
radios and radios. A typical task for the Kalman
filter is to evaluate past, current, or future values of
the position, velocity, or acceleration of a dynamic
system for which its linear or instantaneous
linearized model is known.

Neural network training is a rather unexpected
application for Kalman filtering theory and, at the
same time, very effective: on the one hand, the
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guality of such training is at the level of the best
second-order packet algorithms, such as the
Levenberg-Marquardt method or quasi-Newton
methods [12] and, on the other hand, training is
carried out online, which is relevant in the case of
large-volume samples and management tasks. There
are various modifications of this training method,
which in one way or another increase its
effectiveness: multistream learning [13], which
minimizes the risk of falling into a local minimum,
batch form training [15], which allows processing
several recent measurements in one times, the
decoupled extended Kalman Filter [13], which is
used to save computing resources. Recently, new
implementations of the Kalman filter have been
proposed, which have greater computational
accuracy and, therefore, provide improved
convergence: the Kalman filter based on the square
root [14, p. 960] and Kalman cubic filter [15, p.
787]. In this paper, we describe the simplest and
most technologically advanced implementation of
training using the extended Kalman filter, the
“Global Extended Kalman Filter” (GEKF).

In all these cases, training a neural network is
considered as the task of assessing the true state of
some unknown “ideal” neural network that provides
zero mismatch, under the conditions in this case we
take the values of the weights of the neural network
w(k), and under the mismatch — the current learning
error e(k).

This dynamic learning process can be described
by a pair of equations in the state space. The
equation of state is a model of a process representing
the evolution of the vector of weights under the
influence of a random process &Kk), which is
considered white noise with zero mathematical
expectation and the well-known diagonal covariance
matrix Q:

w(k +1) = w(k) + &(K); (18)

The output equation is a linearized model of the
neural network y =g (Zw(jz) f (Zw(j?)xi B ,
j i

where w® — hidden layer neuron weights, f(-) —
activation functions of hidden layer neurons, w® —
output layer neuron weights, g(-) — activation

functions of output layer neurons per cycle k, noisy
random process ¢(k), which is considered to be
white noise with zero expectation and the known
diagonal covariance matrix R:
w(k),v(k),x(k
(i) - W) ¥() ()

ow

+¢(k); (19)
where w(k) — neural network weights, v(k) —
postsynaptic potentials of neurons, x(k) — network
input  values. Calculation of instantaneous

%y

differential  values produced by back

propagation.
formula:

Mismatch e(k) calculated by the

e(k)=t(k)=y(k);

where t(k) — target value for neural network, y(k) —

(20)

real output of the neural network.

Before training the neural network, the
initialization stage passes. The covariance matrices
of measurement noise R =zl and dynamic learning
noise Q = ul, matrix size Lx L and N x N,
respectively, are specified, where L — number of
output neurons, N — number of weighting
coefficients of the neural network. The coefficient #
has the meaning of learning speed, we have 7 =
0.001, the coefficient x determines the measurement
noise, in this article it is accepted x = 10 The
covariance matrix P of size Nx N and the zero-
measurement matrix H of size L x N are also
specified at the initialization stage.

The training phase is carried out online, the
correction of the weights of the neural network is
sequentially performed for each example of the
training sample. On the cycle k following actions are
performed.

1) The new value of the output of the neural

network is calculated y(k), “direct pass” of the

neural network is performed.
2) The “reverse pass” of the neural network is
performed: the differential values are calculated by

the back propagation method % i=1N. This is
i

done using the same technique as in the error back

propagation method, but the local gradients for the
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output neurons are set not equal to the current error
e(k), but to constant 1, which, with all the same
calculations, provides the values of the Jacobians of

oy

the outputs of the neural network instead of
i

M, because M =2e(k)
avv aW

gradients

2@

Observation matrix is formed H(k):

H(k){a_yﬂ

)
oy oy @1)
oW oW, Wy

3) The current network error is determined e(k)
according to the formula (21), deviation matrix is
formed E(k) size 1x L:

e (k) =[e(k)].

4) The new values of the weights of the neural
network are calculated w(k + 1) and correlation
matrices P(k +1) according to the formulas:

K (K)=P(k)H (k) [H(K)P()H (k) +R ] 1 (23)

(22)

P(k +1) = P(k) — K(k)H(K)P(k) + Q; (24)

X, 1M

6.0

w(k +1) = w(k) + K(K)e(k); (25)

where K(k) — Kalman gain matrix, its dimension
NxL. Actions 1 — 4 are performed for all elements of
the training set.

The correlation matrix P updated at each step
contains second-order information about the error
surface, which provides an advantage to the Kalman
advanced filter method compared to first-order
learning methods, such as gradient descent and its
modifications.

7. Simulation results in the Matlab package

Simulation results of cases when both measuring
channels of a two-channel piston displacement
transducer are serviceable (a signal from a sensor
with a lower WSSR is taken as the output signal for
detecting and localizing failure) and in the event of a
second channel malfunction that occurs at time
t = 2.1 s (as an output signal of failure detection and
localization of a signal is taken from a serviceable
sensor), in the Matlab package with further
processing in the MathCAD package, are shown in
fig. 7.

£ s

0 0.60

1.32

1.98 2.64 3.30

Fig. 7. The simulation results in the Matlab environment of situations when both measuring channels of a two-channel
sensor are operational and if the second channel fails (1 — model value; 2, 3 — measurement of the first and second
channel; 4 — output signal)

8. Conclusions

Testing the developed fail-safe algorithms as part of
LABEM showed that the average relative dynamics
error is 0.168 %. In statics, with a maximum Gr flow

rate, the error is reduced to 0.01%, which
corresponds to modern accuracy requirements for
TV3-117 aircraft engine ASC.

All this confirms the efficiency and practical value
of the developed algorithms.
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AJITOPUTMH TiarHOCTUKH TAa NAPUPYBaHHS BiIMOB KaHAJIB BUMipIOBAHHSI CMCTEMH aBTOMATHYHOIO
ynpapjinas asiauiiinoro asuryna TB3-117 y nmoiboTHHX peuMax Ha OCHOBi HelipoMepe:keBHX

TEXHOJIOTiH

Kpemenuynpkuii 160THUH KOJeK XapKiBChKOTO HAalliOHAJIBHOTO YHIBEPCUTETY BHYTPILIHIX CIpaB,

Bya. [lepemorn, 17/6, Kpemenuyk, Ykpaina, 39605
E-mail: ser26101968@gmail.com

[IponioHyeThCa po3B’A3aHHS 3aadi MiABUILEHHA HaIIHOCTI cucTeMH aBToMaTHyHOro ynpasiuiHHS (CAY)
aBiamiiftHoro nBuryHa TB3-117 Ha ocHOBI BBeIEHHS aJrOpUTMIYHOI HAAMIPHOCTI. METOI0 IOCHiPKEHHS €
po3po0Ka anropuUTMIB JiarHOCTUKM Ta TapUpPYyBaHHS BiTMOB BHMIPIOBAILHUX KaHANIB JUIT BXIiJHHX
napametpiB BOyzoBanoi B CAY JiHiiHOT aanTHBHOI OOPTOBOI MaTEMAaTHYHOI MOJIEN aBiallilfHOTO JABHTI'YHA
TB3-117 (LABEM). HaBeneno ocHoBHi cniBBigHomenHss LABEM. B sikocTi ocHOBH cTaTW4HOI MoOjedi
JIBUTYHA BHKOPHUCTOBYETHCS JApPOCENbHA XapaKTepUCTUKA 1HAMBIIYaJdbHOTO JABHWIYHAa, OTpPHMaHa Ha
3MaBaJIbHUX BUNPOOYBaHHSX a00 Ha «roHLI» B eKCIUTyaTalii MiCis TNPOBEACHHS OOCIyrOBYBaHHSI.
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Junamiuna niHifiHa Monenb asianifiHoro apuryHa TB3-117 HWKHBOTO piBHA OYAYETHCS 32 METOIOM
npoctopy craHiB. TexHiYHi 1 TEOPETHYHHUX MPOOJIEM MPAaKTUYHOI peasnizamii pe3epByBaHHS 3a JOTMOMOTOI0
MOJIETI TTOB’sI3aHi 3 BUCOKOIO PO3MIPHICTIO MPOCTOPY CTaHIB JBUTYHA, IO iCTOTHO MEPEBHIYE PO3MIPHICTH
BEKTOPY BHIMIPIOBAaHHX Ha OOpTy mapameTpiB. BuHmkae mpobimema imeHTH(]IKaIii BiIMOBH JaTdnka 3
MOIAJBIIAM 3aMilleHHsM 1H(QopMamii MomenpbHHM 3HadeHHSM. OOTPYHTOBAaHO HEOOXITHICTH MOOYHIOBU
QITOPUTMIB BUSBJICHHS 1 JIOKaTi3allil BIIMOB BUMIPIOBAJIbHUX KaHAJIB JBOKAHAJILHUX JIATYMKIB, IO JIIOTH B
yMoBax mepeurkon. Jyis mimBUIICHHS HaAIAHOCTI BXiAHOI iH(OpMamii Mo KOHTYpY BHUTpaTH NajluBa
3aCTOCOBYIOThCS anroputMu Kanman-dinbsTparttii 3 BOy10BaHOO JIOTIKO BUSBJICHHS Ta JIOKATi3allil BiMOBU
BHMIpIOBaJbHOrO KaHamy. ONMcaHO anrOpUTMH BHSABIEHHS Ta JIOKaJi3allii BIMOB NaTYMKIB B KOHTYpi
J03YI040i TOJNKU Ha OCHOBI ¢inbTpiB Kammana. Anroputmu OyAylOThCS Ha OOYHCICHHI CUTHATYPH BiTMOBH
SIK 3BaYKEHOI cyMmH KBazpaTiB BimxwmieHb (WSSR), siky MOpiBHIOIOTH 3 0OpaHUM MOPOTOBHM 3HAYCHHSIM.
Pesynpratn BunmpoOyBaHb Ha MOTOPHOMY CTEHJI i MOJENIOBaHHS B cepedoBuini MatLab mokazamm, mo
3aCTOCYBaHHS 3alpPONOHOBaHMX anroputMmiB B ckiamai LABEM no3Bosise AOCSATTH BUCOKHX TOKa3HHKIB
HA/IIHHOCTI 1 IKOCTI aBTOMATUYHOTO yTIPaBIiHHSI.

KarouoBi cjoBa: HamilHICTh, CHCTEMa aBTOMAaTHYHOTO YIIPaBIiHHS aBiamiiHoro nBuryna TB3-117,
mepemkoan, ineHTudikaris, BOyJOBaHA IiHIfHA ajanTUBHA OOpPTOBa MaTeMaTHYHa MOJIENb JBUTYHA,
BUMIPIOBAJHHUNA KaHAJl, AITOPUTMH [iarHOCTUKH Ta MAapHUPYBaHHS BiJIMOB, BUSBIICHHS 1 JIOKawi3allis
BigMoBH, (insTp Kanmana, curnatypa BiAMOBH
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AJITOPUTMBI AUATHOCTUKYU U MAPUPOBAHMS 0TKA30B KAHAJIOB U3MEPEHUsl CUCTeMbl aBTOMATHYECKOI0
yipasiieHus1 aBUaAUMOHHOro Apurarteiass TB3-117 B moJieTHBIX pe:kMMax Ha OCHOBe HelpoceTeBbIX
TEeXHOJIOTH I

Kpemenuyrckuii TETHBIN KOJIEIK XaphKOBCKOT'O HAIIMOHAILHOTO YHUBEPCUTETA BHYTPCHHUX JCII,

yin. [loGenst, 17/6, Kpemenuayr, Ykpanna, 39605

E-mail:ser26101968@gmail.com

[IpennaraeTcst pereHne 3a1a4yul MOBHIIEHUS HAJACKHOCTH CUCTEMBI aBToMaTtuieckoro ynpasierus (CAY)
aBuaronHoro nsurareias TB3-117 Ha OCHOBe BBEICHHS aJITOPUTMHUYECKON H30bITOYHOCTH. llenbio
HCCIICIOBAHUS SIBJISICTCS pa3paboTKa ajJrOPUTMOB JIMATHOCTHUKU M MAPUPOBAHMS OTKA30B M3MEPHUTEIBHBIX
KaHAJIOB JIJISl BXOJHBIX MapaMeTpoB BCTpoeHHOUM B CAY nuHEHOM aganTuBHOW OOPTOBON MaTeMaTHYECKOM
Mozenu aBuarmonHoro neurarens TB3-117 (LABEM). IlpuBenenst ocHoBHEIE cooTHomeHns LABEM. B
KaueCcTBE OCHOBbI CTaTHYECKOW MOJENM JBUraTedsl HCHOJb3YETCS JIpOCCENbHAs XapaKTEepUCTHKA
WHJIWBUYAIBHOIO JABUTATENs, MOJIYUYEHHAs: Ha COATOYHBIX MCHBITAHUAX WM HAa «TOHKE» B KCIUTyaTalUud
TIOCJIe TIPOBENIEHUsT OOCTyXuBaHuA. JluHaMuueckasi THHEWHas MOJAeNb aBHAIlMOHHOro aBurarens TB3-117
HIDKHETO YPOBHS CTPOUTCS IO METOAy IPOCTPAHCTBA COCTOSHUN. TEXHWYECKHE M TEOPETUUICCKUE
TPYAHOCTH TPAKTUUCCKON peann3allid PE3ePBUPOBAHUS C TIOMOIILI0 MOJIETH CBSI3aHBI C BBICOKOH
Pa3MEPHOCTHIO IPOCTPAHCTBA COCTOSIHMM JBUTATENsl, CYLIECTBEHHO IMPEBBIIIAIOMIEH Pa3MEPHOCTh BEKTOPA
n3MepsieMbIx Ha OopTy mapameTrpoB. Bo3Hmkaer mnpoOnema wuaeHTH(HUKANUKM OTKa3a JaTduka C
MOCIEAYIONIUM  3aMelIeHneM HWH(QOpPMalMd MOJENbHEIM 3HaueHueM. (OOOCHOBaHAa HEOOXOIUMOCTh
MIOCTPOSHUSI AITOPUTMOB OOHAPYKEHUS W JIOKAJIU3AIMKA OTKA30B U3MEPUTEIHHBIX KaHAJIOB JIBYXKaHATBHBIX
JATUYNKOB, JNCHCTBYIOIIMX B YCIOBHSAX IMOMEX. [IJis MOBBINICHUS HAJCKHOCTH BXOJIHOW HH(OPMAIMU TI0
KOHTYPY pacxoja TOIUIMBA IPUMEHSIOTCS anroputMmbl KanMaH-GuibTpamuu €O BCTPOSHHOH JIOTMKOW
oOHApy)XeHHs W JIOKaJM3alld OTKa3a M3MEPHUTENhbHOro KaHaja. OmucaHbl alnropuTMbl OOHAPYKEHUS WU
JIOKAJIM3AIMY OTKA30B JaTYMKOB B KOHTYPE JIO3UPYIONICH UIIIBI Ha OCHOBe GUIbTpoB KamvaHa. ANTopUTMBI
CTPOATCSl Ha BBIYMCIICHUM CHUTHATYPbl OTKa3a KakK B3BEIIEHHOM CyMMbI KBajaparoB oTkioHeHHi (WSSR),
KOTOPYIO CPaBHUBAIOT C BHIOPAHHBIM IOPOTOBBIM 3HAYCHHEM. Pe3ynbTaThl MOJIYHATYPHBIX WCIBITAHUA Ha
MOTOPHOM CTEHJIE W MOIETUPOBaHMs B cpeme MatlLab mokazamm, 9To NpUMEHEHWE MPETOKEHHBIX
anroputMoB B coctaBe LABEM mo3BoisieT JOCTHYL BBICOKHX ITOKa3aTeleld HaJAeKHOCTH WM KadecTBa
ABTOMATUYECKOr0 YIPaBICHHUSI.

KiroueBble cJI0Ba: HaJeXHOCTb, CHCTEMAa aBTOMATHUYECKOTO YINPAaBIECHHS aBHALMOHHOTO JIBUTATEINs
TB3-117, nomexu, uaeHTH(UKALMS, BCTPOCHHAS JIMHEHHAs aganTuBHasi OOpTOBas MaTeMaTHYECKasi MOJEIb
JIBUTATENsl, U3MEPUTENbHBIA KaHAN, alrOPUTMBI JTUATHOCTHKH ¥ TIAPHUPOBaHUS OTKa30B, OOHAPYXKECHUE W
JoKanu3anus oTtkasa, punstp Kanmana, curaarypa orkasa


https://kpi.ua/contact
mailto:ser26101968@gmail.com

S. Vladov. Algorithms for Diagnostic and Parameter of Failures of Channels of Measurement of TV3-117 Aircraft Engine
Automatic Control System in Flight Modes Based on Neural Network Technologies 37

Serhii Vladov (1989). Candidate of Technical Science.

Department of Physical and Mathematical Disciplines and Informatics, Kremenchuk Flight College of
Kharkiv National University of Internal Affairs, Ukraine.

Education: Kremenchuk Mykhailo Ostrohradskyi National University, Ukraine (2012).

Research area: system analysis, aviation engine, neural networks.

Publications: 80.

E-mail: ser26101968@gmail.com

ORCID: 0000-0001-8009-5254



mailto:ser26101968@gmail.com

