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Abstract

The paper considers aspects of foreground detection in dynamic scenes of intelligent transport system based on
computer vision and artificial intelligence. Traditional and recent background modeling models have been considered.
Nonparametric approach for background subtraction based on the kernel model was used as the most appropriate in
dynamic environment. The value of the estimated kernel density function for each pixel of original image was compared
with threshold value, estimated by Otsu’s method. The proposed kernel density estimation method was verified on

video-stream containing moving objects and indicated good performance for Unmanned Aerial Vehicles application.
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1. Introduction

Intelligent Transport Systems (ITS) involve a wide
range of technological and organizational systems,
applications and services. They play an important
role in shaping future ways of mobility and the
transport sector.

According to [1], it is expected that through the
use of ITS applications transport will become more
efficient, safer and greener. The United Nations
Economic Commission for Europe (UNECE)
focused on ITS as a valuable technology-driven
instrument able to boost the future of the transport
systems.

The core objective of the UNECE strategy on
ITS, is to lobby for new actions and policies where
ITS improve the quality of life and make sustainable
mobility available across borders.

ITS solutions utilize advanced information
technologies related to driver assistance, traffic
management, and vehicle control, which are
constantly improving the quality of interaction
between highway systems and vehicles.

Many institutions and stakeholders consider the
deployment of ITS to be a key opportunity for
transport policymakers in terms of delivering
seamless and efficient customized transport
solutions across large areas.

According to a definition from the Research and
Innovative Technology Administration, ITS is made

up of 16 types of technology-based systems.
According to this classification, these systems can
be further divided into the subcategories “intelligent
infrastructure” and “intelligent vehicle”.

Intelligent infrastructure includes:

- Arterial management;

- Freeway management;

- Crash prevention and safety;

- Road weather management;

- Roadway operations and maintenance;

- Transit management;

- Traffic incident management;

- Emergency management;

- Electronic payment and pricing;

- Traveler information;

- Information management;

- Commercial vehicle operations;

- Intermodal freight.

Intelligent vehicle includes:

- Collision avoidance;

- Driver assistance;

- Collision notification.

ITS is a system that integrates information and
communication  technology = with  transport
infrastructure, vehicles and the user [4].

ITS applications exploit data collected from
vehicles to improve the use of vehicles, the safety
and comfort of drivers and to rationalize the use of
public infrastructures. ITS applications can be
categorized into four main classes: infotainment and
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comfort; traffic management; road safety; and
autonomous driving applications.

ITS in aerospace engineering are considered as
intelligent systems that use information and
communication technologies in the management of
aerospace and infrastructure facilities, focused on
improving the safety and efficiency of the transport
process, comfort for transport users [3].

An aerospace ITS has the following functions:

- Prevention of collision aircraft in airspace and
outer space;

- Prevention collision aircraft on ground;

- Preventing collisions aircraft with Earth;

- Ensuring optimum performance of each
aircraft flight;

- Providing crew piloted aircraft actual flight
information;

- Identification of aircraft for defense purposes;

- Activities associated with the rationalization
of air traffic flow;

- Ensuring alerting service and assistance during
events for search and rescue.

Continuous image flow is one of the most
important sources in ITS. Fixed or portable cameras
can provide effective image capturing. Currently,
Unmanned Aerial Vehicles (UAVs) are often used
as an effective monitoring systems for vehicle
detection and tracking. The UAV’s computer vision
allows getting images in different situations and
from different angles, interpreting and making their
sense [5, 7].

Computer vision is the broad domain of artificial
intelligence (Al) and can be thought of as the branch
of visual sensing, perception, and reasoning within
the field of Al

Thus, the main purpose of the paper is to analyze
existing background subtraction models and to
research non-parametric approach for background
subtraction based on the kernel model for usage in
dynamic environment.

2. Background subtraction models

Foreground detection is a key step in many
computer vision applications [2]. This step is
concerned with the detection of changes or potential
objects in the image sequence. The foreground
represents the objects that are not stationary in the
scene for a period of time. In ITS, foreground
detection ultimately aims to identify potential
objects called foreground” from the static
information called the “background” [6]. In the
dynamic and real-time environment of an ITS,

foreground estimation becomes more challenging
due to noise, illumination changes, weather
conditions, and a cluttered environment [11].
Therefore, the background representation model
must be reliable, robust and adaptive for sudden or
gradual changes in the scene.

The classification of background modeling models is
represented in the Table [8].

Table
Classification of background modeling models
Background
Modeling | Categories Sub-Categories
Models
Traditional Basic Mean, Median, Histogram,
Models Models Pixel Intensity Classification,
Pixel Change Classification
Gaussian Models (single
Gaussian, general Gaussian,
. mixture of Gaussians,
Statistical . .
Models mixture of general.Ga9551ans,
Kernel Density Estimation),
Support Vector Models,
Subspace Learning Models
Clusters |K-means, Codebook, Basic
Models [Sequential Clustering
General Regression,
Multivalued, Competitive,
Neural Dipolgr Competitiye, Self-
Networks Organizing, Growing
Hierarchical Self-Organizing,
Adaptive Resonance Theory
Neural Network
Wiener filter,
Estimation |Kalman filter,
Models [Correntropy filter,
Chebycheyv filter
Recent Mixture Models,
Models | Advanced | Hybrid Models,
Statistical [Non Parametric Models,
Models |Co-occurrence,
Multi-Kernels
Fuzzy [Fuzzy C-means Clustering
Models
Discrimi- |Incremental Maximum Margin
native and |Criterion
Mixed
Subspace
Models
Kernel |Kernel Principal Component
Subspace |Analysis
Models
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End Table
Background
Modeling | Categories Sub-Categories
Models
Robust Principal Component
Subspace | Analysis, Half-Quadratic-
Models PCA, Pursuing Dynamic
Spatio-Temporal Models
1) Robust Principal
Components Analysis
(RPCA)
2) Robust Non-negative
Matrix Factorization
(RNMF)
3) Robust Orthonormal
Subspace Learning (ROSL)
Subspace | Grassmannian Robust
Tracking | Adaptive Subspace
Tracking Algorithm, Robust
Subspace Tracking,
Grassmannian Online
Subspace Updates with
Structured-sparsity
Low-Rank | Detecting Contiguous
Minimiza- | Outlier detection in the
tion Low-rank Representation,
Direct Robust Matrix
Factorization, Probabilistic
Robust Matrix
Factorization, Bayesian
Robust Matrix Factorization
Sparse Dynamic Group Sparsity,
Models Dictionary Learning, Sparse
Error Estimation
Robust Principal
Robust Components Analysis
Tensor Tensor,
Models Nonnegative matrix
factorization Tensor
. Local Outlier Factor,
Outlier . .
Detection Connectivity-based Outlier
Factor
Transform | Walsh,
Domain Wavelet,
Models Hadamard

Kernel density estimation (KDE) method is a
non-parametric approach allowing construction of a
function that gives the probability that a given image
pixel belongs to the distribution of background
pixels [9, 12, 13].

In the kernel density estimator, the distribution
is constructed from a sum of kernels
[10,14].Therefore, usage of KDE is effective

technique for background subtraction in dynamic
environment and could be used for UAV video
processing.

3. Kernel density estimation

Uniform, triangle, Epanechnikov, quartic, triweight,
Gaussian, cosine, logistic or sigmoid functions could
be used as a kernel density, depending on
background representation.

In our research, we use Gaussian kernel model
for observed vectors X;=( Xi,..., Xi), i=I,...,n of
dimension d.

They are independent, identically distributed
random vectors with certain probability density
function f(x). Its kernel density estimator is as
follows

A 1 -X.

— K / b
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where y,...,ys are independent standard normal
variables. Thus,
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Here we use the Euler—Poisson integral
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True density f{x) is unknown, therefore, we use the

adaptive estimator of the bandwidth:
1

d+4

. du, 1
jopt= el (7)
ot | \v 7 (x)‘ dx "
ad

Preliminary estimation of Ju is done using the
bandwidth evaluated as

* * * 4
O, =0, =...=0, =
e d ((d+2)n

1

]d*“ ()




V. Kharchenko et al. Foreground Detection in Dynamic Scenes of Intelligent Transport Systems 17

We evaluate the integral in (7) as follows:

J= [ f(x)‘ dx )
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Let's make a change of variables under the
integration sign:
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To interpret the integrals in (12) in a probabilistic
sense, we make a substitution:
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components are independent standard normal
random variables. Denote
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4. Numerical demonstration

For experimental verification of foreground
detection using the KDE model, we used video-
stream of traffic data with the purpose to detect
movable objects in dynamic environment.

Video duration taken for the experiment is 17 s
with a frame rate equal to 30 fi/s. Frame size is 640
pixels in width and 360 pixels in height. The original
image is presented in Fig.1.

=

Fig.1. Original image

The kernel density estimate which is constructed
by equation (1) for a given image is presented in
Fig. 2.

Fig.2. KDE of the original image
The value of the estimated kernel density
function for each pixel of original image was

compared with threshold value, estimated by Otsu’s
method [15, 16]. Results of foreground detection are

presented in Fig. 3.

Fig.3. Foreground detection on image sequence

Visual analysis of video-stream foreground
detection indicates good performance of the
proposed KDE model for a dynamic environment.
Shadow removal plays a critical role in foreground
detection in traffic flow analysis.

Moving shadows in outdoor environments are
associated with both moving objects and other
objects in the scene. Vehicle shadows will be
adjacent to and follow vehicles. Static objects such
as trees, signboards, poles, and buildings will cast
shadows that move slowly with the movement of the
sun. Therefore, efficient shadow removal techniques
are also required to ensure a reliable estimation of
foreground objects that would be studied in our
future research.

5. Conclusions

Background modeling for foreground detection is
often used in different applications to model the
background and detect the moving objects in the
scene for UAV video surveillance. Traditional and
recent models of background subtraction have been
considered in the paper. KDE as a nonparametric
method was selected for foreground detection in
UAV video stream data processing. Gaussian
function was used as a kernel for estimation. The
proposed KDE model was verified on video-stream
containing moving objects and indicated good
performance for UAV application.
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BusiBiennsi pyxoMux 00’€KTiB y JTUHAMIYHOMY MPOCTOPi iHTeIeKTyaJIbHIUX TPAHCHOPTHUX CUCTEM
'“Harionansauii aBianiitanii yaisepcuter, npocn. JiioGomupa I'ysapa, 1, Kuis, Yxpaina, 03058
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VY crarTi po3MIsSNaloThCA ACHEKTH BUSBICHHS PYXOMHX O0'€KTIB y AMHAMIYHOMY MPOCTOPI
IHTEJEeKTYaJIbHOT TPAHCIIOPTHOI CUCTEMHM Ha OCHOB1 KOMIT'FOTEPHOTO 30pYy 1 IITYYHOTO IHTENEKTY.
Bynu po3risHyTi TpaauiiiiHi 1 HOBI Mojeii (GOHOBOro MojentoBanHsA. Hemapamerpuunuil miaxin
JUIs BU3HaUeHHs (DoHY, 110 Oa3zyeThbCs Ha AAEPHOMY OIIHIOBaHHI, OyB BUKOPUCTaHHUN SIK HaHOLIbII
MpPUAATHUN AN BUKOPUCTAHHS B JUHAMIYHOMY CEpelOBHINI. 3HAa4eHHsS OLIHOYHOT (YHKIIIT
IIIBHOCTI sIipa Ul KOXHOIO IIKCEIsl BUXIJHOIO 300pa’kKeHHs MOPIBHIOBAJIOCS 13 TPaHUYHUM
3HA4YEeHHSM, OLHEHUM 3a MeTojgoM Oiy. 3anpomoHOBaHUN MeTOJ MOOYJIOBM SAEPHOI OLIHKU
HIIBHOCTI OyB MEpeBipeHM Ha BiEONMOTOL, 1[0 MICTUTh PyXoMi 00'€KTH, 1 MOKa3aB NMPUHHATHY
e(EeKTUBHICTH /JIs 3aCTOCYBAHHs B O€3MUTOTHUX JITAbHUX anapaTax.



20 ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2019. N3(80): 14-20

KarouoBi ciioBa: iHTeneKkTyallbHa TPAaHCIIOPTHA CHCTEMa; SiAEPHA OIIHKA MIUTBHOCTI; pyxoMi 00'ekTH; (OH;
BiZIeO MOTIK

B.II. Xapuenko', H.C. Ky3smenxo’, A.I'. Kykymr’

O0Hapy:keHHe ABMKYIINXCSA 00bEKTOB B JUHAMHYECKOI NPOCTPAHCTBE HHTEJLIEKTYAIbHBIX
TPAHCIOPTHBIX CHCTEM

“HanuonansHelii aBHaMoHHbIH yHEBepcuTeT, mpoc. Jlio6omupa 'ysapa, 1, Kues, Ykpauna, 03058
SKHeBCKHH HAIMOHAIBHBIH yauBepcuteT uMenu Tapaca IlleBuenka, yn. Bnanumupckas, 64, Kues, Ykpaunna,
01601

E-mails: 'kharch@nau.edu.ua,’nataliiakuzmenko@ukr.net, *alexander kukush@gmail.com

B craThe paccMaTpUBaIOTCS aCIEKThl OOHAPYKEHHSI IBHKYITUXCS 00BEKTOB B IMHAMUYECKOM IPOCTPAHCTBE
WHTEJJIEKTYaJIbHOW TPAHCIOPTHOW CHUCTEMBI Ha OCHOBE KOMIIBIOTEPHOIO 3pEHUS U HMCKYCCTBEHHOTO
WHTEIUICKTa. bBbUTM pacCMOTpEHBI TPAJMIIMOHHBIE W HOBBIE METOABI (DOHOBOTO MOJICITMPOBAHMSL.
Henapamerpuyeckuii 1momxoz Juis omnpeneieHus (OHA, OCHOBAHHBIA Ha SJACPHOM OICHUBAHUH, OBLI
WCIIONb30BaH KakK HamOojee MOAXOMSIIUA JUIS HWCIONB30BAaHMUS B JTUHAMHUYECKOW Cpene. 3HaueHue
OLIEHOYHOW (DYHKIIMU IUIOTHOCTU SApa JUISl KaKIOrO IMHKCEIS MCXOJHOIO0 HM300pa)Ke€HHsI CPaBHUBAIOCH C
TIOPOTOBBIM 3HAYEHHEM, OIlEHEHHEIM 110 MeTomy Oiry. [IpenmoKeHHbI METOJ] TOCTPOSHUS SIIEPHONU OICHKH
IJIOTHOCTH OBUI TPOBEPEH Ha BHJICONOTOKE, COMAEPIKAIIEM JBIKYIIHECS OOBEKTHI, U IMOKAa3ajl XOPOIIYIO
3 PEeKTUBHOCTH /IS TPUMEHEHHS B OSCIIMIIOTHBIX JICTATEIBHBIX alaparax.

KuroueBble ¢j10Ba: HHTEUICKTYaIbHAS TPAHCIIOPTHAS CHCTEMA; SIIEPHAS OIEHKA TUIOTHOCTH; ABHKYIITHECS
00BeKTHI; (HOH; BHUIEO TTOTOK

KharchenkoVolodymyr. Doctor of Engineering. Professor.

Vice-Rector on Scientific Work of the National Aviation University, Kyiv, Ukraine.

Editor-in-Chief of the scientific journal Proceedings of the National Aviation University.

Winner of the State Prize of Ukraine in Science and Technology, Honorable Worker of Science and
Technology of Ukraine.

Education: Kyiv Institute of Civil Aviation Engineers, Kyiv, Ukraine.

Research area: management of complex socio-technical systems, air navigation systems and automatic
decision-making systems aimed at avoidance conflict situations, space information technology design, air
navigation services in Ukraine provided by CNS/ATM systems.

Publications: 540.

E-mail: knarch@nau.edu.ua

Nataliia Kuzmenko (1990). Candidate of Engineering. Junior researcher.
National Aviation University.

Education: National Aviation University, Kyiv, Ukraine (2013).

Research area: navigation and control of dynamic systems, artificial intelligence.
Publications: 45.

E-mail: natalilakuzmenko@ukr.net

Aleksander Kukush (1957). Doctor of Physical and Mathematical Sciences. Professor.

Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv

Education: Taras Shevchenko Kyiv State University, Kyiv, Ukraine (1979).

Research area: navigation and control of dynamical systems, mathematical and applied statistics, financial
and actuarial mathematics.

Publications: 74.

E-mail: alexander.kukush@gmail.com



	ITS is a system that integrates information and communication technology with transport infrastructure, vehicles and the user [4].
	5. Conclusions

