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Abstract

Purpose: To show that one of the reasons for the large difference between the calculated and experimental
critical loads is the incorrect interpretation of the buckling process. Methods: The energy criterion of
stability and the relation of the general linear theory of thin-walled structures are used. Results: New
formulas for critical loads of shells and plates have been obtained. Discussion: To estimate the bearing
capacity of engineering structures, precise formulas are needed to calculate the critical loads under axial
compression. Such formulas have not yet been obtained. The reason for the large discrepancies between the
theoretical and experimental values of the axial critical loads of cylindrical shells was not found. In this
paper, an attempt was made to solve this problem. In contrast to the usual approach, it is assumed here that
when the structure is buckled, the distance between the loaded ends does not change. This allowed us to
obtain new formulas for axial critical loads. The values of critical loads calculated by these formulas are
close to the experimental data. Based on this, it was concluded that the formulas obtained can be used for
real calculations of the critical loads of cylindrical shells and plates, and the proposed approach can be

used to continue studies of the stability of thin-walled structures.
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1. Introduction

One of the reasons for the exhaustion of the bearing
capacity of engineering structures is the loss of
stability of the structure as a whole, or of its
individual elements (shells, plates, rods). However,
there are no reliable methods for determining the
critical loads of the plates and especially the shells.
This problem is most acute in the design of aircraft,
when it is necessary to fulfill strict requirements: to
ensure minimum weight on the one hand and
maximum load-carrying capacity of the structure on
the other. This article is an attempt to solve this
problem.

2. Analysis of recent research and publications

The first results of the study of the stability of
structural elements were obtained by L. Euler [6],
Brian [2], Lorentz [7], and S.P. Tymoshenko [10].
Leonard Euler owns the theoretical formulation of
the problem of the stability of centrally compressed

rods. In solving the problem, he used the linear
approach and the static Euler criterion. According to
this criterion, the critical load is calculated as the
smallest load at which, simultaneously with the
original form of equilibrium, an adjacent, infinitely
close form of equilibrium is possible. Using this
approach, he obtained the famous Euler formula
Thoroughly  carried out  experiments by
I. Bauschinger (1887), M. Consiger (1891),
L. Tetmayer (1890, 1896) showed a good agreement
between the theoretical and experimental data and
put an end to the era of doubt in Euler's formula.

In the article “Some Theoretical Problems of
Elastic Stability” (1910) S. P. Timoshenko gives an
energetic derivation of the Euler formula for the case
when, with a loss of stability, the distance between
the ends of the rod does not change and, as a result,
the longitudinal compressive force decreases
slightly. The critical state is found from the
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condition of the equality of the decrease in the
compression energy during the buckling of the
potential bending energy. The identity of the results,
apparently, was the reason that such an approach to
solving problems of stability of thin-walled
structures did not receive further development
J. Brian was the first to use the energy method for
solving stability problems and obtained a formula
for the critical forces of a hinge plate compressed in
one direction

2
7D
N, =k 0 (1)
3 2
where D:LZ, kz(m—b+i) :
12(1-v°) a mb
E - Young's modulus, v — Poisson's ratio.
Lorenz and S.P. Tymoshenko in a linear

formulation based on L. Euler's static criterion,
considered the stability of a pivotally supported
circular cylindrical shell under axial compression.
Rudolf Lorenz (1908) found the critical compressive
stress of a thin cylindrical shell, but neglected the
transverse compressibility of the material. This was
taken into account by S. P. Tymoshenko (1910),
who, in the framework of the Kirchhoff-Love
conceptions, obtained for critical stress a formula
bearing his name:
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where R and h — the radius and thickness of
the shell.
The critical axial force is calculated by the

2
formula N/ _ B 3)

J3a-v)R’
it is called the classic or upper critical compressive
force. This effort is the most famous and most
indicative in terms of the discrepancy between
theoretical and experimental values. The critical
loads observed in the experiments are much smaller
than the upper critical loads.

All further development of the theory of stability
of the shells was aimed at identifying the causes of
this discrepancy. Different directions of the theory
developed, but two directions caused the greatest
interest.

The first direction is connected with the use of
the nonlinear theory of shells and recommendations
to evaluate the stability of the shells by the lower

critical load. These recommendations turned out to
be erroneous.

The second direction is connected with the study
of the influence of the initial imperfections of the
shell on the value of the upper critical load.
Unfortunately, this line of research has not brought
positive results. Analysis of the experimental data
shows that small deviations of the shell geometry
from the ideal form reduce the value of the critical
load, but not by several times, which is often
observed in experiments.

The most complete and detailed first, second and
other directions of studies of the stability of shells,
plates and rods are described in [2, 5, 11, 12].
However, a large number of research papers did not
solve the problem. It is necessary to continue to
look for the cause of large discrepancies between
the calculated and experimental data.

In [3, 4, 13-15], a new approach was proposed to
solve the stability problem of a hinged cylinder,
which differs from the classical approach.

The classical approach assumes that the transition
from the initial to the curved form of equilibrium
occurs without a change in the compression energy
accumulated in the subcritical state, and the value of
the critical compression force N, does not change.

This means that the length L shell remains constant.
In this case, the edges of the shell receive some
displacement in the axial direction, and the force
N, =const does extra work AA=0 on these

movements. Due to this work, additional energy
appears AV =0 shell, but the potential of the
system shell - external load does not change, i.e.
AU =AV —-AA=0.
The proposed approach describes the buckling
process in a completely different way. When
buckling occurs, the redistribution of the energy of
compression accumulated in the subcritical state.
Compression energy decreases, and bending and
shear energies appear. At the same time, the
potential energy of the shell does not change, i.e.
AV =0. The edges of the shell remain in place,
because the convergence of the edges due to radial
movements is compensated by the elongation of the
forming shell. The elongation of the generators
occurs because the compression energy decreases.
At the same time, the compressive forces also
decrease and become equal N, — N, . Since there are
no end shifts, the extra work of these forces AA=0.
The potential of the system does not change
U =const,i.e. AU =AV —AA=0.

Thus, the theorems and principles underlying the
energy method are fully observed in the proposed
approach.
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In accordance with the general theorem of
mechanics, the total potential energy of any system
has a stationary value. U = const , when this system
is in balance. The beginning of possible
displacements. G. Lagrange (1788) says that the
work of all forces at any infinitely small possible
displacements AU = AV —AA=0. Since the state
of the indifferent equilibrium of the system is
considered, to determine the critical forces, in
accordance with the Lejeune-Dirichlet principle
(1846), the condition oAU =0. As a result, we
have: U =const, AU =0, oAU =0. Based on
this, we conclude: all the prerequisites for using the
proposed approach in determining the critical loads
of thin-walled structures are available.

In [14], the stability of a cylindrical shell, the
edges of which are fixed on fixed hinges, was

considered. Formula for axial critical load is
obtained.
Eh 1 a2l — N
N, = ~—la,——=| N, =—>, )
1-v© aq, a NS
where
1-v
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Fig. 1 shows the results of minimizing expression
(5) with integer parameters mand nat v =0.3.
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Fig.1. Dependence of a cylindrical shell supported on
movable hinges on changes in the ratios L/R and R/h

1-Ny=1;2-L/R=1;3-L/R=2;4— LIR =4;
5-L/R=8

The analysis of the calculated values of critical
loads showed that they are close to the experimental
data given in [5]. A significant dependence was

R

found on the relative parameters % and . The
classic solution gives N, =1.

In [15], the stability of a thin-walled cylinder, the
edges of which are fixed to movable hinges, was

considered. Formula for axial critical load is
obtained:
a?) — N
N, = Ehzias——z; N, =—, (6)
1-v° ag a N/
where a, _3p v 2mE_3)
4 6 3 4

Fig. 2 shows the results of calculations using
formula (6) .
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Fig. 2. Dependence of a cylindrical shell supported on
movable hinges on changes in the ratios L/R and R/h

1-Ny=1:2-L/R=1:3-L/R=2;4—LIR=4;
5-L/R=8.

Comparison of the values of critical loads
calculated by (5) and (6) showed a large influence

of the boundary conditions on N, .

In this paper, these studies are continued. The
essence of this method is more fully expounded.

Stability under axial compression s
considered: cylindrical shells with rigidly
embedded edges; rigidly supported, rigidly fixed
and with a combined fixing of platinum; hinged
and rigidly fixed rods. The accuracy of
calculations by this method was estimated on the
basis of a comparison of the results obtained with
the results obtained with the classical approach
and with experimental data.
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3. The purpose and objectives of the study

Show that one of the reasons for the large
difference  between  the  calculated and
experimental critical loads is the incorrect
interpretation of the buckling process.

4. Materials and research methods

To solve the problem, the energy stability criterion
and the relation of the general linear theory of thin-
walled structures are used.

The accuracy of determining the critical loads by
the energy method depends on how close the shape
of the buckling is close to the actual form of
buckling. As in this paper, set the movement u,v,w

, in the direction of the axes X, Y,z respectively,
described below.

5. Problem solving
5.1. Cylindrical shell with hard-edged edges

Cylindrical shell length L, radius R, with wall
thickness h, loaded along edges evenly distributed
compressive forces N (Fig.3).

4,
_> 4—
X
_> ........................... _<—_>
N lR N
—

Fig. 3. Cylindrical shell

Initial assumptions: the shell is geometrically
perfect and ideally elastic, the subcritical state is
momentless, the edges of the shell are rigidly sealed.

According to [8], if the edges of the shell are
rigidly embedded, the boundary conditions have the
form

oW
u=v=w=—=0.
OX
Satisfying the boundary conditions  of

displacement, in the direction of the axes y and z set

v = f,sin m—cos .
L R’
. .
W= fsslnz?sm%, @)

where f,, f; — amplitudes in the direction of the

axes y and z. Move in the direction of the axis x we
find from the condition

ou 1fow)
—+=— | =f(x,y). 8
OX Z(axj (x.y) ®)
Integrating expression (8), we get
u =j f(x,y)—

1f ( ﬂj (X—Lsin 4M]sin2ﬂ. 9)
4 L dmr L R

In accordance with the boundary conditions,
u(0) =u(L) =0, in this case, u(x,y) # 0. These
conditions are met if:

[Ty =

2
1f32 M7 (x4 L sin 4% sin?Y o
4 L Amz L R
[fx y)dx = L g2 M2 sV
' 4° L R’
Substituting (10) in (9) we find:

(10)

a)u= f2—3|n 4D Gin 2 Y
8 L L
by u=-— f2 M7 Gin 417X gjn 2 Y.
16 L R

However, the displacement should always be
negative since it compensates for the positive
displacements due to bending. Therefore, we ask

u=—21 f2 M7 sin 4Tsm2 Y

Case b) is not considered, since it gives a greater
value of the critical effort N, .

Change in shell deformation energy due to loss of
stability

&l +2ve e, + 5+

L|1-v , h* -,
e[y +
J‘ 5 ‘12 12[7(1
0

2R

Eh
T 20— v?) !

dxdyv (12)
v+ 25 +

2(1_‘/)7(122
ou av w oV 0Ou
where & =-—¢&, = =4+
OX 6y R ox oy
__ow._ Jw lov
Zl a)(z'ZZ ayz R@y
__82w+£@
2=y Rox

Substituting (7), (11) into (12) and performing
the operations of differentiation and integration, we
obtain
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3f4,12

b, + f;
Av—lEh 16 P R* i b1+, (13)
v 21,1, + 120,
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2 4 12 4
3 1(hY 3, ]
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2 {4 12(R)[( V) 4 ]
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4 12\ R 4
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24

The work of the external load is equal to

1R 1 aw\)
AA = — N —=N. | — | dxdy. (14
ZH[ . J(axj y. (14)

2

Multiplier % at N,

transition of the shell from the initial non-deformed
to the deformed state is accompanied by a change in

N, from zero to its maximum value by module

o1

External load N, numerically equal to internal
efforts T,:

appeared because the

Eh

Ny =1" [81 (0) +vs,(0)] = [61('-) +

Eh mz )\’ n
VgZ(L)]:_Z(l 2 ff( Lﬂj sinZ%.
-V

From the condition AA =0 we find

Eh ifM

1-v*16 ° R?

+N, f2A2%;

3., 42  1-v?
=i =
16 ° R Eh

N, . (15)

In view of (13) and (15) we find
AU = AV — AA;

f.20, +2f,fb, +

fb—v
Eh

(16)

N*b4j 4R

N, we obtain from the condition of the

Minimum potential energy displacements

oAU

2 N
N, = Ehzi AL
1-v° Db, b1 TN

In Fig. 4 presents the results of minimizing N_

17)

for the integer parameters m and n , whenv = 0,3

15

N. - N = -
05 S~ — - -1/R=10

=== L/R=2

- — L/R=4

‘NB=1
R/h

0

0 1000 2000 3000
Fig. 4. Dependence N_ on relationships L/R and
R/h
5.2. The stability of rectangular plates uniformly
compressed in the direction of the axis
The plate with sides a,b and thickness h is

compressed in the median plane by forces N,
evenly distributed on sides x =0 andx=a.

ty

A

T
' < —

— .

Fig. 5. Rectangular plate

N — P «— N

\ 4

5.2.1. Hinged plates on all edges

Offsets w set; u we find also as in shells, v we
find similarly, however, the amplitude value f, is
set arbitrarily, since edges y=0 and y=b are not
loaded

Zmﬂxsinznﬂy-
a a b
2 N7y

u=

1,.,mro .
—=f7—sin

. omax
v = f,sin 2——sin
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. max . n
w = f,sin M i N

Plate deformation energy
& +2vee, + &5 +

bale

2(1 v? )” 2
vy x, + 2(1_‘/)}(12]

ou ov ov ou
where 31:&;32:—;812:— ;

+
oy ox oy
ow._ dw._ dw
o Ko = 8y21)(12— axay-

The work of the external load is equal to

:_”(N BENY j(awj dxcly.

Further solution was carried out as in the case of
shells. As a result, we have

_[Zl +;(2 + dxdy, (18)

o°w

X =

(19)

7D
N, =k, bz’ (20)
where
(mb aT
74_7
a mb
k, = 5 ”
+1—v(aj B @+v)
6 \mb

Al

In Fig. 6 presents the results of calculations by
(20) and below obtained formulas of coefficients K, ,

k (k is the coefficient obtained by Brian) and k; ,
if v=0,3.

5.2.2 Plate with loaded clamped and unloaded
hinged edges

In this case, the bulging surface can be represented
as follows.

1 mz .  max .
~Zf2—"sin4 sin

a a b

2 N7y

u=

v = f,sin m—5|n2 y
a

. ,MaX . N
W= f35|n2—5|n—7zy.
a b

Similar to the above, we get N, =k, ;1 (21)

2 2
4(mb) +3(aj +2
a 4\ mb

(1+v)?

b 60{7+2(1 v)[ mbj }

Solving the problem by the energy method, but in
the traditional way, when the change in the external
load during the buckling of the plate is not taken into
account, we obtain

2 2 2 2
N, =DMy 3fa ) 5y, TP
b a 4\ mb b

5.2.3. Plate with pivotally loaded and unloaded
pinched edges

In this case
u _t £2 M7 i o M gy 4 DY
a a b
v = f,sin’ 2 M Gin 41
a b
w = f,sin M g2 1
Critical load N, =k, bﬂi (22)
where
(mbjg 16( a jz 8
_ a 3 \mb 3
: L20-v)(a Y (L+v)?
7 mb

A7)

When not taking into account changes in external

loads
(mbjg 16( j 8
Kyy=| — | + +—.
a 3\lmb 3

5.2.4. The plate is rigidly clamped along all edges

_——fzm” in 407X gjn « 1Y
8 a a b
v_fsm m_sm4n7zy
b
2 N7y

, Max
=1, sin? ——sin
a
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Fig. 6. The coefficient k under various conditions of fixing the plate, compressed in one direction

5.3. Pivotally supported rod loaded with force

w=fS|n—7ZX; u:—lfzmsinzm—ﬂx;
L L L
pe 2
P=|—|EJ. 24
7] 24

Formula (24) completely coincides with the Euler
formula.

5.4. Rigidly fixed rod

., max
w= fsin?—=:
L

u:—lf2 m7Tsin4mTﬂX;

2
P =4(fj EJ.
L

Formula (25) fully coincides with the solutions
obtained by other authors, which confirms the
validity of the proposed approach in this case.

(25)

6. Results and discussion

Analysis of the results of theoretical calculations
using the formulas obtained in [12, 13] and in this
work, which are presented in Fig. 2, Fig. 3 and Fig.
4, shows:

1. The absolute and relative values of the axial
critical loads of cylindrical shells strongly depend on
the ratio of the radius to the thickness and on the
ratio of the length to the radius of the shell.

2. Critical loads are highly dependent on
boundary conditions.

3. Theoretical critical loads calculated by the
obtained formulas are close to the experimental data
systematized in [6]. However, for a more accurate
assessment, it is necessary to take into account, in
each particular case, the geometrical and mechanical
characteristics of the shell and the conditions for
fastening the edges.

4. The formulas obtained, on the basis of the
accepted assumption, more accurately describe the
process of buckling of the shells and plates, since
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they give lower values of critical loads compared to
the classical solution.

5. The coincidence of the obtained formulas for
the critical rod forces with the Euler formula and
other authors confirms the validity of the proposed
approach.

7. Conclusions

1. One of the reasons for the discrepancy between
the calculated and experimental critical loads of the
shells and plates is the incorrect interpretation of the
process of their buckling.

2. The obtained formulas can be used to calculate
the axial critical loads of real shells and plates.

3. The proposed approach may bring researchers
closer to solving the problem of stability and bearing
capacity of engineering structures as a whole.
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HoBuii miaxig 10 BU3HAYE€HHS] 0CbOBUX KPUTHYHHUX HABAHTAXKEHb 000/JI0HOK, IVIACTHH i CTPUIKHIB
XapKiBCHKUN yHIBEPCHUTET MOBITPsIHUX cHUT iMeHi [Bana Koxxeny6a, Byn. Cymceka 77/79, Xapkis, 61023,

VYkpaina

Meta: Tloka3aTu, 1110 OIHIEI0 3 MPUYMH BEIUKOI PI3HHUII MDK PO3PAXYHKOBUMH 1 €KCIEPUMEHTATLHUMU
KPUTUYHAMHU HABAHTAKCHHSIMH € HEMpaBWIbHE TPAKTYBaHHS TMPOIECY BUIy4YyBaHHS. MeToa:
BukopHucTOBY€eThCS €HEPreTUYHUN KPUTepi CTIHKOCTI 1 CHIBBiMHOIIEHHS 3arailbHOI JIIHIAHOI Teopii
TOHKOCTIHHMX KOHCTPYKIid. Pe3yasTaTn: OTprMaHo HOBI (OPMYIIH KPUTHYHAX HABAHTA)XKEHb OOOJIOHOK i
mactud. Q0roBopenns: J[ns omiHKM HeCcydoi 3JaTHOCTI iHXKEHEPHUX CHOPYA, HEOOXiJHI TOYHI QopMynH
JUTS OOYKCIIEHHS! KPUTHYHUX HABAHTAXKEHb IIPU OCBOBOMY CTHCHEHHI. Taxi (hopMysu OKH 10 HE OTPUMAaHI.
[IpuunHy BEMUKKMX PO3OLKHOCTEH MK TEOPETHYHUMH 1 EKCIIEPUMEHTAIbHHUMH 3HAYEHHSMHU OCHOBHX
KPUTUYHUX HABaHTAXEHb IIWIIHAPUYHUX OOOJIOHOK He 3HaijeHo. Y MaHid poOoTi 3pobieHa crpoda
BUpIIMTH 110 npobsmemy. Ha BinmMmiHy Bix TpaguuiiHOro migxomy, TyT mepeadadaeTbes, IO MpH
BUITyYYBaHHI KOHCTDPYKIii, BicTaHb MDK HAaBaHT&KCHUMH KIHLISAMH He 3MiHIOETbcs. Lle mo3Bommino
OTpUMATH HOBi (POPMYJIM OCHOBUX KPUTUYHHMX HaBaHTa)XeHb. KpUTHUYHI HaBaHTa)XEHHs, PO3PaxOBaHi 3a



70 ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2019. N2(79): 62—70

uuMHu GopMmynamu, ONM3bKI 0 eKCIIepUMEHTaJbHUX NaHuX. Ha OCHOBI IbOro 3po0JIEHO BHCHOBOK, ILO
oTpuMaHi (OpMYIIM MOXKHAa BHKOPHUCTOBYBAaTH Uil PEATbHUX PO3PaxyHKIB KPUTHYHHMX HAaBAHTAKEHb
UWTIHAPUYHUX OOONIOHOK 1 TMJIACTHH, a 3ampolOHOBAaHUM MiAXil Moke OyTH BHUKOPUCTAaHWH ISt
MPOIOBIKEHHSI TOCTIIKEHb CTIHKOCTI TOHKOCTIHHUX KOHCTPYKIIIH.

Kuro4oBi cjioBa: BUTHH, KpUTHYHE HABAHTAXKEHHS, 3MIIICHHS, CTIHKICTh, €KCIIEPUMEHT, CHEePTis

B. A. Toguyk

HoBblii M01X0A K onpeaeTeHHI0 0CeBbIX KPUTHYECKHX HATPY30K 000/104€K , IUIACTHH M CTEPIKHEl
XapbKOBCKHI YHUBEPCUTET BO3AYIIHBIX cuil uMeHH MBana Koxkemy0Oa, yn. Cymckas 77/79, Xapbkos, 61023,
YkpanHa

Heas: [TokazaTe, 4T0 OHON W3 MPUYKH OOJBIIOr0 PA3ITUYUs MEK/Y PACUCTHBIMHU U IKCIIEPUMEHTATBHBIMU
KPUTHYECKUMH Harpy3kamH SIBJSIETCSl HEINpaBWJIbHAs TPAKTOBKA Ipollecca BhIMy4YHBaHHS. MeTox:
Hcnonp3yercs 3HEPreTUUECKUN KPUTEPUM YCTOWYMBOCTH M COOTHOILICHHS OOIICH JIMHEHHOW TEOpuu
TOHKOCTEHHBIX KOHCTpYKIMiA. Pedyabrarel: [lomydeHbr HOBBIE ()OPMYIIBI KpUTHUECKUX HATPY30K 000JI0UEK
u mactud. O6cy:xnenue: s oleHKH Hecyled CIOCOOHOCTH MHXKEHEPHBIX COOPYKEHHH, He0OXOIUMbI
TOYHBIE (HOPMYIIBI JJISI BEIYUCIICHUSI KPUTHYECKUX HATPY30K TPU OCEBOM cxaTtuu. Takue GopMyIbl MoKa He
momy4deHsl. llpuymHa OONBIIMX PACXOKIEHUN MEXKIy TEOPEeTHUYEeCKMMHU U JKCIIEpUMEHTaJbHBIMU
3HAYCHUSIMH OCEBBIX KPUTHUYECKUX HAIPY30K IMIIMHIPHUYECKAX 000NI0YeK He oOHapyxeHa. B naHHoi pabore
MIPEANPUHATA TIONBITKA PEMIUTH 3Ty MpobiaemMy. B oTnnume or 0ObIYHOr0 Moaxosa, 37ech Mpeanonaraercs,
YTO TPY BBIMYYMBAHHHM KOHCTPYKIIMHU, PACCTOSIHUE MEKIY HArpyKEHHBIMH KOHIAMH HE M3MEHsIeTCs. JTO
MO3BOJIMJIO MOJTYYUTh HOBBIE ()OPMYJIBI OCEBUX KPUTHYECKUX HArpYy30K. 3HAYEHUS] KPUTHYECKHX HArpy30K,
paccuuTaHHBIE MO ATUM (opMynam, OJU3KK K HKCIICPHMEHTAIFHBIM JaHHBIM. Ha ocHOBe 3Toro cueman
BBIBOJI, YTO TOJIy4EHHBIE ()OPMYITBI MOKHO HCIIONB30BATh ISl PEAIbHBIX PAcdeTOB KPUTUYECKHX HArpy30K
HWINHAPUYECKUX O000JI0YeK W IUIACTUH, a MPEUIOKEHHBIM IOAXO0J MOXKET ObIThb HCIOJIB30BaH Ui
MPOAOTIKEHUA UCCIIEIOBAHUN YCTOMUYMBOCTU TOHKOCTEHHBIX KOHCTPYKIIUH.

KawueBble ciioBa: u3ru0, KpUTHYECKas: HArpy3Ka, CMENIeHUE, yCTOWIHBOCTh, SKCIIEPUMEHT, SHEPTHS
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