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Abstract 

Purpose: The present paper is aimed to the problem solution of game algorithms construction for the injection control 
of an unmanned aerostatic aircraft into the desired terminal conditions under the influence of unknown turbulences. 
Methods: The problem is solved on the basis of multistep differential transform method and the theory of differential 
games. Results: The proposed approach does not require numerical integration of differential equations of aircraft 
motion, reduces the problem of control algorithms synthesis to the solution of final system of equations concerning 
control variables and turbulence parameters, allows for analytical transformations and allows to synthesize control 
algorithms that own the property of adaptation to the turbulence action and provide a guarantee of the aircraft 
injection into desired terminal conditions. The solution of the synthesis problem of guaranteed adaptive control of the 
process of multistep injection of an unmanned aerostatic aircraft into the desired terminal conditions in the form of 
mathematical model of differential game is considered. Discussion: Application of the differential-game approach to 
the control algorithms synthesis of dynamic objects under the action of undetermined turbulences allows to carry out 
continuous calculations of program strategies for players in real time and get the opportunity to control dynamic 
objects with feedback, taking into account the action of different turbulences. 

Keywords: unmanned aerostatic aircraft; differential game; guaranteed adaptive control; multistep differential 
transform method  

1. Introduction 

Recently, there has been a growing interest in 
creation and application of aeronautical complexes 
based on unmanned lighter-than-air aircrafts (LTA 
UAVs), which include autonomous (robotic) 
airships, aerostatic platforms based on airships etc. 
Their main purpose is solving tasks of ambient 
monitoring, operational control over the state of 
ground infrastructure, forecasting and monitoring of 
natural phenomena, telecommunications. In front of 
the modern LTA UAVs making a demand also 
requirements related to the need of aircraft injection 
into the given terminal conditions (e.g. emergency 
flight to an emergency zone, etc.). The injection 
process of LTA UAV into the given terminal 
conditions is carried out on a multistep trajectory 
with taking into account changes in their mass 
inertia characteristics and operating modes of the 
aircraft systems. 

Algorithm synthesis of optimal multistep control 
of LTA UAV injection into the given terminal 
conditions under the action of unknown turbulences 

(parametric, external) is a complex problem. The 
main factors of objective complexity are the high 
order of nonlinear differential equations of LTA 
UAV spatial motion, the complexity of intra-system 
relationships, the unknown stochastic characteristics 
of turbulences. At the same time, the requirements to 
terminal parameters and a significant duration of the 
LTA UAV flight, require consideration of the 
impact of turbulences to achievement of control 
aims. One way for evaluation of indeterminate form 
associated with the unpredictable influence of 
disturbances is to apply a strategy of guaranteed 
adaptive approach to the control algorithms 
synthesis. This strategy uses the principle of 
maximum guaranteed result, as control process is 
seen in the most adverse conditions, that may occur 
when exposed turbulences [1-4]. The problem of 
guaranteed adaptive control synthesis under 
uncertain impact of turbulences requires a transition 
from optimization problems to biderectional 
optimization problems as discussed in the theory of 
differential games [1]. 
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To solve terminal control problems using the 
differential games use methods of R. Isaacs [1,2], 
L.M. Pontryagin [3,4], N.N. Krasovsky [5] and 
others.  The majority of known methods are used for 
linear systems of differential equations, require 
solving of differential equations in partial 
derivatives, use the necessary conditions of 
optimality similar to Pontryagin's maximal principle 
or are based on calculation of attainability domains. 

Application of the theory of differential games 
together with the mathematical apparatus of 
differential transformations (DT) to the synthesis of 
guaranteed adaptive control algorithms allows to 
solve complex differential game problems in the 
field of images with missing time argument and 
reduce them to simpler problems, which are easily 
solved by known methods [3]. 

2. Research task 

Questions of game algorithms construction for LTA 
UAV injection control into the given terminal 
conditions under the influence of unknown 
turbulences on the basis of multistep DT and the 
theory of differential games are considered.   

3. Differential transformations 

The DT allow replacing in the mathematical model 
of dynamic process the functions )(tx  of continuous 

argument t  by their spectral models in the form of 
discrete functions  kX  of integer 

argument ,...2,1,0k . 
The differential transformations of function )(tx  

are defined as [6]: 
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where )(tx  is the original function; )(,)( kXtx  are 

the differential image of original (differential 
spectrum), representing discrete function of integer 
argument ,...2,1,0k ; h is the scale stationary value 
having dimensionality of argument t  and usually 
chosen equal to the interval ht 0 , on which the 
function )(tx  is considered; the line below is the 
character of differential transformations. The values 
of the function X(k) at concrete value of the 
argument k are called discrete. 

The inverse transformations allow obtaining the 
original )(tx by the image )(kX  as a Taylor series: 
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Generally, in actual application of differential 
transformations, the function x(t) is defined as finite 
series: 
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4. The multistep DT 

Consider the nonlinear differential equation of order m: 

 Ttxxtf m ,0,0),...,,x,( )(   (4) 
subject to the given initial conditions: 

p
)( )0( cx p  , 1,...,1,0  mp . (5) 

Let’s divide the initial time interval  T,0  into 

r given subintervals of length 

,1 iii ttT ,r,1i 
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i TT . Applying the 

differential transform (1) to the problem (4) - (5) 
over the first subinterval ],0[ 1t   we will obtain the 
solution in the form: 
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Taking into account the initial condition 
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the first subinterval all values of differential spectra 
)(1 kX , ,...2,1,0k . For 2i  and at each following 
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Then the expression (1) for the i -th subinterval will 
be following: 
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Now applying the DT to the problem (4) - (5) 
over the interval ],[ 1 ii tt  . The process is repeated 
and, in result, we obtain the sequence of 
approximate solutions ritxi ,...,1),(   for the 
solution )(tx , where 
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Finally, at using of the multistep DT we obtain 
the following solution [7]: 
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If 1r  then Th   and the multistep DT reduces 
to the traditional DT. In the case of dividing the 
interval into subintervals of the same length, the use 
of multistep DT reduces the upper bound of the 

solution estimate in sr time, where r is the quantity 
of subintervals into which given solution interval is 
divided, s is a quantity of accounted discretes of 
differential spectrum )(kX  [8].  

5. Differential game model for multistep control 
process  

The whole control process of LTA UAV motion is 
divided into r given time frames, inside which the 
mass-inertia parameters of aircraft and operation 
modes of its propulsion system have no jump 
changes. All changes in the form of given springs 
happen at boundaries of given time subintervals 

rittT iii ,1,1   , 



r

i
i TT

1

, 

where Т – a duration of control process.  
The mathematical model of differential game 

describing the LTA UAV trajectory motion at each 
segment of its injection into the given terminal 
conditions under the influence of turbulences we 
shall present as the vector differential equation: 

rixtxuxtf
dt

dx
iiiiiii

i ,1,)(),,,,( 0
1   , (7) 

where )(txx ii   – n -measurement of state vector; 

)(tui  – m -measurement of control vector (first 

player strategy); )(ti –  -measurement vector of 

turbulence (second player strategy); if  – continuous 

and continuously differentiable on plurality 

variable iii uxt ,,,  the vector function of generalized 

force, )( 1 ii ttt . 

The problem of terminal control consists in 
determination the vector of optimal program control 

)(* tui of the phase trajectory )(* txi , which for given 

differential constraints (7) provide optimal multistep 
translation of LTA UAV from the initial state )0(1x  

to final (terminal) state )( iTx
i

, which is determined 

in the point of time iTt   by q -measurement 

)( nq   vector equation: 

  0),( iiTi TTxS
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and ensure minimization of the functional: 
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where the given functions iG  and iФ  have 

continuous partial derivatives on iii ux ,,  
Assume, that restriction on state and control 

vectors are taken into account during the selection of 
the functional type (9).  

The conjugation of final (terminal) and starting 
conditions of segments of the control process is set 
in the form of given boundary conditions [9]: 

  riTuTuxTx iiiiiiii ,1,0;),(;),( 0
1

0
1  . (10) 

The mathematical model (7) - (10) describes the 
terminal control process in conditions of uncertainty 
regarding the action of turbulences on the object.  

We consider the terminal control problem (7)-
(10) as a mathematical model of differential game of 
two players with opposite interests. The LTA UAV 
motion which is described by differential equation   
(7), depends from control strategy of first player 

)(tui and on the choice of strategy by the second 

player (vector of turbulence) ).(ti  

The task of first player consists in such 
translation of control object (7) from the given initial 
state )0(1x  to final )(Txr , which ensures minimum 
(maximum) of functional (9) upon condition of its 
maximization (minimization) during vector of 
turbulence )(ti selection by second player.  

Functions )(tui  and )(tvi  are termed as program 
strategies of players.  

Pair of player strategies *
iu  and *

i  is termed as 
optimal, if there is the ratio (saddle point) [10]:  
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A differential game in which has a saddle point 
(11) has the property that any deviation from the 
optimal control of one player leads to a decrease in 
his gain, provided that the optimal control of the 
other player is chosen. 

The necessary conditions of strategies optimality 
*
iu  and *

i  are [12]: 
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and sufficient conditions are the ratio (12) and 
condition (13), which has the strict inequality. Player 
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strategies *
iu  and *

i , that satisfy the sufficient 
conditions, ensuring the existence of saddle point 
(11) of differential game (7)-(10). The control 
process of trajectory motion we shall consider within 
the frame of such mathematical models of differential 
games, which satisfy conditions (12) and (13).  

From ratio (11) follows, that random law of 
vector of turbulence variation, other than optimal 

*
i doesn’t impair the quality of object process 

control, which is achieved under the optimal control 
*
iu . Therefore, the control *

iu  is guaranteed the 
quality of control process no worse of definition 

),( **
ii vu  at conditions of restricted random 

turbulences. Taking into account, that control *
iu  

ensures obtaining of guaranteed assessment of 
control quality and adaptability to the specific type 

of turbulences action, we will call the control *
iu  as 

guaranteed adaptive control [3]. 
Simulation of LTA UAV control process in the 

form of differential game removes the uncertainty 
caused by the influence of turbulences. However, the 
disclosure of uncertainty is achieved at the cost of 
complicating of the mathematical model and the 
simulation process, as a result, in addition to optimal 

control *
iu , it is necessary to determine the law of 

vector of turbulence *
i  variation that describes the 

maximum opposition of purposes of terminal 
control.  

6. Method of guaranteed adaptive control 
algorithms synthesis 

For the motion control algorithms optimization of 
multistep aircraft, we use the differential-game 
approach based on the mathematical apparatus of 
DT [9]. This allows us to reduce the problem of 
terminal control synthesis to solving a system of 
nonlinear algebraic equations without numerically 
integrating or differentiating the equations of aircraft 
trajectory motion, which significantly reduces the 
amount of necessary calculations. 

Mathematical models obtained on the basis of DT 
(1) of the original mathematical model are called 
spectral models. Further, we will assume that the 
time functions that describe the control processes in 
problem (7) - (10) in the middle of each motion 
section are analytical. 

Synthesis of guaranteed adaptive control 
algorithms we will realize in two stages. At the first 
stage will perform a synthesis of optimal gaming 

algorithms of program control )(0 tui  and opposing 

turbulence )(0 ti , which satisfy the conditions (12) 
and (13), in the middle of each control segment in 
the class of analytic functions ),( ii Au   and ),( ii Bv   

where ),...,( 21 iNiii aaaA   and ),...,( 21 iMiii bbbB   

are vectors of free parameters,   is a local time 
argument.  

Let’s choose a scale stationary value iTh   and 

assume 0 . Applying the DT (1)  to 
functions ),( ii Au   and ),( ii Bv  , we obtain their 
differential spectra in the form: 
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Differential equation (7) in the image field on the 
basis of transformations (1) is written as the 
following spectral model: 
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The spectral model (16) is universal in nature and 
can be used to solve the problems of trajectory 
motion of different types of multistep aircraft, which 
differ both in their layout and in the degree of 
multistep. Note that since DT (1) are an exact 
operational method, the spectral model (16) has no 
methodological errors and potentially allows us to 
obtain an exact solution of differential equation (7). 

Recursion expression (16) allows finding the 

differential spectra ),,,( 0
iiii XBAkX  of state vector 

)(txi  in the differential spectra (14) and (15). 
Let’s take advantage of the property of the DT, 

according to which the algebraic total of all discretes 
of differential spectra of any analytical function in 

point tt  , is equal to zero discrete of a differential 

spectrum of function in point htt   1  or value 

of the original of function in the same point [6]: 





 

0
1 )()0()(

k

htxXkX  . (17) 



ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2020. N1(82): 12–22 16

From the obtained relation (17) at 1 itt  and 

iTh   we determine a state vector at the end of each 
control segment: 

ri

XBAkXxBATx
k

iiiiiiiii
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),,,,(),,,(
0

00






 . (18) 

Then the equation of the final state of whole 
control process (9) in view of the expression for 
conjugation of final and initial segments (8), and 
also the expressions for a state vector at the end of 
each segment (11) is conversed as followed: 

  0, iii BAS . (19) 
The given terminal condition in the implicit shape 
define q-components of vectors of the free 

parameters iA and iB , ri ,1  on each subinterval 

as functions iT  and 0
ix . Remaining М+N-q 

components of vector of free parameters are 
determined from the stationary conditions (12) of the 
functional (10). The DT (1) of functional (10) allow 
presenting functional (4) as the function of vectors 
of undetermined parameters iA and iB : 
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The stationary conditions (12) of function (20) 
enable to receive the system of equations for 
determining remaining M+N-q of unknown 
components of vectors of free parameters iA  and 

iB for i -th subinterval: 
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Solving the system of nonlinear algebraic 
equations (19), (21) and (22), in the case of their 
consistency, allows to find the components of 
vectors of free parameters iA  and iB  of program 
strategies of both players as functions from a vector 
of an arbitrary initial state )( 010 txx  . Then can be 
verified sufficient conditions (12), (13) of player 
strategies optimality at strict inequality in the 
expression (13).  

When system of equations (19), (21) and (22) is 
inconsistency, the differential game (7)-(10) has no 

solution in selected function types ),( ii Atu  and 

),( ii Btv  then, the type of function with free 
parameters should be changed or expand the 
dimension of vectors of free parameters [3,10].  

As a result of execution of the first stage in the 
implicit form, the nonlinear link of program 
strategies of both players ),( ii Atu  and ),( ii Btv  with 

a vector of the initial state )( 010 txx  is established. 
These strategies can be utilized only in initial instant 

0t  and do not account changes of state during 
motion. To take into account the current state of the 
control process is necessary to synthesize control 
algorithms and maximum counteract turbulences in 
the form of positional strategies of the players 

),(),,( iiiiii xtvvxtuu  . 
At the second stage of synthesis we shall make 

the following assumption. We shall consider only 
such models of control process in which there are 
player strategies and allow to associate an arbitrary 
initial condition within a given region of state space 
with given terminal conditions (9). The strategies 
synthesis beyond a given region of state space is not 
considered.  

The solution of combined equation (19), (21) and 
(22) for current instant t  for each current state of 
game )(txi  sets pair of player strategies 

)],(,[ iiii xTAtu  and )],(,[ iiii xTBtv , linking current 
state of game with given terminal conditions (9). If 
organize a time continuous process of calculation 
parameters iA  and iB  of players strategies, then on 

the set of solution can be formulated player 
strategies on each motion segment as 

)],(,[*
iiii xTAtu and )],(,[*

iiii xTBtv . The first player 
who realizes a potential control strategy 

)],(,[*
iiii xTAtu , which continuously determined 

from combined equations (19), (21) and (22), 
ensures achievement of the given terminal 
conditions (9) at the maximum counteract of 
turbulence which action is modeled by a strategy of 

second player )],(,[*
iiii xTBtv . 

The general problem solution is continuous and 
piecewise continuous functions and is defined as the 
sum of the solutions on the intervals (6). 

If necessary, to find the optimal 
trajectory ),,( BAtx , its components can be identified 
as a truncated Taylor series (2) or using inverse DT 
in the form of polynomials of Legendre, Chebyshev, 
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Fourier series [6]. 
The basic benefit of the considered approach is 

replacement of operation of integration of the 
differential equations for dynamic object motion by 
calculations on the recurrent expression (9) and 
potential possibility for obtaining exact solution of 
differential game (7)-(10) under condition of exact 
display of time functions by a final differential 
spectrum. This possibility appears due to the fact 
that differential transformations (1) are an exact 
operation method. 

7. Game algorithm of multistep terminal control 
by LTA UAV 

Consider the task of terminal multistep control of the 
ALA UAV injection process into the given terminal 
conditions in the form of mathematical model of 
differential game. As a mathematical model of 
trajectory motion, we adopt a simplified 
mathematical model. We assume that ALA UAV is 
under the influence of aerostatic lifting force, overall 
constant thrust force and gravity. The aerodynamic 
lift force, considering that it is much less than 
aerostatic force, is not taken into account. To the 
first approximation, for demonstration the game 
approach for solving this problem, we do not take 
into account the drag force. 

The overall thrust force 


gmnP i  is 

formed by the propulsion system, consisting of n  
engines of the same thrust; n  is air vehicle 

thrust/weight, im  is vehicle mass on the i -th 

trajectory interval, g  is gravity acceleration. Let’s 
us consider the planar motion of the mass point in 
inertial axes of coordinates OXY . Let’s us define 
the velocity components on the i -th interval of 

trajectory as 
iXV and

iYV . As a control function )(ti  

we select the direction angle of the overall thrust 
with the ОX  axis. We will investigate the effect of 
variation in the thrust level of one of the n  engines 
to its complete failure. The variation in the thrust 
level of one of the engines will be dependent on the 

turbulence function )(1 2 ti , where 
H

i P

tP
t i

)(
)( 1 , 

)(1 tP
i

 is the thrust of one engine; HP  is nominal 

thrust of one engine. Under the assumptions made, 
the trajectory motion of the LTA UAV on the i -th 
segment is described by the following mathematical 
model of differential game: 

iXi VL  , (23) 
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 , yx mm ,  is the added masses of 

aircraft along the axes OYOX ,  respectively; 

U
mm yi

i 



1~

 is the relative aerostatic lifting 

force; U  is the hull air vehicle volume;  

гв   ; гв  ,  is air gravity and buoyant gas 

respectively; )(tii    is the program strategy of 

first player, )(tii    is the program strategy of 
second player.    

The terminal control problem consists in the LTA 
UAV transfer from the origin of coordinates in the 
OXY plane (start of takeoff) to a trajectory parallel 
to the ОX  axis and located at a given height H  
from it with maximizing of horizontal speed at the 
end of the injection process.  

The first player selects the LTA UAV control 
)(ti  from the condition that the maximum value of 

the criterion is reached at a time moment iT : 

constTTVI iiiXi i
 0,

2
)( 2 

 (28) 

and the given boundary conditions: 

iTii HTH )( , (29) 

iTi YiY VTV )( . (30) 

At the end of injection stage .0)()(  TVTV YYr
 

The aim of the second player is opposite to the 
aim of LTA UAV control and consists in such 

choice of a turbulence function )(1 2 ti , 

simulating a drop in the thrust level by one of the n  
engines, which provides the minimum value of 
criterion (28). 

In criterion (28), the constant  takes into 
account the desire of the first player to minimize the 
time T  of LTA UAV rise, depending on the 
operating mode of the propulsion system. In the 
nominal operating mode of the propulsion system, 
the first player maximizes the criterion (28), and also 
seeks to fulfill the boundary conditions (29) and 



ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2020. N1(82): 12–22 18

(30). In case of failure of one of the engines on the 
i -th segment ( 0i ), the first player selects 
control only from the condition of achieving the 
maximum horizontal speed and fulfilling the 
boundary conditions (29) and (30), without taking 
into account the time of rise. 

Consider the effect of thrust loss by one of the 
engines at the instant of move of the air vehicle. 
Suppose that the turbulence function )(ti  is 
constant and starts acting at the initial moment of 
motion time. Based on the mathematical model of 
the differential game (21) - (30), we perform a 
synthesis of guaranteed adaptive control algorithms. 
We assume that the turbulence function )(ti  is 

constant and starts acting at the initial time 00 t  of 
air vehicle takeoff. 

We will look for the control of the first player on 
the i-th segment in the form: 

taaAt iiii 10
),(  , (31) 

and the second player ˗ in the form of a constant 
function: 

0
),( iii bBt  . (32) 

To form a spectral model of the differential game 
(23)-(30) differentiate the expressions (24), (26) and 
taking into account (31), (32) we will write them 
down as second order differential equations: 
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Using recursion expressions (35) - (38), taking 
into account controls (31), (32) and zero initial 
conditions, we obtain differential spectra of 
variables YX VVHL ,,, for the first subinterval: 
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The boundary conditions (29) and (30) on the 
basis on the expression (1) we present through 
thedifferential spectra (40) and (42): 
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. (44) 

In the last expressions, we restrict ourselves to 
two nonzero discretes of the differential spectra of 
variables YVH , . As a result, we obtain two 
equations for determining the free parameters of the 
control function (41) for the first player. From 
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equation (44) we find the parameter 
11a of the 

control function (41): 
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For special case, at ,0g  in the absence of 

aerostatic force )0
~

( i , added 
masses )1,0(

3
 iyx mm  , turbulence function 

)0(
0
ib , and under boundary conditions 

0)( 11


iTYY VTV , the terminal problem (23) - (30) is 

similar to the terminal problem of injection a mass 
point into orbit near an atmosphereless planet, 
considered in [12], in which the following analytical 
solution was obtained: 
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which is part of a more general expression (45). 
If in the latter case gravity acceleration g  is 

taken into account, we obtain a solution of the 
terminal problem of mass point injection into orbit, 
considered in [10] in the form of a mathematical 
model of differential game: 
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Note that the solution (45) of the differential 
game (21) - (30) is approximate, since only the first 
two nonzero discretes of the differential spectra of 
functions of variable parameters were used. In 
addition to the number of discretes taken into 
account, the solution accuracy is also affected by the 
vectors dimension selection of free parameters ВА,   

for the analytical description of the strategies of 
players ),( At  and ),( Bt  [10]. 

Substituting the differential spectrum (41) into 
expression (1), we find for the first subinterval the 
boundary values of the forward velocity: 

 
  ...sin1

2

cos1)(

01

1

01

1
2
011

2
11

1
2
01111





abn
Ta

abnTTV iX




 (46) 

We restrict ourselves in expression (46) to the first 
two terms and substitute them into criterion (28): 
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Taking into account the relation (45), expression 
(47) can be represented as: 
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Substituting function (48) into the stationary 

conditions )0(
1

1 


T

I
, we obtain the link between the 

free parameter 01a  and the time of rise 
1

T on the first 

takeoff interval: 
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In view of restriction by two terms in equation 
(43) and the expulsion of a free parameter 11a  from 

it, according to (45), we obtain an expression for 
determining the duration of the first takeoff interval: 
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From the necessary conditions of optimality (21) 
of function (48), we find the free parameter of the 
turbulence function on the first interval: 
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Substituting (51) into (49), we obtain the 
parameter .

01a Thus, for the first interval of the 

takeoff process, expressions (45), (49) - (51) are 
obtained for determining the free parameters 01a  

and 11a  of control function (31) of the first player, 

duration 1T  and parameter 01b of the strategy of 

second player (32). A verification of sufficient 
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conditions (21), (22) for function (48) showed that 
for the differential game (23) - (30) there is a saddle 
point (20) with respect to the free parameters of the 
players' strategies (31) and (32). 

The components of the vector of optimal 
trajectory can be restored in the form of segments of 
Taylor power series from the differential spectra 
(40) - (42) and expression (2): 
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 Expressions (53) at 1Tt  , taking into account the 
obtained expressions (45), (49) - (51), allow us to 
determine the final values of the trajectory 
parameters at the end of the first takeoff interval. 

Applying matching conditions (10), assigning 
obtained values to the initial values of the second 
stage and applying the procedure described above to 
find free parameters of control and turbulence 
vectors, we determine the optimal program control 
on the second interval of the trajectory. The general 
solution of the terminal program control problem of 
LTA UAV injection from the initial conditions into 
the given final conditions is a continuous and 
piecewise continuous function and is defined as a 
sum of solutions in the intervals: 
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The solution of differential game (23)-(30) has 
shown that the main advantage of the proposed 
approach to the algorithm synthesis for multistep 
dynamic processes control is the ability to perform 
analytical transformations, which makes it possible 
to significantly reduce the amount of calculations for 
obtaining solution in the numerical form without 
using numerical methods of integration of 
differential equations.  

Application of differential-game approach to the 
algorithm synthesis of dynamic processes control 
under the action of undefined turbulences allows for 
continuous calculations of the players' program 
strategies in real time and to obtain the possibility of 
dynamic objects control with feedback, taking into 
account the action of different turbulences. Errors 
arising due to a limited number of considered 
discretes of differential spectra and vectors 
dimensionality of arbitrary parameters of program 
controls can be reduced to the necessary level at the 
refinement of solution by a gradient method in the 
field of differential spectra [10]. 

8. Conclusions 

The approach to the synthesis solution problems of 
guaranteed-adaptive algorithms of multistep control 
of LTA UAV injection into the given terminal 
conditions is offered. The approach is based on the 
application of the theory of differential games and 
the mathematical apparatus of differential 
transformations, allows to carry out analytical 
transformations that gives the possibility 
considerably reduce the volume of calculations for 
solution obtaining in the numerical form without 
application of numerical methods of integration of 
the differential equations. 
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Гарантовано-адаптивне термінальне керування аеростатичним літальним апаратом на основі 
диференціально-ігрового підходу 
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Мета: Метою даної статті є розв’язання задачі побудови ігрових алгоритмів керування виведенням 
безпілотного аеростатичного літального апарата в задані термінальні умови за дії невідомих збурень. 
Методи: Задача розв’язується на основі застосування багатоетапних диференціальних перетворень і 
теорії диференціальних ігор. Результати: Запропонований підхід не потребує численного 
інтегрування диференціальних рівнянь руху апарата, зводить проблему синтезу алгоритмів керування 
до розв’язання скінченої системи рівнянь відносно змінних керування і параметрів збурень, 
припускає аналітичні перетворення і дає змогу синтезувати алгоритми керування, що володіють 
властивістю адаптації до дії збурень і забезпечують гарантію виведення апарата в заданні термінальні 
умови. Розглянуто розв’язання задачі синтезу гарантовано-адаптивного керування процесом 
багатоетапного виведення безпілотного аеростатичного літального апарата в задані термінальні 
умови в формі математичної моделі диференціальної гри. Обговорення: Застосування 
диференціально-ігрового підходу до синтезу алгоритмів керування динамічними об’єктами за дії 
невизначених збурень дає змогу здійснювати неперервні обчислення програмних стратегій гравців у 
реальному часі та отримати можливість керування динамічними об’єктами із зворотним зв’язком, що 
враховує дію різних збурень. 
 
Ключові слова: безпілотні аеростатичні літальні апарати; гарантовано-адаптивне керування; 
диференціальна гра; багатоетапний метод диференціальних перетворень. 
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Гарантировано-адаптивное терминальное управление аэростатическим летательным 
аппаратом на основе дифференциально-игрового подхода 
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Цель: целью данной статьи является решение задачи построения игровых алгоритмов управления 
выведением беспилотного аэростатического летательного аппарата в заданные терминальные 
условия при воздействии неизвестных возмущений. Методы: задача решается на основе применения 
многоэтапных дифференциальных преобразований и теории дифференциальных игр. Результаты: 
предложенный подход не требует численного интегрирования дифференциальных уравнений 
движения аппарата, сводит проблему синтеза алгоритмов управления к решению конечной системы 
уравнений относительно переменных управления и параметров возмущений, допускает 
аналитические преобразования и позволяет синтезировать алгоритмы управления, владеющие 
свойством адаптации к действию возмущений и обеспечивающие гарантию выведения аппарата в 
заданные терминальные условия. Рассмотрено решение задачи синтеза гарантированно-адаптивного 
управления процессом многоэтапного выведения беспилотного аэростатического летательного 
аппарата в заданные терминальные условия в форме математической модели дифференциальной 
игры. Обсуждение: Применение дифференциально-игрового подхода к синтезу алгоритмов 
управления динамическими объектами при действии неопределенных возмущений позволяет 
осуществлять непрерывные вычисления программных стратегий игроков в реальном времени и 
получить возможность управления динамическими объектами с обратной связью, учитывающей 
действие различных возмущений. 
 
Ключевые слова: беспилотные аэростатические летательные аппараты; гарантированно-адаптивное 
управление; дифференциальная игра; многоэтапный метод дифференциальных преобразований. 
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