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Abstract

In this studythe author investigates information processing in deep autoencoder models. It is demonstrated that
unsupervised training of autoencoders of certain class can result in emergence of compact and structured internal
representations of the input data space that can be correlated with higher level categories. The authors propose and
demonstrate the practical possibility to detect and measure this emergent information structure by applying
unsupervised density clustering in the activation space of the focal hidden layer of the model. Based on the findings of
the studya new approach to training neural network models is proposed that is based on the emergent in unsupervised
training information landscape, that is iterative, driven by the environment, requires minimal supervision and with
interesting similarities to learning of biologic systems. In conclusion, a discussion of theoretical foundations of
spontaneous categorization in self-learning systemsis provided.
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deep autoencoder neural networks were reported by
1. Introduction Le, Ranzato et al., [2]. Training an experimental
deep neural network in unsupervised mode with a
very large array of images they observed emergence
of concept sensitive neurons — those activated by
images of certain abstract category such as a human
or animal face.

While accuracy of recognition reported in the
study was not yet at a confident level, these results
open new possibilities in studying spontaneous
emergence of concept associated structures in the
information landscape of deep neural networks.

2. Related Work An in-depth review of essential up-to-date
developments in biology-motivated machine
learning with applications of advances and findings
in neuroscience to machine intelligence can be found
in Hassabis, Kumaran et al [3], notably in
application to spontaneous learning and continual
learning models , probabilistic and deep generative
learning, progressive learning and conceptual
representation, while essential concepts, results,
promises and challenges in application of deep
neural networks in artificial intelligence were
investigated and summarized in great scope and
detail by Bengio [4].

Applications of clustering techniques novelty

Over the recent years, the domain of biology-
motivated machine learning has seen very fast, one
can even say exploding growth. A number of
significant advances have been made, bringing
efficiency and confidence in learning of machine
systems and specifically, deep neural networks, in
certain areas of application such as image
recognition, time series analysis, games and others
to that of human abilities or even surpassing them.

In a breakthrough in self-learning with training
method based entirely on self-play reinforced
learning with no human supervision, DeepMind
team developed Zero Go machine player that
achieved superior performance among both machine
and human players while learning entirely on its
own through self-play with no supervised training
(Silver, Shrittwieser et al., [1]). Iterative, progressive
and self-reinforcing unsupervised learning can prove
an important step toward general learning directly
from the environment with minimal external
supervision.

Interesting results in unsupervised training with
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detection are numerous and well known, such as
OLINDDA method by Spinosa et al. [5] for novelty
and concept drift detection in data streams, Fanizzi
et al. on concept clustering [6], applications of self-
organizing neural networks in novelty detection [7],
density-based clustering [8], and deep autoencoder
models for anomalydetection [9], see Pimentel et al.
for a comprehensive review of the field [10].

While impressive progress has been made in
adapting Al systems and specifically, neural
networks to a wide and growing by day array of
tasks and applications often with outstanding
success, one cannot help pointing out some areas
where advance has been slower. First, the achieved
success is often limited to a specific application,
skill or problem area, with limited capacity for more
general and environment motivated self-learning.

Secondly, the process of training machine
intelligence systems with fixed categories and
massive amounts of truth data may not always be
efficient or practical in a dynamic and fluent
information environment, where the emergence of
new concepts and/or obsolescence of others would
require frequent retraining of the learning system;
nor is it reminiscent of learning processes of
biologic systems. As pointed out by Hassabis et al.,
“human cognition is distinguished by its capacity to
rapidly learn about new concepts from only a
handful of examples™ that is, it tends to be iterative,
adaptive to the environment and based on trials and
errors with limited ground truth data, while
achieving gradually high levels of confidence in
recognition of newly learned concepts.

The motivation for this study is to approach both
of these challenges from the direction suggested by
the earlier studies, that is, by exploring the link
between unsupervised training of certain deep neural
network models and emergence of concept sensitive
structures in their inner layers. Should such a link
beestablished, could it be used as a foundation for
novel approaches to training of machine intelligence
systems that can learn with minimal supervision?

The structure of the paper is as follows: in
Section 2 we describe the model, data and methods
used in the study. Section 3 contains the results of
simulation experiments and evaluation of the
emergent encoded structure. In Section 4 we discuss
theoretical aspects of unsupervised categorization
ability of autoencoder models. Finally, Section 5
contains a discussion of the results, possible
applications, and further directions of research.

3. Model and Methods

The model in this study contains several essential
components with a deep autoencoder neural network
in its core. Autoencoder models were studied
extensively in applications in unsupervised learning
and were chosen in this study for the following
reasons:

1. Being a universal approximator [11],
feedforward neural networks can have virtually
unlimited versatility and are suitable to most
complex data types such as images and video [12],
hyper-spectral image streams [13] and other;

2. The effect of spontaneous emergence of
higher-level concept sensitive structure in deep
neural network and autoencoder models was
reported in the earlier studies [2, 14 15];

3. Neural networks are widely present in biologic
systems that are also highly successful in self-
learning with minimal ground truth data [3, 15, 16];

4. Finally, a comparison of higher-level concept
correlation of deep autoencoder model and PCA
encoded spaces appeared to indicate somewhat
stronger relation for autoencoder model [15].

Based on these arguments we expect that deep
autoencoder models would be a good starting point
for a study into spontanecous categorization by higher
level concepts and learning based on the emergent
unsupervised information landscape.

3.1. Model

The model used in the study to produce a
transformed representation of input data space is a
deep autoencoder neural network of near-
symmetrical layout, with significant compression in
the central layer as illustrated in Fig. 1. A
compression factor, that is, the ratio of the size of
the input to the central layer of the model up to 10
was used, see [15] for the complete graph of the
model.
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Fig. 1. Model layout
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Depending on the size of hidden layers, models
in the study had up to 8,000 parameters as described
in Table 1.

Table 1
Model Parameters
Layer | Size | Range A:it:):;a- Shape | Cost
Input F=22 |[0..1] (n, F)
Inner M= Any Leaky |(n,M)
12 10..50 Relu
Encode N= Any Leaky | (n,N)
d 3..10 Relu
- - - ;
Out 2221: [0..1] |Sigmoid |(n, F) [MSE

The models were implemented in Python with
Keras [17]. Common software packages such as:
sklearn-kit, matplotlib and others were used as well.

3.2. Data

The data in the study represents Internet sessions
recorded in two different networks by geographic
location and source [18]. In a sense, the task of
Internet application identification can be compared
to a recording of sound in a busy shopping mall,
with the task to classify conversations in by some
characteristics of the speaker, such as gender, age,
occupation, etc (Table 2).

Table 2

Input Data Parameters

Type No Description
Total duration, total data size (per
General 6 [(direction), number of packets (per
direction), data protocol
min, max, mean, standard
Packet

8 - [(deviation, entropy of packet size,
12 |per direction

min, max, mean, standard

8 - (deviation, entropy of packet inter-
12 Jarrival time, per direction

size

Packet
timing

Each data sample represents an instance of
Internet session such as a voice call, web browsing
session, instant messaging session, file download,
etc. and is defined by 22-30 parameters derived from
temporal and volume statistics of data packets in the
session [19].

Being a live recording in a core Internet network,
the data has a wide representation of conversation
patterns, with over 4,000 distinct applications

represented in the dataset.For this reason, we believe
it is well suited to test the validity of the developed
approach with data of significant diversity and
variation.

3.3.Components

Along with autoencoder model described above, for
experiments and measurements we use components
that were introduced and described in [15].

1. The autoencoder model is trained in
unsupervised mode to match the output to the input
X with Mean Squared Error loss function'.

model.train(input=X, output=X, ...). (1)

A trained model performs “encoding
transformation” from the input data space X to its
representation in “Encoded” (Fig. 1) layer of the
model y as:

vy = encoder.predict(X), 2)

where encoder is a sub-model mapping the input
to activation of the encoding layer.

2. To classify input samples to categories {C}, a
classifier is trained with ground truth labeled set (X,
L) in the encoded space of the model:

classifier.fit(encoder.predict(X), L). 3)

Together, the encoder and classifier can predict
the class C of an input sample S as:

C = classifier.predict(encoder.predict(S)). (4)

Here we used a geometry-based classifier such as
nearest neighbor.

3. In the unsupervised training phase one can
apply density-based clustering method that doesn’t
require fitting with labeled samples, such as
MeanShift [20]. It is fitted on a subset of data in the
encoded space of the model to learn and visualize its
structure as:

structurer.fit(encoder.predict(Y),...), (5)

where Y is the structuring sample, a significant
subset of the input dataset.

Note that while unsupervised structurer cannot
predict the higher-level category of the input sample
that is, its class C, it can predict its implicit cluster
Cl as one of the clusters identified in the structuring
phase (5) as:

Cl = structurer.predict(encoder.predict(S)) (6)

1 .. T .
Additional optimization terms such as L2 and sparse were used in
some experiments as well.
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C and CI thus signify the distinction between the
externally known higher-level category of the
sample and its internal concept (“implicit
knowledge”) derived in unsupervised training of the
model and clustering in its encoded space.

3.4.Training, Visualization and Classification

The models are first trained in an unsupervised
autoencoder mode to achieve good reproduction of
inputs. Two measures of the quality of reproduction
1. e., the average deviation of the output of the model
from the input were used:

1) costfunction, MSE, had starting value in the
range of 0.25 dropping to 0.001-0.002 after 100
epochs of self-supervised training; and

2) accuracy, measured as the match of
softmax(input), softmax(output)thus, a measure
related to covariance of input and output. Measured
in this way, accuracy has increased after 100 epochs
from ~ 1% to, on average, 95%. Both cost and
accuracy were measured on the validation sample,
separate from the one used in training.

The structure in encoded space that emerges as a
result of unsupervised training, also referred to as
“unsupervised landscape”, can be measured and
observed by the following methods:

1. By applying an unsupervised clustering
method in encoded space and identifying clusters
populated by samples of a given application
category;

2. By applying multi-dimensional histogram
analysis.

3. By measuring the parameters of the
distribution of application category samples in
encoded space.

4. By plotting and direct observation and
measurement of application category samples in
encoded space, with common plotting instruments
such as [21].

Classification accuracy can be measured with
labeled data by obtaining prediction as in (4) that
can be compared with ground truth. We use
accuracy  metrics as commonly  defined:
classification accuracy or recall as True Positive
samples (class) / Total samples (class); and false
positive rate as False Positive (class) / Total samples
(not in class).

It’s worth noting that a priori, there’s no
expectation of correlation between accuracy in
unsupervised training vs. classification accuracy
with labeled data. Where needed for clarity, they are

referred to as “training accuracy” vs “classification
accuracy” in the rest of the study.

3.5.Landscape-Based Learning

Based on results pointing to possible correlation of
the emergent information structure in the encoded
space with higher-level categories an attemptwas
made to illustrate the possibility of using this
structure in training unsupervised machine systems
to learn and recognize new higher-level concepts.

The method is based on developing a set of
“concept markers” in encoded space over a series of
learning iterations that aim to identify clusters or
structures relevant to the concept being learned.
Concept markers are built with small number of
truth samples in trial and error iterations and
artificial or “synthetic” markers derived from
structures identified in the clustering phase
following unsupervised training. In each learning
iteration, the set of concept markers is updated based
on real world inputs and classifier is retrained with
the updated set of markers iteratively improving
category prediction.

4. Results
4.1.Shape and Structure

In all tests we observe that unsupervised training of
models results in compact and structured
representation of the input data space.

For each application category C, that is a distinct
Internet application, the following parameters were
measured:

1. Dispersion, or the relative volume of the category
sample to general sample:

(C)="Vol ((cat_s(C)))/Vol (gen_s),
where cat sC) and gen s are the category and
generic samples, respectively.
2. Resolution, as the ratio of the number of visually
identifiable features in the application category
sample to the total number of identified clusters:

Res(C) = Count(C) / Count(gen_s).
3. Size, the typical size of an individual feature in
the category sample relative to the mean size of
generic sample.
4. Density, of category features calculated as the
ratio of the number of points in the category cluster
to its volume:

Dn(C) = Count(cat_s(C)) / Vol(cat_s(C)).
5. Accuracy, defined as the accuracy of
classification for in- and out-of-class samples:
Acc(C) = (Recall(C), FPR(C)),
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where Recall, FPR are recall and false positive rate
of the category classifier.

The results of measurements of the emergent
unsupervised structure for a subset of common
Internet  applications were summarized and
analyzed. Not surprisingly, the measurements show
that the categories with the most expressed structure
in encoded space, that is, a small number of compact
and dense clusters (DNS, NTP and Telnet) produced
the highest accuracy of classification. On the
opposite end of the categorization spectrum we
observed applications with greater variability of
content and behavior, such as streaming, BitTorrent,
and Web protocol (HTTPS). Technically speaking,
the latter should not be considered as a distinct
application as it can carry many applications
different in content and behavior, so the higher
number of associated clusters and sparsity of the
category space in this case is hardly surprising.

4.2.Classification

In the previous section it was observed and
concluded that unsupervised training of models
produced compact and structured encoded space,
however there was no indication if or how it is
correlated with higher-level concepts. The results in
this section support the hypothesis that such
correlation indeed exists.

It is possible to monitor training of a neural
network model with a callback. A simple callback
was implemented to record classification accuracy
of the same labeled sample during unsupervised
training of a model after each 10-th epoch of
training. In this example, classification accuracy
across all categories improved by over 5%:

epoch: 0  accuracy: 0.865
epoch: 20 accuracy: 0.908
epoch: 40 accuracy: 0.910
epoch: 60 accuracy: 0.914
epoch: 80 accuracy: 0.916
epoch: 100 accuracy: 0.917.

In the recorded experiments classification
accuracy increased as a result of unsupervised
training in all cases, with mean of 4.6% and the
range 2.8 — 7.7%. In our view this is a strong
indication that the emergent structure in the encoded
space is correlated with higher-level features in the
input data.

If the emergent unsupervised structure had no
significant correlation with higher-level concepts,
positive correlation between unsupervised training
and classification accuracy of concepts would be
difficult to explain.

4.3.Visualization in Encoded Space

Categorization can be defined as a characteristic of
the encoding transformation whereby samples of
same higher-level categories are likely to be
transformed to distinct regions in the encoded space
of the model. This spontaneous clustering by higher-
level concept can be observed with the models
directly by visualizing category labeled samples in
encoded space.

In Fig. 2, samples of Internet applications,
including: DNS requests (green), Escale Newton
game (magenta) and MSN messenger (red) are
plotted in the encoded space the model with non-
categorized data of other categories (bottom plot,
10,000 samples, gray).
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Fig. 2. Categorized sample in encoded space

This visualization demonstrates that application
category samples are indeed transformed into
distinct regions in encoded space, though
categorization parameters such as shape, size,
density and others, may vary significantly across
applications.

4.4.Landscape-Based Learning

Based on the results presented in the previous
sections  pointing to  association  between
spontaneous structure in autoencoder models and
higher-level concepts in the input data the authors
attempted to develop a method that would harness
this emergent structure for more efficient learning.
The approach is based on detecting and
measuring the unsupervised spontaneous structure in



56 ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2019. N3(80): 51-60

encoded space and using it, along with small streams
of trusted data obtained in trial and error iterations to
construct a set of markers in the encoded space that
would identify the concept-associated regions well
enough for a confident classification. We used a
simple form of the method whereby synthetic
markers were generated randomly within a small
sphere around cluster centers and believe that
refining it may further improve the performance.

The learning process involves several stages:

- unsupervised phase: spontaneous structure is
detected by structuring method and “synthetic”
markers calculated from identified clusters;

“encounter”, that registers the first labeled
samples of the new concept allowing to identify
clusters in the encoded space associated with the
concept and build first iteration of concept markers
from identified concept clusters and labeled
samples;

- trial and error iterations: the set of concept
markers is updated based on the outcomes of trials
with small streams of labeled data and classifier
retrained on the updated set;

- reinforcement and permanent learning: check and
maintain classification performance achieved in the
learning phase.

Iterative landscape-based learning was applied to
samples of several Internet applications, followed by
verification of accuracy of classification as
presented in Table 3.

Table 3
Landscape-based Learning, Accuracy
Applica- LM, LM,
tion Start Final DNN kNN
89.5/ 90.5/ 92.0/ 92.5/17.3
DNS 193 | 69 8.3
66.8/ 99.4/ 100/ 99.5/13.0
NTP 144 | 132 | 115
Telnet 97.8/ 97.9/ 96.8/ [979/11.6
25.1 12.1 9.2
XBo 76.6 / 78.8/ 83.9/ |87.8/10.2
x 392 | 13.8 7.6
Messenoer 98.5/ 91.7/ 88.9/ 89.9/5.0
& 37.8 6.6 8.2
Email 879/ 85.7/ 90.4/ 1(92.0/20.6
! 468 | 17.9 19.4
Streamin 782/ 84.0/ 98.7/ 91.0/6.9
M 1 234 14.7 1.8

How, and why does iterative learning work?
Visualizing training samples generated by the model
in learning iterations may give an answer to this
question empirically.

In Fig. 3, training samples of one application
category (network time protocol, NTP), both
genuine and generated artificial ones, were
visualized in several learning iterations, with the
background of the category sample in encoded space
of the learning model.

The diagram illustrates how over a period of
learning iterations the set of training data points
spreads over the category space of the concept being
learned coincidentally with progressive
improvement in the accuracy of the category
classifier as learning process proceeds.

Iteration: 1 Iteration: 7

Tteration: 4 Iteration: 10

Fig. 3. Training samples in learning iterations

5. Conclusions

The results reported in this section can be
summarized as follows:

1. Unsupervised training of deep autoencoder
models studied here results in compact and
structured representation of the input data space.
This conclusion can be reached from shape and
structure analysis.

2. Some models can achieve high classification
accuracy being trained with very small amounts of
truth data pointing to possible correlation between
unsupervised spontaneous structure and higher-level
categories in the input data.

3. Accuracy in classification is correlated with
unsupervised training and improves considerably
over the course of training, supporting the argument
for correlation between the emergent unsupervised
structure and higher-level categories.

4. Visualization analysis directly supports the
hypothesis that spontaneous structure emergent in
unsupervised training reflects higher-level categories
in the input data.

5. A method of landscape-based concept learning
based on unsupervised spontaneous structure with
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iterative learning process and very light requirement
for ground truth data was proposed, with good
classification performance.

6. Theoretical Approaches to Categorization

A question can be asked: what theoretical reasons
stand behind categorizing ability of models
investigated in this study? Let’s start with some
definitions.

We shall define a learning model M as having a
“good generalization”, or GM, of certain set of
higher-level concepts C = { Cy} if: 1) it is finite; and
2) is constant, that is, does not require refitting; and
3) the mean measure of error in prediction of
category in C is below certain maximum margin €.

We shall define a transformation of the input data
space I to a certain data space E as “categorizing
transformation” 7 if:

1) for each category Cx and category space Ag in /,
T.(Ax), that is, the encoded representation of Ax in £,
is a continuous region in the encoded space, or a
finite set of such regions; and
2) that encoded representations of category spaces {
Ex } in E overlap with measure not exceeding certain
maximum overlap factor 7, i.e.:

M(Uy; (Ei E) / M(UE) <, (7
where M — the measure of volume in E.

If at least one categorizing transformation exists,
the encoded representation of input data space Ecan
also be referred to as the category manifold, M..

It is easy to see that for regular feed-forward
neural networks trained with marked category
samples, the condition of good generalization is
equivalent to the existence of at least one
categorizing transformation with overlap factor
related to margin of error.

Corollary: A Generalizing Model for data I and
category space C exists if and only if there exists a
categorizing transformation T..

Proof:

If categorizing transformation exists, then by
theorem of universal approximation [14], it can be
approximated with any precision by a certain neural
network Ng. Then the mapping from category
manifold M. to the category space can be
approximated by another finite subnetwork N. with
margin of error not exceeding certain factor derived
from the overlap factor F of 7. The combined
network of Ng and N, then satisfies both conditions
of finiteness and maximum error of a GM.

The reverse statement is straightforward, as
transformation of / into C by a GM itself satisfies

the conditions of categorizing transformation?® so the
model itself is a categorizing transformation, with
E=C.

To illustrate this statement, let’s consider the case
of random data Ir. For any given set of samples S it
possible to construct a model that could fit it to
given categories with expected precision. However,
the next batch of random data would require refitting
of the model and possibly, increasing its size and so
on. So, the conditions of constancy and finiteness
cannot be met in this case and good generalization is
not possible.

The result above applies if category space C is
known a priori, and the existence of a model with
good generalization can be seen as an essential
property of the input data that can be “packed” into
given categories with controlled error and for as
long as the nature of data / does not change
significantly. But there are cases where concepts to
which input data can be classified aren’t known, or
significant volumes of representative ground truth
data aren’t available to train models as in traditional
machine learning approaches.

One example of models that could deal with such
cases naturally are autoencoder models. They do not
require massive (or in fact, any) supervision in
training and were used extensively [22, 23] for pre-
processing, dimensionality reduction and feature
selection. “Templating” that is, grouping similar
samples into category clusters is a successful
strategy for deep learning and self-learning [4], But
does it explain categorizing ability of autoencoder
models observed in this and other related studies?

It would be tempting to try to extend the results
above to autoencoder systems as well, for example
by defining “natural categorization”, similar to
definition of categorizing transformation with given
externally category space. However, on this path
right from the start we encounter certain challenges.
First, it appears that a trivial autoencoding network
can successfully reproduce any input, including
random, by passing it along to the output, if the size
of the hidden layer matches or exceeds the input:
wij = 05, where w — the weights in the hidden layer, &
— Kronecker’s symbol (and biases set to 0).

So, for any non-trivial categorization effect we
need to impose the condition of compression in the
hidden layer: H < I, or even H << [, where H and /

2 It is assumed that category classes have no overlap
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are the sizes of the hidden and input layers,
respectively °.

We can then define “natural” categorizing
transformation, with no externally defined category
space, as:

E Te: I — E, such as Mg = Tg(l) = U My (8)
where Mg is the implicit category manifold, My —a
continuous region in E; and dim(E) << dim(I); and
Tg is continuous in I; and the overlap condition for
Mk (7) is met.

With this definition, it’s quite straightforward to
outline the proof that the data that is naturally
categorizable (that is, at least one categorizing
transformation exists) can be encoded to a lower
dimension with good reproduction (that is, there
exists at least one encoding model with good
reproduction accuracy).

Really, from definition of categorizing
transformation, both T: I — E, and T™: E — I must
be continuous, and therefore can be approximated
with a neural network model, say Ng and Ni. By
combining Ng and Ni output to input we can obtain
an autoencoding model Ngi: I — I, with limited error
and good accuracy of reproduction.

However, the reverse case, that is, sufficiency of
the existence of a good encoding network with
compression for theexistence of a natural
categorizing transformation appears to be more
challenging, as several different cases need to be
carefully considered and will be addressed in the
future studies.

7. Discussion

7.1. Advantages of Landscape-based Learning

The proposed method offers a number of essential
advantages over common machine learning
methods, particularly in early learning of novel,
previously not known concepts in areas where
significant prior knowledge is not available:

(1) It is environment driven and iterative: the
learning process can be triggered by an encounter
with a single instance of concept, and proceeds in an
iterative manner as and when training data become
available, without dependence on massive amounts
of ground truth data upfront.

3 Or sparsity condition [5, 26]; in complex models such as in image
recognition, we mean an effective subnetwork rather than a single
physical layer and an effective factor of compression imposed by the
sparsity condition.

(2) It is effective from the start: providing better than
random classification accuracy from the start of the
learning process and over the entire interim learning
phase.

(3) It is lightweight: the method requires minimal
amounts of ground truth data and model resources
and in this way, is significantly more efficient than
common methods. For example, with ten learning
iterations, a classifier of a landscape-based model
has only about 100 of three-dimensional data points,
as opposed to thousands of weights and biases if a
dedicated to concept neural network classifier was
used.

(4) 1t is flexible: learned categories can be easily
added and / or “forgotten” without any negative
impact on other learned concepts, nor does it require
a retraining of the encoding model as with most
common methods.

7.2. Applications

Iterative environment driven learning of new
concepts based on the unsupervised landscape can
provide insights to building machine intelligence
models that could learn directly from the
environment and acquire new higher-level concepts
without massive supervised training. Such
approaches would be useful as an alternative to
commonly used methods in cases and areas where
the concept being learned is new and large amounts
of ground truth data are not yet available.

Passive self-learning models similar to those
studied here can be used in a range of research and
technology applications to monitor and identify
categories in data that were not known or detected
previously such area surveillance image categories,
network traffic patterns, operational and security
events and situations, demographic and social data
classes, and others.

7.3.Further Work

The results of the study need to be confirmed with
data of different types and nature, that is the intent of
future studies.
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CnoHTaHHa KaTeropu3auisi Ta CAMOHABYAHHA 3 INIMOOKHUMM MO/IeJISIMH ABTOKOIYBAHHS
HanionaneHuii aBiauiinuii yniBepcuter, npoc. JIirobomupa I'y3apa, 1, Kuis, 03058, Ykpaina

E-mail: serged.7@gmail.com

VY wiif pobori aBTOp HOCHiIKYyBaB 00poOKy iH(opMmanii y Mozmensix IIMOOKOro aBTOKOAYBaHHA. byio
MPOJIEMOHCTPOBAHO IO HEMiJKOHTPOJIbHE HABYAHHS aBTOKOJAEPaM IIEBHOI'O KJIACy MOXKE INPH3BECTH JI0
MOSIBY KOMITAKTHOI'O Ta CTPYKTYPOBAHOTO BHYTPIIIHBOT'O MPEACTaBIECHHS MPOCTOPY BXIIHUX NaHMX, IO
MOXe OyTH CIiBBIJHECEHO 3 KaTeropissMd BHILOro piBHA. Byna 3ampornoHoBaHa i1 MpOAEMOHCTPOBaHA
MpaKTHYHAa MOXJIMBICTE BHSBHTH Ta BHMIpSATH 10 (opMmyeTbes iHQOpMaLiiiHy CTPYKTYpy HUISIXOM
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3aCTOCYBaHHS HEMIAKOHTPOIBHOI'O KIacTepu3alii IIIbHOCTI B MPOCTOPI aKTHBaLii (POKYCHOTO MPHUXOBAHOTO
mapy moxeni. Ha ocHOBI OTpHMaHMX BHCHOBKIB 3alpONIOHOBAaHWM HOBUH MiAXiA 10 HaBYaHHS MoOJeNeH
HEHPOHHUX MEpEeK, 0 0a3yeThCsl Ha CTPYKTYpax BUHHKAIOUMX Yy B HEKOHTPOJIHOBAHOM iHQOpMaiifHOMY
CEpeNOBHIIl HABYaHHS, SIKHH € iTepaTUBHUM, KEPOBAHMM HAaBKOJNHWIIHIM CEPEJOBUIICM, BHMAarae
MIHIMAJIBHOTO HATJISAAY Ta 3 HOAIOHICTIO O BUBYCHHS OiOJIOTIYHUX CHUCTEM 1 TAKOXK Ja€ XOPOIIi Pe3yIbTaTh
knacuikarlii mpyu HaBYaHHI HOBMX KOHIIETIIIH BUILOTO PiBHS HABITH MPW MiHIMalIbHOMY Hab0pi MapKOBaHUX
naHux. Ha 3akiHueHHs HaJaeThCsl OOTOBOPEHHS TEOPETHYHUX OCHOB CIIOHTAHHOI KaTeropusallii B cucTeMax
CaMOHaBYaHHSI.

KarouoBi ciioBa: mTydHuil iHTENEKT; MalllMHHE HABYAHHS; HEHPOHHI MEpeXi; HEMIKOHTPOJIbHE HABYaHHS
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CrnoHTaHHasl KATErOpU3aIus H caMo00yUeHHe B TJIyOOKHX CAMOKOIMPYIOIIUX MOIEJISIX
HammonanpHBINM aBHAIIMOHHBIA YHUBEPCHUTET, mpoctl. Jlrobomupa ['y3apa, 1, Kues, 03058, Ykpauna
E-mail: serged.7@gmail.com

B atoii pabore aBTOp HCciemoBan o0pabOTKy MHGOpPMAIMK B IIYOOKHX MOJEISX aBTOIHKOAEPOB. bbuio
MIPOAEMOHCTPHUPOBAHO, YTO HEKOHTPOJIUPYEMast TOArOTOBKA aBTO3HKOJEPOB OMPEIETEHHOro Kiracca MOXET
MIPUBECTU K IMOABJIICHUIO KOMITAKTHOI'O U CTPYKTYPHPOBAHHOI'O BHYTPEHHETO NIPEACTABIICHUA IPOCTPAHCTBA
BXOJIHBIX JaHHBIX, KOTOPOE MOKHO COOTHECTH C KaTEeropusMH 0ojIee BRICOKOTO YpOBHsI. bblta mpemmokena
W TPOJACMOHCTPUPOBAHA TPAKTHUYECKYIO BO3MOXHOCTh OOHAPYXHTh M HW3MEPUTHh 3Ty BO3HHKAOIIYIO
WH()OPMAITMOHHYIO CTPYKTYPY, IPUMEHSS KJIaCTEPH3AIUI0 HEKOHTPOIUPYEMOU TUIOTHOCTH B IIPOCTPAHCTBE
aKTUBaIMU (HOKYCHOIO CKPBITOro cjiost Mojennd. OCHOBBIBAasACh Ha BBIBOJAX, MPEUIOKEH HOBBIA MOAXOJ K
00yIEeHHUIO MOJIEeIIeH HEHPOHHBIX CETeH, OCHOBAHHBIA HA KATECTOPHU30BAHHBIX MPEICTABICHUSIX BO3HUKAIOIIHX
B HEKOHTPOIUPYEeMON WHPOPMAIIMOHHOH cpelie 00yUeHHs, KOTOPBIH SIBJISCTCS UTEPATHBHBIM, YIPABISEMbIM
cpenoii, Tpedyer MHUHUMAIBHBIX MapKHPOBAHHBIX JaHHBIX U C WHTPUTYIONIMM CXOJCTBOM C TPOIleCCaMU
00y4eHUsT OMONIOTMYECKUX CHCTeM. B 3aritoueHne JaHo 00CYXJIEHHE TEOPETUYECKUX OCHOB CIIOHTAHHON
KaTeropu3aiiy B caMo0OyJatoIiXCsl CHCTEMAX.

KiroueBble cj10Ba: HCKyCCTBEHHBIH HHTEIUIEKT; MAIIMHHOE 00y4eHNE; HEHPOHHBIE CETH; HEKOTPOIUPYEeMOe
o0yueHne
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