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Abstract 

In this studythe author investigates information processing in deep autoencoder models. It is demonstrated that 
unsupervised training of autoencoders of certain class can result in emergence of compact and structured internal 
representations of the input data space that can be correlated with higher level categories. The authors propose and 
demonstrate the practical possibility to detect and measure this emergent information structure by applying 
unsupervised density clustering in the activation space of the focal hidden layer of the model. Based on the findings of 
the studya new approach to training neural network models is proposed that is based on the emergent in unsupervised 
training information landscape, that is iterative, driven by the environment, requires minimal supervision and with 
interesting similarities to learning of biologic systems. In conclusion, a discussion of theoretical foundations of 
spontaneous categorization in self-learning systemsis provided. 
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1. Introduction 

Over the recent years, the domain of biology-
motivated machine learning has seen very fast, one 
can even say exploding growth. A number of 
significant advances have been made, bringing 
efficiency and confidence in learning of machine 
systems and specifically, deep neural networks, in 
certain areas of application such as image 
recognition, time series analysis, games and others 
to that of human abilities or even surpassing them. 

2. Related Work 

In a breakthrough in self-learning with training 
method based entirely on self-play reinforced 
learning with no human supervision, DeepMind 
team developed Zero Go machine player that 
achieved superior performance among both machine 
and human players while learning entirely on its 
own through self-play with no supervised training 
(Silver, Shrittwieser et al., [1]). Iterative, progressive 
and self-reinforcing unsupervised learning can prove 
an important step toward general learning directly 
from the environment with minimal external 
supervision. 

Interesting results in unsupervised training with 

deep autoencoder neural networks were reported by 
Le, Ranzato et al., [2]. Training an experimental 
deep neural network in unsupervised mode with a 
very large array of images they observed emergence 
of concept sensitive neurons – those activated by 
images of certain abstract category such as a human 
or animal face. 

While accuracy of recognition reported in the 
study was not yet at a confident level, these results 
open new possibilities in studying spontaneous 
emergence of concept associated structures in the 
information landscape of deep neural networks. 
An in-depth review of essential up-to-date 
developments in biology-motivated machine 
learning with applications of advances and findings 
in neuroscience to machine intelligence can be found 
in Hassabis, Kumaran et al. [3], notably in 
application to spontaneous learning and continual 
learning models , probabilistic and deep generative 
learning, progressive learning and conceptual 
representation, while essential concepts, results, 
promises and challenges in application of deep 
neural networks in artificial intelligence were 
investigated and summarized in great scope and 
detail by Bengio [4]. 
Applications of clustering techniques novelty 
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detection are numerous and well known, such as 
OLINDDA method by Spinosa et al. [5] for novelty 
and concept drift detection in data streams, Fanizzi 
et al. on concept clustering [6], applications of self-
organizing neural networks in novelty detection [7], 
density-based clustering [8], and deep autoencoder 
models for anomalydetection [9], see Pimentel et al. 
for a comprehensive review of the field [10]. 

While impressive progress has been made in 
adapting AI systems and specifically, neural 
networks to a wide and growing by day array of 
tasks and applications often with outstanding 
success, one cannot help pointing out some areas 
where advance has been slower. First, the achieved 
success is often limited to a specific application, 
skill or problem area, with limited capacity for more 
general and environment motivated self-learning. 

Secondly, the process of training machine 
intelligence systems with fixed categories and 
massive amounts of truth data may not always be 
efficient or practical in a dynamic and fluent 
information environment, where the emergence of 
new concepts and/or obsolescence of others would 
require frequent retraining of the learning system; 
nor is it reminiscent of learning processes of 
biologic systems. As pointed out by Hassabis et al., 
“human cognition is distinguished by its capacity to 

rapidly learn about new concepts from only a 
handful of examples” that is, it tends to be iterative, 

adaptive to the environment and based on trials and 
errors with limited ground truth data, while 
achieving gradually high levels of confidence in 
recognition of newly learned concepts. 

The motivation for this study is to approach both 
of these challenges from the direction suggested by 
the earlier studies, that is, by exploring the link 
between unsupervised training of certain deep neural 
network models and emergence of concept sensitive 
structures in their inner layers. Should such a link 
beestablished, could it be used as a foundation for 
novel approaches to training of machine intelligence 
systems that can learn with minimal supervision? 

The structure of the paper is as follows: in 
Section 2 we describe the model, data and methods 
used in the study. Section 3 contains the results of 
simulation experiments and evaluation of the 
emergent encoded structure. In Section 4 we discuss 
theoretical aspects of unsupervised categorization 
ability of autoencoder models. Finally, Section 5 
contains a discussion of the results, possible 
applications, and further directions of research. 

3. Model and Methods 
The model in this study contains several essential 
components with a deep autoencoder neural network 
in its core. Autoencoder models were studied 
extensively in applications in unsupervised learning 
and were chosen in this study for the following 
reasons: 

1. Being a universal approximator [11], 
feedforward neural networks can have virtually 
unlimited versatility and are suitable to most 
complex data types such as images and video [12], 
hyper-spectral image streams [13] and other; 

2. The effect of spontaneous emergence of 
higher-level concept sensitive structure in deep 
neural network and autoencoder models was 
reported in the earlier studies [2, 14 15];   

3. Neural networks are widely present in biologic 
systems that are also highly successful in self-
learning with minimal ground truth data [3, 15, 16]; 

4. Finally, a comparison of higher-level concept 
correlation of deep autoencoder model and PCA 
encoded spaces appeared to indicate somewhat 
stronger relation for autoencoder model [15]. 

Based on these arguments we expect that deep 
autoencoder models would be a good starting point 
for a study into spontaneous categorization by higher 
level concepts and learning based on the emergent 
unsupervised information landscape. 

3.1.  Model 

The model used in the study to produce a 
transformed representation of input data space is a 
deep autoencoder neural network of near-
symmetrical layout, with significant compression in 
the central layer as illustrated in Fig. 1. A 
compression factor, that is, the ratio of the size of 
the input to the central layer of the model up to 10 
was used, see [15] for the complete graph of the 
model. 

 

Fig. 1. Model layout 
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Depending on the size of hidden layers, models 
in the study had up to 8,000 parameters as described 
in Table 1.  

Table 1  
Model Parameters 

Layer Size Range Activa-
tion Shape Cost 

Input F=22 [0 .. 1]  (n, F)  
Inner 
1,2 

M= 
10..50 

Any Leaky 
Relu 

(n,M)  

Encode
d 

N= 
3..10 

Any Leaky 
Relu 

(n,N)  

Out O = F 
= 22 

[0 .. 1] Sigmoid (n, F) MSE1 

 
The models were implemented in Python with 

Keras [17]. Common software packages such as: 
sklearn-kit, matplotlib and others were used as well. 

3.2. Data 

The data in the study represents Internet sessions 
recorded in two different networks by geographic 
location and source [18]. In a sense, the task of 
Internet application identification can be compared 
to a recording of sound in a busy shopping mall, 
with the task to classify conversations in by some 
characteristics of the speaker, such as gender, age, 
occupation, etc (Table 2).  

Table 2 
Input Data Parameters 

Type No Description 

General 
 
6 

Total duration, total data size (per 
direction), number of packets (per 
direction), data protocol 

Packet 
size 

 
8 -
12 

min, max, mean, standard 
deviation, entropy of packet size, 
per direction 

Packet 
timing 

 
8 -
12 

min, max, mean, standard 
deviation, entropy of packet inter-
arrival time, per direction 

 
Each data sample represents an instance of 

Internet session such as a voice call, web browsing 
session, instant messaging session, file download, 
etc. and is defined by 22-30 parameters derived from 
temporal and volume statistics of data packets in the 
session [19]. 

Being a live recording in a core Internet network, 
the data has a wide representation of conversation 
patterns, with over 4,000 distinct applications 

represented in the dataset.For this reason, we believe 
it is well suited to test the validity of the developed 
approach with data of significant diversity and 
variation. 

3.3. Components 

Along with autoencoder model described above, for 
experiments and measurements we use components 
that were introduced and described in [15]. 

1. The autoencoder model is trained in 
unsupervised mode to match the output to the input 
X with Mean Squared Error loss function1. 

model.train(input=X, output=X, …). (1) 

A trained model performs “encoding 
transformation” from the input data space X to its 
representation in “Encoded” (Fig. 1) layer of the 

model y as: 
   y = encoder.predict(X), (2) 

where encoder is a sub-model mapping the input 
to activation of the encoding layer.   

2. To classify input samples to categories {C}, a 
classifier is trained with ground truth labeled set (X, 
L) in the encoded space of the model: 

classifier.fit(encoder.predict(X), L). (3) 
Together, the encoder and classifier can predict 

the class C of an input sample S as: 

   C = classifier.predict(encoder.predict(S)). (4) 
Here we used a geometry-based classifier such as 

nearest neighbor. 
3. In the unsupervised training phase one can 

apply density-based clustering method that doesn’t 

require fitting with labeled samples, such as 
MeanShift [20]. It is fitted on a subset of data in the 
encoded space of the model to learn and visualize its 
structure as: 

structurer.fit(encoder.predict(Y),...), (5) 
where Y is the structuring sample, a significant 
subset of the input dataset.  

Note that while unsupervised structurer cannot 
predict the higher-level category of the input sample 
that is, its class C, it can predict its implicit cluster 
Cl as one of the clusters identified in the structuring 
phase (5) as: 

 Cl = structurer.predict(encoder.predict(S)) (6) 

                                                
1 Additional optimization terms such as L2 and sparse were used in 
some experiments as well. 
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C and Cl thus signify the distinction between the 
externally known higher-level category of the 
sample and its internal concept (“implicit 

knowledge”) derived in unsupervised training of the 
model and clustering in its encoded space.  

3.4. Training, Visualization and Classification 

The models are first trained in an unsupervised 
autoencoder mode to achieve good reproduction of 
inputs. Two measures of the quality of reproduction 
i. e., the average deviation of the output of the model 
from the input were used:   

1) costfunction, MSE, had starting value in the 
range of 0.25 dropping to 0.001-0.002 after 100 
epochs of self-supervised training; and 

2) accuracy, measured as the match of 
softmax(input), softmax(output)thus, a measure 
related to covariance of input and output. Measured 
in this way, accuracy has increased after 100 epochs 
from ~ 1% to, on average, 95%. Both cost and 
accuracy were measured on the validation sample, 
separate from the one used in training. 

The structure in encoded space that emerges as a 
result of unsupervised training, also referred to as 
“unsupervised landscape”, can be measured and 
observed by the following methods: 

1. By applying an unsupervised clustering 
method in encoded space and identifying clusters 
populated by samples of a given application 
category; 

2. By applying multi-dimensional histogram 
analysis. 

3. By measuring the parameters of the 
distribution of application category samples in 
encoded space. 

4. By plotting and direct observation and 
measurement of application category samples in 
encoded space, with common plotting instruments 
such as [21]. 

Classification accuracy can be measured with 
labeled data by obtaining prediction as in (4) that 
can be compared with ground truth. We use 
accuracy metrics as commonly defined:  
classification accuracy or recall as True Positive 
samples (class) / Total samples (class); and false 
positive rate as False Positive (class) / Total samples 
(not in class). 

It’s worth noting that a priori, there’s no 

expectation of correlation between accuracy in 
unsupervised training vs. classification accuracy 
with labeled data. Where needed for clarity, they are 

referred to as “training accuracy” vs “classification 
accuracy” in the rest of the study. 

3.5. Landscape-Based Learning 

Based on results pointing to possible correlation of 
the emergent information structure in the encoded 
space with higher-level categories an attemptwas 
made to illustrate the possibility of using this 
structure in training unsupervised machine systems 
to learn and recognize new higher-level concepts. 

The method is based on developing a set of 
“concept markers” in encoded space over a series of 
learning iterations that aim to identify clusters or 
structures relevant to the concept being learned. 
Concept markers are built with small number of 
truth samples in trial and error iterations and 
artificial or “synthetic” markers derived from 

structures identified in the clustering phase 
following unsupervised training. In each learning 
iteration, the set of concept markers is updated based 
on real world inputs and classifier is retrained with 
the updated set of markers iteratively improving 
category prediction. 

4. Results 

4.1. Shape and Structure 
In all tests we observe that unsupervised training of 
models results in compact and structured 
representation of the input data space. 

For each application category C, that is a distinct 
Internet application, the following parameters were 
measured: 
1. Dispersion, or the relative volume of the category 
sample to general sample: 

(𝐶) = 𝑉𝑜𝑙 ((𝑐𝑎𝑡_s(𝐶))) ⁄ 𝑉𝑜𝑙 (𝑔𝑒𝑛_s), 
where cat_sC) and gen_s are the category and 
generic samples, respectively. 
2. Resolution, as the ratio of the number of visually 
identifiable features in the application category 
sample to the total number of identified clusters: 

Res(C) = Count(C) / Count(gen_s). 
3. Size, the typical size of an individual feature in 
the category sample relative to the mean size of 
generic sample. 
4. Density, of category features calculated as the 
ratio of the number of points in the category cluster 
to its volume: 

Dn(C) = Count(cat_s(C)) / Vol(cat_s(C)). 
5. Accuracy, defined as the accuracy of 
classification for in- and out-of-class samples: 

𝐴𝑐𝑐(𝐶) = (𝑅𝑒𝑐𝑎𝑙𝑙(𝐶), 𝐹𝑃𝑅(𝐶)), 
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where Recall, FPR are recall and false positive rate 
of the category classifier. 

The results of measurements of the emergent 
unsupervised structure for a subset of common 
Internet applications were summarized and 
analyzed. Not surprisingly, the measurements show 
that the categories with the most expressed structure 
in encoded space, that is, a small number of compact 
and dense clusters (DNS, NTP and Telnet) produced 
the highest accuracy of classification. On the 
opposite end of the categorization spectrum we 
observed applications with greater variability of 
content and behavior, such as streaming, BitTorrent, 
and Web protocol (HTTPS). Technically speaking, 
the latter should not be considered as a distinct 
application as it can carry many applications 
different in content and behavior, so the higher 
number of associated clusters and sparsity of the 
category space in this case is hardly surprising. 

4.2. Classification 

In the previous section it was observed and 
concluded that unsupervised training of models 
produced compact and structured encoded space, 
however there was no indication if or how it is 
correlated with higher-level concepts. The results in 
this section support the hypothesis that such 
correlation indeed exists.   

It is possible to monitor training of a neural 
network model with a callback. A simple callback 
was implemented to record classification accuracy 
of the same labeled sample during unsupervised 
training of a model after each 10-th epoch of 
training. In this example, classification accuracy 
across all categories improved by over 5%: 
 

epoch:  0 accuracy:  0.865 
epoch:  20 accuracy:  0.908 
epoch:  40 accuracy:  0.910 
epoch:  60 accuracy: 0.914 
epoch:  80 accuracy:  0.916 
epoch:  100 accuracy:  0.917. 

 

In the recorded experiments classification 
accuracy increased as a result of unsupervised 
training in all cases, with mean of 4.6% and the 
range 2.8 – 7.7%. In our view this is a strong 
indication that the emergent structure in the encoded 
space is correlated with higher-level features in the 
input data.  

If the emergent unsupervised structure had no 
significant correlation with higher-level concepts, 
positive correlation between unsupervised training 
and classification accuracy of concepts would be 
difficult to explain. 

4.3. Visualization in Encoded Space 
Categorization can be defined as a characteristic of 
the encoding transformation whereby samples of 
same higher-level categories are likely to be 
transformed to distinct regions in the encoded space 
of the model. This spontaneous clustering by higher-
level concept can be observed with the models 
directly by visualizing category labeled samples in 
encoded space. 

In Fig. 2, samples of Internet applications, 
including: DNS requests (green), Escale Newton 
game (magenta) and MSN messenger (red) are 
plotted in the encoded space the model with non-
categorized data of other categories (bottom plot, 
10,000 samples, gray). 

 

 

Fig. 2. Categorized sample in encoded space 

This visualization demonstrates that application 
category samples are indeed transformed into 
distinct regions in encoded space, though 
categorization parameters such as shape, size, 
density and others, may vary significantly across 
applications. 

4.4. Landscape-Based Learning 
Based on the results presented in the previous 
sections pointing to association between 
spontaneous structure in autoencoder models and 
higher-level concepts in the input data the authors 
attempted to develop a method that would harness 
this emergent structure for more efficient learning. 

The approach is based on detecting and 
measuring the unsupervised spontaneous structure in 



ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2019. N3(80): 51–60 56 

encoded space and using it, along with small streams 
of trusted data obtained in trial and error iterations to 
construct a set of markers in the encoded space that 
would identify the concept-associated regions well 
enough for a confident classification. We used a 
simple form of the method whereby synthetic 
markers were generated randomly within a small 
sphere around cluster centers and believe that 
refining it may further improve the performance. 

The learning process involves several stages:   
- unsupervised phase: spontaneous structure is 
detected by structuring method and “synthetic” 

markers calculated from identified clusters;    
- “encounter”, that registers the first labeled 
samples of the new concept allowing to identify 
clusters in the encoded space associated with the 
concept and build first iteration of concept markers 
from identified concept clusters and labeled 
samples; 
- trial and error iterations: the set of concept 
markers is updated based on the outcomes of trials 
with small streams of labeled data and classifier 
retrained on the updated set; 
- reinforcement and permanent learning: check and 
maintain classification performance achieved in the 
learning phase. 

Iterative landscape-based learning was applied to 
samples of several Internet applications, followed by 
verification of accuracy of classification as 
presented in Table 3.  

Table 3 
Landscape-based Learning, Accuracy 

Applica-
tion 

LM, 
Start 

LM, 
Final DNN kNN 

DNS 89.5/ 
19.3 

90.5 / 
6.9 

92.0 / 
8.3 

92.5 / 7.3 

NTP 66.8 / 
14.4 

99.4 / 
13.2 

100 / 
11.5 

99.5 / 13.0 

Telnet 97.8 / 
25.1 

97.9 / 
12.1 

96.8 / 
9.2 

97.9 / 11.6 

XBox 76.6 / 
39.2 

78.8 / 
13.8 

83.9 / 
7.6 

87.8 / 10.2 

Messenger 98.5 / 
37.8 

91.7 / 
6.6 

88.9 / 
8.2 

89.9 / 5.0 

Email 87.9 / 
46.8 

85.7 / 
17.9 

90.4 / 
19.4 

92.0 / 20.6 

Streaming 78.2 / 
23.1 

84.0 / 
14.7 

98.7 / 
1.8 

91.0 / 6.9 

 

How, and why does iterative learning work? 
Visualizing training samples generated by the model 
in learning iterations may give an answer to this 
question empirically.   

In Fig. 3, training samples of one application 
category (network time protocol, NTP), both 
genuine and generated artificial ones, were 
visualized in several learning iterations, with the 
background of the category sample in encoded space 
of the learning model. 

The diagram illustrates how over a period of 
learning iterations the set of training data points 
spreads over the category space of the concept being 
learned coincidentally with progressive 
improvement in the accuracy of the category 
classifier as learning process proceeds. 
 

Fig. 3. Training samples in learning iterations 

5. Conclusions 

The results reported in this section can be 
summarized as follows: 
1. Unsupervised training of deep autoencoder 
models studied here results in compact and 
structured representation of the input data space. 
This conclusion can be reached from shape and 
structure analysis. 
2. Some models can achieve high classification 
accuracy being trained with very small amounts of 
truth data pointing to possible correlation between 
unsupervised spontaneous structure and higher-level 
categories in the input data. 
3. Accuracy in classification is correlated with 
unsupervised training and improves considerably 
over the course of training, supporting the argument 
for correlation between the emergent unsupervised 
structure and higher-level categories. 
4. Visualization analysis directly supports the 
hypothesis that spontaneous structure emergent in 
unsupervised training reflects higher-level categories 
in the input data. 
5. A method of landscape-based concept learning 
based on unsupervised spontaneous structure with 
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iterative learning process and very light requirement 
for ground truth data was proposed, with good 
classification performance. 
6. Theoretical Approaches to Categorization 
A question can be asked: what theoretical reasons 
stand behind categorizing ability of models 
investigated in this study? Let’s start with some 

definitions. 
We shall define a learning model M as having a 

“good generalization”, or GM, of certain set of 

higher-level concepts C = { Ck} if: 1) it is finite; and 
2) is constant, that is, does not require refitting; and 
3) the mean measure of error in prediction of 
category in C is below certain maximum margin ε. 

We shall define a transformation of the input data 
space I to a certain data space E as “categorizing 

transformation” Tc if: 
1) for each category Ck and category space Ak in I, 
Tc(Ak), that is, the encoded representation of Ak in E, 
is a continuous region in the encoded space, or a 
finite set of such regions; and 
2) that encoded representations of category spaces { 
Ek } in E overlap with measure not exceeding certain 
maximum overlap factor η, i.e.: 
 M(Ui,j (Ei∩ Ej)) / M(UiEi) < η, (7) 

where M – the measure of volume in E. 
If at least one categorizing transformation exists, 

the encoded representation of input data space Ecan 
also be referred to as the category manifold, Mc. 

It is easy to see that for regular feed-forward 
neural networks trained with marked category 
samples, the condition of good generalization is 
equivalent to the existence of at least one 
categorizing transformation with overlap factor 
related to margin of error. 
Corollary: A Generalizing Model for data I and 
category space C exists if and only if there exists a 
categorizing transformation Tc. 
Proof: 
If categorizing transformation exists, then by 
theorem of universal approximation [14], it can be 
approximated with any precision by a certain neural 
network NE. Then the mapping from category 
manifold Mc to the category space can be 
approximated by another finite subnetwork Nc with 
margin of error not exceeding certain factor derived 
from the overlap factor F of Tc. The combined 
network of NE and Nc then satisfies both conditions 
of finiteness and maximum error of a GM. 

The reverse statement is straightforward, as 
transformation of I into C by a GM itself satisfies 

the conditions of categorizing transformation2 so the 
model itself is a categorizing transformation, with 
E=C. 

To illustrate this statement, let’s consider the case 
of random data IR. For any given set of samples S it 
possible to construct a model that could fit it to 
given categories with expected precision. However, 
the next batch of random data would require refitting 
of the model and possibly, increasing its size and so 
on. So, the conditions of constancy and finiteness 
cannot be met in this case and good generalization is 
not possible. 

The result above applies if category space C is 
known a priori, and the existence of a model with 
good generalization can be seen as an essential 
property of the input data that can be “packed” into 

given categories with controlled error and for as 
long as the nature of data I does not change 
significantly. But there are cases where concepts to 
which input data can be classified aren’t known, or 

significant volumes of representative ground truth 
data aren’t available to train models as in traditional 

machine learning approaches. 
One example of models that could deal with such 

cases naturally are autoencoder models. They do not 
require massive (or in fact, any) supervision in 
training and were used extensively [22, 23] for pre-
processing, dimensionality reduction and feature 
selection. “Templating” that is, grouping similar 

samples into category clusters is a successful 
strategy for deep learning and self-learning [4], But 
does it explain categorizing ability of autoencoder 
models observed in this and other related studies? 
It would be tempting to try to extend the results 
above to autoencoder systems as well, for example 
by defining “natural categorization”, similar to 

definition of categorizing transformation with given 
externally category space. However, on this path 
right from the start we encounter certain challenges. 
First, it appears that a trivial autoencoding network 
can successfully reproduce any input, including 
random, by passing it along to the output, if the size 
of the hidden layer matches or exceeds the input: 
wij = δij, where w – the weights in the hidden layer, δ 

– Kronecker’s symbol (and biases set to 0). 
So, for any non-trivial categorization effect we 

need to impose the condition of compression in the 
hidden layer: H < I, or even H << I, where H and I 
                                                
2 It is assumed that category classes have no overlap 
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are the sizes of the hidden and input layers, 
respectively 3. 

We can then define “natural” categorizing 
transformation, with no externally defined category 
space, as: 
  E, TE: I → E, such as ME = TE(I) = U Mk (8) 
where ME is the implicit category manifold, Mk – a 
continuous region in E; and dim(E) << dim(I); and 
TE is continuous in I; and the overlap condition for 
Mk (7) is met. 

With this definition, it’s quite straightforward to 

outline the proof that the data that is naturally 
categorizable (that is, at least one categorizing 
transformation exists) can be encoded to a lower 
dimension with good reproduction (that is, there 
exists at least one encoding model with good 
reproduction accuracy). 

Really, from definition of categorizing 
transformation, both T: I → E, and T-1: E → I must 
be continuous, and therefore can be approximated 
with a neural network model, say NE and NI. By 
combining NE and NI output to input we can obtain 
an autoencoding model NEI: I → I, with limited error 
and good accuracy of reproduction. 

However, the reverse case, that is, sufficiency of 
the existence of a good encoding network with 
compression for theexistence of a natural 
categorizing transformation appears to be more 
challenging, as several different cases need to be 
carefully considered and will be addressed in the 
future studies. 

7. Discussion 

7.1. Advantages of Landscape-based Learning 
The proposed method offers a number of essential 
advantages over common machine learning 
methods, particularly in early learning of novel, 
previously not known concepts in areas where 
significant prior knowledge is not available:      
(1) It is environment driven and iterative: the 
learning process can be triggered by an encounter 
with a single instance of concept, and proceeds in an 
iterative manner as and when training data become 
available, without dependence on massive amounts 
of ground truth data upfront.      

                                                
3 Or sparsity condition [5, 26]; in complex models such as in image 
recognition, we mean an effective subnetwork rather than a single 
physical layer and an effective factor of compression imposed by the 
sparsity condition. 

(2) It is effective from the start: providing better than 
random classification accuracy from the start of the 
learning process and over the entire interim learning 
phase.      
(3) It is lightweight: the method requires minimal 
amounts of ground truth data and model resources 
and in this way, is significantly more efficient than 
common methods. For example, with ten learning 
iterations, a classifier of a landscape-based model 
has only about 100 of three-dimensional data points, 
as opposed to thousands of weights and biases if a 
dedicated to concept neural network classifier was 
used.       
(4) It is flexible: learned categories can be easily 
added and / or “forgotten” without any negative 
impact on other learned concepts, nor does it require 
a retraining of the encoding model as with most 
common methods. 

7.2. Applications 
Iterative environment driven learning of new 
concepts based on the unsupervised landscape can 
provide insights to building machine intelligence 
models that could learn directly from the 
environment and acquire new higher-level concepts 
without massive supervised training. Such 
approaches would be useful as an alternative to 
commonly used methods in cases and areas where 
the concept being learned is new and large amounts 
of ground truth data are not yet available. 

Passive self-learning models similar to those 
studied here can be used in a range of research and 
technology applications to monitor and identify 
categories in data that were not known or detected 
previously such area surveillance image categories, 
network traffic patterns, operational and security 
events and situations, demographic and social data 
classes, and others. 

7.3. Further Work 

The results of the study need to be confirmed with 
data of different types and nature, that is the intent of 
future studies. 
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Спонтанна категоризація та самонавчання з глибокими моделями автокодування 
Національний авіаційний університет, просп. Любомира Гузара, 1, Київ, 03058, Україна 
E-mail: serged.7@gmail.com 
 
У цій роботі автор досліджував обробку інформації у моделях глибокого автокодування. Було 

продемонстровано що непідконтрольне навчання автокодерам певного класу може призвести до 

появи компактного та структурованого внутрішнього представлення простору вхідних даних, що 
може бути співвіднесено з категоріями вищого рівня. Була запропонована і продемонстрована  

практичнa можливість виявити та виміряти цю формується інформаційну структуру шляхом 

https://keras.io/
https://wand.net.nz/wits
https://matplotlib.org/
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застосування непідконтрольного кластеризації щільності в просторі активації фокусного прихованого 
шару моделі. На основі отриманих висновків запропонований новий підхід  до навчання моделей 

нейронних мереж, що базується на структурах виникаючих у в неконтрольованом інформаційному 

середовищі навчання, який є ітеративним, керованим навколишнім середовищем, вимагає 
мінімального нагляду та з подібністю до вивчення біологічних систем i також дає хороші результати 

класифікації при навчанні нових концепцій вищого рівня навіть при мінімальному наборі маркованих 

даних. На закінчення надається обговорення теоретичних основ спонтанної категоризації в системах 

самонавчання. 
 
Ключові слова: штучний інтелект; машинне навчання; нейронні мережі; непідконтрольне навчання 
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E-mail: serged.7@gmail.com 
 
В этой работе автор исследовал обработку информации в глубоких моделях автоэнкодеров. Было 

продемонстрировано, что неконтролируемая подготовка автоэнкодеров определенного класса может 
привести к появлению компактного и структурированного внутреннего представления пространства 

входных данных, которое можно соотнести с категориями более высокого уровня. Была предложена 

и продемонстрирована практическую возможность обнаружить и измерить эту возникающую 
информационную структуру, применяя кластеризацию неконтролируемой плотности в пространстве 

активации фокусного скрытого слоя модели. Основываясь на выводах, предложен новый подход к 

обучению моделей нейронных сетей, основанный на категоризованных представлениях возникающих 
в неконтролируемой информационной среде обучения, который является итеративным, управляемым 

средой, требует минимальных маркированных данных и с интригующим сходством с процессами 

обучения биологических систем.  В заключение дано обсуждение теоретических основ спонтанной 

категоризации в самообучающихся системах. 
 
Ключевые слова: искусственный интеллект; машинное обучение; нейронные сети; некотролируемое 

обучение 
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