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Abstract

Purpose: The present paper is aimed to the problem solution of game algorithms construction for the injection control
of an unmanned aerostatic aircraft into the desired terminal conditions under the influence of unknown turbulences.
Methods: The problem is solved on the basis of multistep differential transform method and the theory of differential
games. Results: The proposed approach does not require numerical integration of differential equations of aircraft
motion, reduces the problem of control algorithms synthesis to the solution of final system of equations concerning
control variables and turbulence parameters, allows for analytical transformations and allows to synthesize control
algorithms that own the property of adaptation to the turbulence action and provide a guarantee of the aircraft
injection into desired terminal conditions. The solution of the synthesis problem of guaranteed adaptive control of the
process of multistep injection of an unmanned aerostatic aircraft into the desired terminal conditions in the form of
mathematical model of differential game is considered. Discussion: Application of the differential-game approach to
the control algorithms synthesis of dynamic objects under the action of undetermined turbulences allows to carry out
continuous calculations of program strategies for players in real time and get the opportunity to control dynamic
objects with feedback, taking into account the action of different turbulences.

Keywords: unmanned aerostatic aircraft; differential game; guaranteed adaptive control; multistep differential
transform method

1. Introduction (parametric, external) is a complex problem. The
main factors of objective complexity are the high
order of nonlinear differential equations of LTA
UAYV spatial motion, the complexity of intra-system
relationships, the unknown stochastic characteristics
of turbulences. At the same time, the requirements to
terminal parameters and a significant duration of the
LTA UAV flight, require consideration of the
impact of turbulences to achievement of control
aims. One way for evaluation of indeterminate form
associated with the wunpredictable influence of
disturbances is to apply a strategy of guaranteed
adaptive approach to the control algorithms
synthesis. This strategy uses the principle of
maximum guaranteed result, as control process is
seen in the most adverse conditions, that may occur
when exposed turbulences [1-4]. The problem of
guaranteed adaptive control synthesis under
uncertain impact of turbulences requires a transition
from optimization problems to biderectional
optimization problems as discussed in the theory of
differential games [1].

Recently, there has been a growing interest in
creation and application of aeronautical complexes
based on unmanned lighter-than-air aircrafts (LTA
UAVs), which include autonomous (robotic)
airships, aerostatic platforms based on airships etc.
Their main purpose is solving tasks of ambient
monitoring, operational control over the state of
ground infrastructure, forecasting and monitoring of
natural phenomena, telecommunications. In front of
the modern LTA UAVs making a demand also
requirements related to the need of aircraft injection
into the given terminal conditions (e.g. emergency
flight to an emergency zone, etc.). The injection
process of LTA UAV into the given terminal
conditions is carried out on a multistep trajectory
with taking into account changes in their mass
inertia characteristics and operating modes of the
aircraft systems.

Algorithm synthesis of optimal multistep control
of LTA UAV injection into the given terminal
conditions under the action of unknown turbulences

Copyright © 2020 National Aviation University
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To solve terminal control problems using the
differential games use methods of R. Isaacs [1,2],
L.M. Pontryagin [3,4], N.N. Krasovsky [5] and
others. The majority of known methods are used for
linear systems of differential equations, require
solving of differential equations in partial
derivatives, use the necessary conditions of
optimality similar to Pontryagin's maximal principle
or are based on calculation of attainability domains.

Application of the theory of differential games
together with the mathematical apparatus of
differential transformations (DT) to the synthesis of
guaranteed adaptive control algorithms allows to
solve complex differential game problems in the
field of images with missing time argument and
reduce them to simpler problems, which are easily
solved by known methods [3].

2. Research task

Questions of game algorithms construction for LTA
UAV injection control into the given terminal
conditions under the influence of unknown
turbulences on the basis of multistep DT and the
theory of differential games are considered.

3. Differential transformations

The DT allow replacing in the mathematical model
of dynamic process the functions x(¢) of continuous
argument ¢ by their spectral models in the form of
discrete  functions X (k) of  integer
argument k£ =0,1,2,....
The differential transformations of function x(z)
are defined as [6]:
h* | d*x(t)

Xo) = X(k) = k!{ dt* }0’ W
where x(¢) is the original function; x(¢), X (k) are
the differential image of original (differential
spectrum), representing discrete function of integer
argument k = 0,1,2,... ; & is the scale stationary value
having dimensionality of argument ¢ and usually
chosen equal to the interval 0<¢</, on which the
function x(¢) is considered; the line below is the
character of differential transformations. The values
of the function X(k) at concrete value of the
argument k are called discrete.

The inverse transformations allow obtaining the
original x(¢) by the image X (k) as a Taylor series:

" k
x(t) = ZX(k)(%J . @)
k=0

Generally, in actual application of differential
transformations, the function x(?) is defined as finite
series:

N
x(1) = y(t) = 3 X (k). 3)
k=0

4. The multistep DT

Consider the nonlinear differential equation of order m:
ft,x,x,..,x")=0, te[O,T] (€))

subject to the given initial conditions:
xP(0)=¢,, p=0l,.,m-1. )
Let’s divide the initial time interval [0,7] into

r given subintervals of length

Ti=t—t,i=Lr, Y T,=T.
=1

differential transform (1) to the problem (4) - (5)
over the first subinterval [0,#] we will obtain the

Applying the

solution in the form:

N k
x (1) =y (1) =ZX1(/€)(%) , tefo.].
k=0

the
xP(ty) =c , and the expression (1) we can find for

Taking into account initial condition

the first subinterval all values of differential spectra
X,(k), k=0,1,2,.... For i 22 and at each following

[4052:]
conditions, which are which the final conditions of

subinterval we will use the initial

the previous subinterval, i.e. x7(¢_)=x"(t._).

Then the expression (1) for the i -th subinterval will
be following:

W d¥x ()
‘Xvi(k)=F|:Tkl k=0,
’ =ty

Now applying the DT to the problem (4) - (5)
over the interval [¢,_,,z;,]. The process is repeated
result,

and, in we obtain the sequence of

approximate solutions X;(¢), i=L..,r for the

solution x(¢), where

N
X0 = 3,0 =Y. X, ()1, — 1), telt 1]
k=0

Finally, at using of the multistep DT we obtain
the following solution [7]:

x (0~ 30, tel0,]
X, (1) =y, (1), telt,t]

'xr(t) Y, (t)’ te [tr—lﬂtr]

x(t) = (6)
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If =1 then A=T and the multistep DT reduces
to the traditional DT. In the case of dividing the
interval into subintervals of the same length, the use
of multistep DT reduces the upper bound of the

solution estimate in * time, where r is the quantity
of subintervals into which given solution interval is
divided, sis a quantity of accounted discretes of
differential spectrum X (k) [8].

5. Differential game model for multistep control
process

The whole control process of LTA UAV motion is
divided into r given time frames, inside which the
mass-inertia parameters of aircraft and operation
modes of its propulsion system have no jump
changes. All changes in the form of given springs
happen at boundaries of given time subintervals

Lr. Y T=T,
i=1

where T — a duration of control process.

The mathematical model of differential game
describing the LTA UAV trajectory motion at each
segment of its injection into the given terminal
conditions under the influence of turbulences we
shall present as the vector differential equation:

__f(ta Xi znvz) x(tz 1) X s (7)

where X; =x;(f) — n-measurement of state vector;

Ti =t —t,, I=

, i=1r

u,(t) — m -measurement of control vector (first
player strategy); Vv;(f)— ¢-measurement vector of

turbulence (second player strategy); f; — continuous

and continuously differentiable on plurality

variable?, x;, u;,
liy) .

The problem of terminal control consists in
determination the vector of optimal program control

v; the vector function of generalized

force, te(t, —

u; (¢) of the phase trajectory x; (¢), which for given
differential constraints (7) provide optimal multistep
translation of LTA UAV from the initial state x,(0)

to final (terminal) state x (7}), which is determined

in the point of time ¢=T,

; by g-measurement

(g < n) vector equation:
S by (1), T, |= 0 ®)

and ensure minimization of the functional:

I, = G,[x(T), T,]+
9
+ZICD t,x,,u,,v, dt,i=1,2,3,.. ©
i=1 t_
where the given functions G, and @; have

continuous partial derivatives on X;,u;,V;

Assume, that restriction on state and control
vectors are taken into account during the selection of
the functional type (9).

The conjugation of final (terminal) and starting
conditions of segments of the control process is set

in the form of given boundary conditions [9]:

[x (T) x1+1’ I(T) qu’ 0’ izl,l”. (10)
The mathematical model (7) - (10) describes the

terminal control process in conditions of uncertainty

regarding the action of turbulences on the object.

We consider the terminal control problem (7)-
(10) as a mathematical model of differential game of
two players with opposite interests. The LTA UAV
motion which is described by differential equation
(7), depends from control strategy of first player

u,(t)and on the choice of strategy by the second

player (vector of turbulence) Vv;(%).

The task of first player consists in such
translation of control object (7) from the given initial

state x,(0) to final x,.(7), which ensures minimum

(maximum) of functional (9) upon condition of its
maximization (minimization) during vector of

turbulence V;(?) selection by second player.
Functions u,(¢) and v,(f) are termed as program
strategies of players.
Pair of player strategies ul* and V; is termed as
optimal, if there is the ratio (saddle point) [10]:
I(u; v, < I(u;,v;)) < I (uy,vy). (11)
A differential game in which has a saddle point
(11) has the property that any deviation from the
optimal control of one player leads to a decrease in
his gain, provided that the optimal control of the

other player is chosen.
The necessary conditions of strategies optimality

u; and v, are [12]:

%zo, ﬂ:o, (12)
Ou, ov;
oI, 0°1.

L>0, L<0, 13
ou? ov? (13)

and sufficient conditions are the ratio (12) and
condition (13), which has the strict inequality. Player
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strategies ul* and Vi* , that satisfy the sufficient

conditions, ensuring the existence of saddle point
(11) of differential game (7)-(10). The control
process of trajectory motion we shall consider within
the frame of such mathematical models of differential
games, which satisfy conditions (12) and (13).

From ratio (11) follows, that random law of
vector of turbulence variation, other than optimal

vl.* doesn’t impair the quality of object process
control, which is achieved under the optimal control
u; . Therefore, the control u, is guaranteed the
quality of control process no worse of definition

(ul* ,v: ) at conditions of restricted random

turbulences. Taking into account, that control ul*

ensures obtaining of guaranteed assessment of
control quality and adaptability to the specific type

of turbulences action, we will call the control u, as

guaranteed adaptive control [3].

Simulation of LTA UAV control process in the
form of differential game removes the uncertainty
caused by the influence of turbulences. However, the
disclosure of uncertainty is achieved at the cost of
complicating of the mathematical model and the
simulation process, as a result, in addition to optimal

control ul* , it is necessary to determine the law of

vector of turbulence vl.* variation that describes the

maximum opposition of purposes of terminal

control.

6. Method of guaranteed adaptive control
algorithms synthesis

For the motion control algorithms optimization of
multistep aircraft, we use the differential-game
approach based on the mathematical apparatus of
DT [9]. This allows us to reduce the problem of
terminal control synthesis to solving a system of
nonlinear algebraic equations without numerically
integrating or differentiating the equations of aircraft
trajectory motion, which significantly reduces the
amount of necessary calculations.

Mathematical models obtained on the basis of DT
(1) of the original mathematical model are called
spectral models. Further, we will assume that the
time functions that describe the control processes in
problem (7) - (10) in the middle of each motion
section are analytical.

Synthesis of guaranteed adaptive control
algorithms we will realize in two stages. At the first
stage will perform a synthesis of optimal gaming

algorithms of program control u.(¢) and opposing

turbulence Vv{(¢), which satisfy the conditions (12)
and (13), in the middle of each control segment in
the class of analytic functions (7, 4;) and v,(z,B,)
where A4 =(a;,a,,..a,y) and B, =(b,,b,,..b,,)
are vectors of free parameters, 7 is a local time

argument.
Let’s choose a scale stationary value #=17; and

assume 7=0. Applying the DT (1) to
functions u;(7,4;,) and v,(r,B;), we obtain their
differential spectra in the form:

TF | d¥u.(t. A
u, (0, A4) = U, (ko Ay = 1| Ll VLAY | g
— k! dt 0

k[ gk
(e, A) =7,k By = 1) LVl b 0B |
- k! dt o

Differential equation (7) in the image field on the
basis of transformations (1) is written as the
following spectral model:

X, (k+1,4,B,,X])=
T |T.X,(k,4,B, X)), (16)
k+17| U, (k, 4),V,(k, B)
X,(0)= X7 (A1, 4y Ay, By By B,
X,(0)= X} = xp3i=1,r '
The spectral model (16) is universal in nature and
can be used to solve the problems of trajectory
motion of different types of multistep aircraft, which
differ both in their layout and in the degree of
multistep. Note that since DT (1) are an exact
operational method, the spectral model (16) has no
methodological errors and potentially allows us to
obtain an exact solution of differential equation (7).
Recursion expression (16) allows finding the
differential spectra X,(k, 4,,B,,X;) of state vector
x,(t) in the differential spectra (14) and (15).
Let’s take advantage of the property of the DT,
according to which the algebraic total of all discretes
of differential spectra of any analytical function in

point £ =1, is equal to zero discrete of a differential

spectrum of function in point #,,, =t,+h or value

of the original of function in the same point [6]:

i){v (k)= X,,,(0)=x(t, +h).

k=0

(17)
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From the obtained relation (17) at 7, =%, and
h =T, we determine a state vector at the end of each
control segment:

1

(T, A4, B,,x))=> X,(k,4,B,, X)),
= .(18)

i=Lr

Then the equation of the final state of whole
control process (9) in view of the expression for
conjugation of final and initial segments (8), and
also the expressions for a state vector at the end of

each segment (11) is conversed as followed:
S,[4.,B,]=0. (19)
The given terminal condition in the implicit shape
define g-components of vectors of the free

parameters A4; and B,, i=1,7 on each subinterval

as functions 7, and xl-o. Remaining M+N-g

components of vector of free parameters are
determined from the stationary conditions (12) of the
functional (10). The DT (1) of functional (10) allow
presenting functional (4) as the function of vectors
of undetermined parameters A4; and B, :

1;(4;,B;) = G[Ai’Bi]+Zr:1—;' ’
- |20

e, D1 X,k A, By XU (k A),Vihs B)
,; k+1

The stationary conditions (12) of function (20)
enable to receive the system of equations for
determining remaining M+N-g of unknown
components of vectors of free parameters A, and

B, fori -th subinterval:

o4, B) o gri<i<n, 1)
Gaij
%:o,lgsM. (22)

i

Solving the system of nonlinear algebraic
equations (19), (21) and (22), in the case of their
consistency, allows to find the components of
vectors of free parameters 4, and B, of program
strategies of both players as functions from a vector
of an arbitrary initial state x, = x,(#,). Then can be
verified sufficient conditions (12), (13) of player
strategies optimality at strict inequality in the
expression (13).

When system of equations (19), (21) and (22) is
inconsistency, the differential game (7)-(10) has no

solution in selected function types u;(¢,4;) and

v,(t,B;) then, the type of function with free
parameters should be changed or expand the
dimension of vectors of free parameters [3,10].

As a result of execution of the first stage in the
implicit form, the nonlinear link of program
strategies of both players u,(¢, 4;) and v;(¢, B;) with
a vector of the initial state x, = x,(¢,)is established.
These strategies can be utilized only in initial instant
t, and do not account changes of state during

motion. To take into account the current state of the
control process is necessary to synthesize control
algorithms and maximum counteract turbulences in
the form of positional strategies of the players
u, =u,(t,x,),v;, =v(t,x;).

At the second stage of synthesis we shall make
the following assumption. We shall consider only
such models of control process in which there are
player strategies and allow to associate an arbitrary
initial condition within a given region of state space
with given terminal conditions (9). The strategies
synthesis beyond a given region of state space is not
considered.

The solution of combined equation (19), (21) and
(22) for current instant ¢ for each current state of
game  x;(?) pair of player strategies
u(t,4(T,x;)] and v,[t,B.(T,x;)], linking current
state of game with given terminal conditions (9). If
organize a time continuous process of calculation
parameters A, and B, of players strategies, then on

sets

the set of solution can be formulated player
strategies on each motion segment as
u;[t,Ai(E,xl.)]andv:[t,Bi(Y;,xi)]. The first player
who realizes a
u;[t, 4,(T,,x,)], which continuously determined
from combined equations (19), (21) and (22),
ensures achievement of the given terminal

conditions (9) at the maximum counteract of
turbulence which action is modeled by a strategy of

potential  control  strategy

second player v;k (¢, B;(T.,x;)].

The general problem solution is continuous and
piecewise continuous functions and is defined as the
sum of the solutions on the intervals (6).

If necessary, to find the  optimal
trajectory x(z, 4, B) , its components can be identified

as a truncated Taylor series (2) or using inverse DT
in the form of polynomials of Legendre, Chebyshev,
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Fourier series [6].

The basic benefit of the considered approach is
replacement of operation of integration of the
differential equations for dynamic object motion by
calculations on the recurrent expression (9) and
potential possibility for obtaining exact solution of
differential game (7)-(10) under condition of exact
display of time functions by a final differential
spectrum. This possibility appears due to the fact
that differential transformations (1) are an exact
operation method.

7. Game algorithm of multistep terminal control
by LTA UAV

Consider the task of terminal multistep control of the
ALA UAV injection process into the given terminal
conditions in the form of mathematical model of
differential game. As a mathematical model of
trajectory motion, we adopt a simplified
mathematical model. We assume that ALA UAV is
under the influence of aerostatic lifting force, overall
constant thrust force and gravity. The aerodynamic
lift force, considering that it is much less than
aerostatic force, is not taken into account. To the
first approximation, for demonstration the game
approach for solving this problem, we do not take
into account the drag force.

The overall thrust force P =n-m;-g-y 1is

formed by the propulsion system, consisting of »
engines of the same thrust; 7z-} is air vehicle

I-th
trajectory interval, g is gravity acceleration. Let’s

thrust/weight, m, is vehicle mass on the

us consider the planar motion of the mass point in
inertial axes of coordinates OXY . Let’s us define
the velocity components on the i-th interval of

trajectory as ¥, andV; . As a control function ¢;(?)

we select the direction angle of the overall thrust
with the OX axis. We will investigate the effect of
variation in the thrust level of one of the n engines
to its complete failure. The variation in the thrust
level of one of the engines will be dependent on the

. ) B (1)
turbulence function 1- 47 (¢), where S, (¢)= P ,
H

P, (¢) is the thrust of one engine; P, is nominal

thrust of one engine. Under the assumptions made,
the trajectory motion of the LTA UAV on the i-th
segment is described by the following mathematical
model of differential game:

L=Vy, (23)

Vy =6, (n -1+ B )cos ;s (24)

H =V, (25)

VY,. :giz(n_l+ﬂiz)Sin¢i+§Zi_gi3g’ (26)

L (0)=0, Vy (0)=0, H,(0)=0, Vy (0)=0, (27)

1 1
where S = g%, S, = g X
m; +m, m;+m,
G, = i , m.,m, 1is the added masses of
Com+m, !
aircraft along the axes OX,0Y respectively;
4 = ! yU is the relative aerostatic lifting
m; +m,

force; U is the hull air vehicle volume;

V=V.—V.; VY. 1s air gravity and buoyant gas
respectively; @, =,(f) is the program strategy of

first player, .=/ (t) is the program strategy of
second player.

The terminal control problem consists in the LTA
UAYV transfer from the origin of coordinates in the
OXY plane (start of takeoff) to a trajectory parallel
to the OX axis and located at a given height H
from it with maximizing of horizontal speed at the
end of the injection process.

The first player selects the LTA UAV control

@;(t) from the condition that the maximum value of

the criterion is reached at a time moment 7 :

I,=Vy (1;)—%7;2@, A= 0= const (28)
and the given boundary conditions:

Hi(T;‘):HT}’ (29)

Wy (T)=Vy, - (30)

At the end of injection stage V, (T') =Vy(T) =0.

The aim of the second player is opposite to the
aim of LTA UAV control and consists in such

1- ﬂiz (t ) P
simulating a drop in the thrust level by one of the n
engines, which provides the minimum value of
criterion (28).

In criterion (28), the constant A takes into
account the desire of the first player to minimize the
time 7 of LTA UAV rise, depending on the
operating mode of the propulsion system. In the
nominal operating mode of the propulsion system,
the first player maximizes the criterion (28), and also
seeks to fulfill the boundary conditions (29) and

choice of a turbulence function
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(30). In case of failure of one of the engines on the
i-th segment (f; =0), the first player selects
control only from the condition of achieving the
maximum horizontal speed and fulfilling the
boundary conditions (29) and (30), without taking
into account the time of rise.

Consider the effect of thrust loss by one of the
engines at the instant of move of the air vehicle.
Suppose that the turbulence function A(f) is
constant and starts acting at the initial moment of
motion time. Based on the mathematical model of
the differential game (21) - (30), we perform a
synthesis of guaranteed adaptive control algorithms.

We assume that the turbulence function A(f) is

constant and starts acting at the initial time 7, =0 of
air vehicle takeoft.
We will look for the control of the first player on
the i-th segment in the form:
p,(t,4)=a;, +at, 31
and the second player - in the form of a constant
function:
Bi(t,B,)=b, . (32)
To form a spectral model of the differential game
(23)-(30) differentiate the expressions (24), (26) and
taking into account (31), (32) we will write them
down as second order differential equations:

Vy = —”g—g"(V +6,.8- 7).

iy
Sy, "4
2 1
—VX,.-
Si

The DT (1) of equations (23), (25), (33), (34) at
h=T and ¢t =0 are defined their spectral models as:

(33)

Vy = (34)

T
Lk+)=——V, (k), 35
L(k+1) ==V (k) (33)
(k+2)! _ S
k!Tl.z Q(k+2)— a; i
’ ,  (36)
k+1
{TV (k+D+(s,g - ¢)b(k)}
T
i(k+l)=—’Vy’_(k), 37
(k+2)! _ S, k+1
k!Tf Q(k+2)— T Vy (k+1) (38)
1, k=0
where »(k) = , k=0,1,2,...
0, k>0

Using recursion expressions (35) - (38), taking
into account controls (31), (32) and zero initial
conditions, we obtain differential spectra of
variables L, H,V,,V, for the first subinterval:

L,(0)=0, L;() =0,

T2
LI(Z):gllTl(n—l+blé)cosalo, (39)
2 .
L(3)=- 1(n—1+b10)s1na10,...
H,(0)=0, H (1)=0,
T2 | 61, = 1+b,,)sina, +
) =1 1 ( 10) 1 (40)
+¢1_§13g
a, T}
H,(3)=—- glz(n—1+b1§)c0sa10,...
VX 0)=0,
Vi D =¢,T (n 1+b10)cosa1, (41)
a, T
VX1(2)=— 1‘21 gll(n—l+b1(2))sinalﬂ,...
Vy, (0)=0,
( 1+b1§)sina1 +
VYI(1)=T ~ ’ (42)
+ - 51,8
a, T?
Vy (2)= U glz(n—l+b1(2))cosalo,...

The boundary conditions (29) and (30) on the
basis on the expression (1) we present through
thedifferential spectra (40) and (42):

2| ¢ ~1+b. Jsing, +
H(T)—% 12( 10) 1o _
- RCE)
a, T°
- 1161 glz(n—1+b1§)cosalo+...:HT1
2\ .
g.\n—14+b Jsina, +
VYI(T):Tl 12N( 10) 1 N
+¢1—g13g . (44)
a T2
+ b S, (n 1+b10)cosa1 —VYTI

In the last expressions, we restrict ourselves to
two nonzero discretes of the differential spectra of
variables 4,V,. As a result, we obtain two

equations for determining the free parameters of the
control function (41) for the first player. From
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equation (44) we find the parameter g, of the

control function (41):

o Ly 2 6 -c.e]
[P Ly
Iy I g, (n -1+ blg)cos a, 45)
2 VYTI

T’ ¢, (n—1+ blzo)cos a, '

For special case, at g=0, in the absence of

aerostatic force (¢7i =0), added
masses (m, =m, =0,g, =1), turbulence function
(b, =0), and wunder Dboundary conditions

Vy (1)) =V, =0, the terminal problem (23) - (30) is

similar to the terminal problem of injection a mass
point into orbit near an atmosphereless planet,
considered in [12], in which the following analytical
solution was obtained:

a =—?tga0,

which is part of a more general expression (45).
If in the latter case gravity acceleration g is

taken into account, we obtain a solution of the
terminal problem of mass point injection into orbit,
considered in [10] in the form of a mathematical
model of differential game:

_ 2fa(n-1+b;)sina, - g]
1—_ .

al[n—1+b})cosa,

Note that the solution (45) of the differential
game (21) - (30) is approximate, since only the first
two nonzero discretes of the differential spectra of
functions of variable parameters were used. In
addition to the number of discretes taken into
account, the solution accuracy is also affected by the
vectors dimension selection of free parameters 4, B
for the analytical description of the strategies of
players ¢(t, A) and v(¢,B) [10].

Substituting the differential spectrum (41) into

expression (1), we find for the first subinterval the
boundary values of the forward velocity:

Vi (1) = caTin =1+ 52 Jeosa, -
(46)

a T
-2, (1-1+52 )sinay +...

We restrict ourselves in expression (46) to the first
two terms and substitute them into criterion (28):

I, =gllTl(n—l+bM2))-

a, T, . (47)
. (cos a,, — %sin amJ —%lebm

Taking into account the relation (45), expression
(47) can be represented as:
2
¢, Li\n—1+b Sy,
I = —0)+ T, — ¢tgay, —

cosay, L

S, Sy, A
-1 — 61,8184y, __Vyntgalo -5
S, S, 2

Substituting function (48) into the stationary

T7hy

conditions (2% =0), we obtain the link between the
1

free parameter a,, and the time of rise 7' on the first

takeoff interval:
2
g \n—1+5 Sy, ~
(—0) + L ¢ltga10 —
cosa,, S,

(49)
Sy,
——6,818ay, _ﬂ“lelo =0
1,
In view of restriction by two terms in equation
(43) and the expulsion of a free parameter a;, from

it, according to (45), we obtain an expression for
determining the duration of the first takeoff interval:

¥, + \/VYZTI +24H, - D,
2D,
where D, = ¢, (n—1+ bli) +(9 - 2).
When VYT. =0 we have:

le

; (50)

6H,
Tl = 2\ . : ~ :
G, (n —1+b, )sm ay, + ¢ — 61,8
From the necessary conditions of optimality (21)

of function (48), we find the free parameter of the
turbulence function on the first interval:

(51

AT,
=——0c08a-

11
Substituting (51) into (49), we obtain the
parameter g, .Thus, for the first interval of the

10

takeoff process, expressions (45), (49) - (51) are
obtained for determining the free parameters a,

and a;; of control function (31) of the first player,
duration 7] and parameter b, of the strategy of
second player (32). A verification of sufficient
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conditions (21), (22) for function (48) showed that
for the differential game (23) - (30) there is a saddle
point (20) with respect to the free parameters of the
players' strategies (31) and (32).

The components of the vector of optimal
trajectory can be restored in the form of segments of
Taylor power series from the differential spectra
(40) - (42) and expression (2):

2
6t

L) = (n—1+blé)cos a,, —

3
a,t

6
2
Vi ()= gllt(n -1+ blo)cos a,, —

G, (n -1+ blé)sin ase..

2
1, AW
_Tgll (n —1+b10)s1n ay + ...

2| s, (n -1+ blé)sin a,, +

Hl(t)Z? ~

+¢1_g13g (53)

3
a;t
+ 1161 glz(n—1+bl(2))cosalo+...
2\ .

¢ \n=1+b Jsina,, +

V() =1 12N( 10) 10

+é—-¢.8
2
a,t 2
+Tg12 (n —lerm)cosa10 +...

Expressions (53) at 7 = 7}, taking into account the

obtained expressions (45), (49) - (51), allow us to
determine the final values of the trajectory
parameters at the end of the first takeoff interval.

Applying matching conditions (10), assigning
obtained values to the initial values of the second
stage and applying the procedure described above to
find free parameters of control and turbulence
vectors, we determine the optimal program control
on the second interval of the trajectory. The general
solution of the terminal program control problem of
LTA UAV injection from the initial conditions into
the given final conditions is a continuous and
piecewise continuous function and is defined as a
sum of solutions in the intervals:

Lﬂ)=§LﬁLHﬁ)=§HXU
VMU=§%ﬂ%%mh§%0l

u=§%ﬁlﬁ=§&ﬁ}

The solution of differential game (23)-(30) has
shown that the main advantage of the proposed
approach to the algorithm synthesis for multistep
dynamic processes control is the ability to perform
analytical transformations, which makes it possible
to significantly reduce the amount of calculations for
obtaining solution in the numerical form without
using numerical methods of integration of
differential equations.

Application of differential-game approach to the
algorithm synthesis of dynamic processes control
under the action of undefined turbulences allows for
continuous calculations of the players' program
strategies in real time and to obtain the possibility of
dynamic objects control with feedback, taking into
account the action of different turbulences. Errors
arising due to a limited number of considered
discretes of differential spectra and vectors
dimensionality of arbitrary parameters of program
controls can be reduced to the necessary level at the
refinement of solution by a gradient method in the
field of differential spectra [10].

8. Conclusions

The approach to the synthesis solution problems of
guaranteed-adaptive algorithms of multistep control
of LTA UAV injection into the given terminal
conditions is offered. The approach is based on the
application of the theory of differential games and

the mathematical apparatus of differential
transformations, allows to carry out analytical
transformations  that  gives the  possibility

considerably reduce the volume of calculations for
solution obtaining in the numerical form without
application of numerical methods of integration of
the differential equations.
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I'apanToBaHo-aganTHBHEe TepMiHAJIbHE KePYBAHHSI A€POCTATHYHUM JITAJIbHUM ANApaTOM HA OCHOBI
audepeHniaJbLHO-IrPOBOTo MiAX0AY
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Meta: MeToro 1aHOi CTAaTTi € PO3B’si3aHHS 33ja4i MOOYJAOBH IrPOBUX alTOPUTMIB KepyBaHHS BHBEICHHSIM
OE3ITIIIOTHOTO aepOCTATHYHOTO JITAIBHOTO arapaTa B 3ajaHi TepMiHAIBHI YMOBH 3a IIii HEBIJOMHX 30ypeHb.
Metonu: 3amava po3B’si3yeTbCsS Ha OCHOBI 3aCTOCYBaHHS OararoeTanHux AudepeHIiabHIX MePeTBOPEHbD 1
Teopii audepenuiansHux irop. Pe3yasTtaTh: 3anpornoHOBaHMH MigXig HE MOTpeOye YHCIEHHOTO
iHTerpyBaHHA MudepeHITIaATPHIX PIBHAHD PyXy amapara, 3BOJIUTh TPOOJIEMY CHHTE3Y alrOPUTMIB KEPYBaHHS
JO pO3B’S3aHHS CKIHYEHOI CHCTEMH pIiBHSHB BiTHOCHO 3MIHHMX KEpyBaHHS 1 TapameTpiB 30ypeHb,
MPUITyCKae aHATITHYHI MEPEeTBOPEHHS 1 J1a€ 3MOTY CHHTE3YBaTH AJITOPUTMH KEpyBaHHS, LIO BOJIOIIIOTH
BIIACTHBICTIO aJjanTailii 0 Aii 30ypeHb 1 3a0e3Mevy0Th TapaHTii0 BUBEIEHHS amapaTa B 3aJIaHHI TepMiHaIbHI
yMOBHU. Po3rnsHyTo po3B’si3aHHS 3a/a4i CHHTE3Y TapaHTOBaHO-aJIAITHBHOTO KEPYBaHHS IPOILECOM
0araToeTarmHOro BHBEACHHS OE3IMIJIOTHOTO AaepOCTATUYHOTO JIITAIBHOTO amapara B 3aJlaHi TepMiHAJIbHI
ymoBH B (opmi MaremarnyHoi Moneni audepeHmianpHoi Tpu. (OQOropopeHHs: 3acTOCyBaHHS
nudepeHITiabHO-ITPOBOTO MiAXOAY 0 CHHTE3Y aJITOPUTMIB KepyBaHHSA AWHAMIYHHME 00’ €KTamu 3a il
HEBH3HAYCHUX 30ypeHb Jac 3MOTy 3JIIHCHIOBATH HellepepBHI 00UMCIICHHS MPOTrPaMHKUX CTpaTeriii TpaBIliB y
peabHOMY Yaci Ta OTpUMAaTh MOXIIMBICTh KEPYBaHHs TMHAMIYHUMH 00 €KTaMH i3 3BOPOTHHUM 3B’ SI3KOM, LI0
BpaxoBYE Jif0 pi3HUX 30ypEHb.

KirouoBi caoBa: Oe3ninioTHI aepocTaTH4HiI JiTajbHI amnapaTd; TapaHTOBaHO-aJaNTHBHE KepyBaHHS,
mudepeHIianbHa Tpa; 0araroeTartHui MeTo JuQepeHIlialbHAX TEPETBOPEHb.
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Hesn: nenplo NaHHOH CTaThu ABJSETCS PELICHHE 3a/1aud MOCTPOSHHS MIPOBBIX AITOPUTMOB YIPAaBICHUS
BBIBEJICHUEM OECIWIOTHOTO a3pOCTaTHYECKOr0 JIETATEJIbHOTO ammapara B 3alJaHHble TEPMHUHAJIbHBIE
YCIIOBHUS IIPU BO3AEHCTBUN HEM3BECTHBIX BO3MYIICHUN. MeToAbI: 3a1a4a pelaeTcss Ha OCHOBE IPUMEHEHUS
MHOTO3TanHbIX AuddepeHaIbHbIX Tpeo0pa3oBaHuii U Teopun AU epeHIHaNbHbIX Urp. Pe3yabrarTsi:
MIPEUIOKEHHBIH 1MoAXoA He TpeOyeT YHCICHHOrO HHTErpupoBaHus Au¢¢epeHIHanbHbIX ypaBHEHUH
JBIDKEHMS anIapara, CBOIUT IpoOIeMy CHHTE3a ajJrOpUTMOB YIPABJIECHHUS K PELICHUI0 KOHEYHOW CHCTEMBbI
YpaBHEHUH OTHOCHUTENBHO TMEPEMEHHBIX YNPaBICHHS H I[apaMeTpOB BO3MYILEHHH, JOIMYyCKaeT
aHaJMUTUYEeCKUE TpeoOpa3oBaHUs M TO3BOJSIET CHUHTE3UPOBATh AITOPUTMBI YNPaBIICHHS, BIIaJCIOLIUE
CBOWCTBOM ajanTalMy K ACHCTBHIO BO3MYILEHHH M OOECIEeYMBAIOLIME T'apaHTHIO BHIBEACHMS ammapara B
3aJJaHHbIe TEPMHUHANBHBIC YCIOBUs. PaccMOTpeHO pelieHne 3a1aud CHHTe3a rapaHTHPOBAaHHO-aAalTHBHOTO
yIOpaBlieHHS TPOLECCOM MHOTOSTAIHOTO BbIBEIEHHUS OECIMIOTHOTO a’3pOCTaTHYECKOTO JIeTaTeNbHOro
anmapara B 3aJaHHblE TEpMHUHAIbHBIE yCIIOBHA B (hopMe MaremMaTndeckol mozaenu anddepeHIuaIbHON
urpsl. OOcysxnenme: Ilpumenenune nuddepeHINANbHO-UTPOBOTO TIOAXOAA K CHHTE3Y alrOpUTMOB
yhOpaBlieHHs JAWHAMUYSCKUMH OOBEKTaMH MpU JICHCTBUU HEONPEAETICHHBIX BO3MYIICHUH T03BOJISIET
OCYILIECTBIISITh HENPEPHIBHBIE BBIUMCIEHHUS MPOrPAMMHBIX CTpPAaTerMii UTPOKOB B PEANTbHOM BPEMEHH H
MOJyYUTh BO3MOXKHOCTH YIIPAaBJIE€HUS AWHAMMYECKMMHU OOBEKTaMH C OOpaTHOH CBSI3bI0, YyUHTHIBAIOILEH
JIEUCTBUE PA3TUYHBIX BO3MYIIEHUH.

KioueBble cioBa: OSCUIOTHBIC a9POCTATUUECKUE JIETATEIIBHBIC AMapaThl; rapaHTHPOBAHHO-3aNTHBHOE
yrpasienne; muddepeHnnanpHas urpa; MHOTOITaTHBIN MeToa qudepeHInaibHBIX IpeoOpa3oBaHMiA.
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