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Abstract 

The computer simulation problem of the dynamics of elastic tube serpentines with internal flows of boiling liquid is set 

up. The clots motion model of the non-homogeneous boiling liquid is proposed. The numerical solution technique of the 

constructed equations based on the use of an algorithm for numerical integration in time and a method of the transfer 

matrix. 
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1. Introduction 

The dynamics of pipes for transporting liquid has 

long been the subject of extensive research, since it 

is taken into account in the calculation of pipelines 

and serves as a practical example of the dynamics 

of non-conservative systems. However, most 

studies concern the stability and vibrations of 

straight pipes. Theoretical fundamentals of the 

dynamics of curvilinear pipelines have been 

developed little. Therefore, the present work is 

devoted to curvilinear pipes. 

 

Fig. 1. Design scheme of a tube spiral with  moving 

fluid clot flows  

Tube rods in the shape of screw cylindrical 

spirals (Fig.1) interacting with internal movable 

(liquid) medium have gained wide application in 
technology as manifolds of heat exchangers in 

nuclear and heat power stations, in hydraulic 

systems of air- and spacecrafts, in pump units, etc. 

The spiral shape of the tubes allows both the 
enlargement of the heat acceptance surface and the 

intensification of the heat acceptance, to 

compensate to essential temperature deformations 
of the structure. Liquid inside a tube, on being 

heated, begins to boil and transforms into water-

vapour mixture. In response to the interaction 
between the internal flow of boiling liquid and the 

curvilinear tube, complicated static and dynamic 

effects are generated, which appear under the 

influence of forces acting on the tube from the 
flow side and which are accompanied by exchange 

of the potential and kinetic energies, as well as by 

static or dynamic loss of stability. 
The forces initiating the effects incorporate the 

tangential forces of viscous friction dependent on 

the liquid viscosity and its velocity, as well as the 

centrifugal inertia forces normal to the rod axial 
line. The intensity of the latter is proportional to 

the moving liquid element mass, square of its 

velocity and curvature of the tube segment. 
Moreover, the Carioles inertia forces are generated 

as a consequence of interaction of rotational and 

linear motions. On exposure to these forces, the 
tube structures begin to be involved into dynamic 
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processes, analogous to the phenomena proceeding 
in elongated structures subject to action of moving 

loads and masses. The peculiarities of the dynamic 

behaviour of this type of structure are connected 

with the effects, that in these cases the elements of 
moving masses take part in several types of motion 

simultaneously and are exposed to the action of 

inertia forces which depend upon the element 
position, and gyroscopic inertia forces conditioned 

by interplay of rotation and linear components of 

motion. As this takes place, the modes of the 

elastic system vibrations become more 
complicated, inasmuch as the phases of vibrations 

of its elements diversify, modes of its periodical 

motions cease to be steady, the node points begin 
to move and the vibration mode assumes the shape 

of a running wave, following motion of movable 

masses. Note also, that permanent varying of the 
considered elastic system mass geometry occurs at 

the flowing of the boiling fluid inside its channel, 

which is accompanied by change of its frequency 

spectrum. For this reason, in this case two sources 
of vibration generation come into being. The first 

one is connected with parametric generation, 

provoked by periodic variation of the system 
parameters (its mass geometry). The second source 

is excitation of purely forced vibrations, induced 

by action of the inertia forces of movable fluid 
masses, which play the role of active forces in this 

case. By virtue of the fact that, owing to the 

absence of the spectrum of natural frequencies, the 

elastic system loses the mode of natural vibrations 
and the possibility to study it by the methods of 

spectral analysis is excluded. The most suitable 

methods for its investigation turn out to be the 
numerical methods of its immediate computer 

simulation. 

The questions of analysis of dynamic behavior 

of rectilinear tubes with internal continuous flows 
were studied in [1, 4, 8, 9]. Influence of elastic 

foundation on the tube flutter was investigated in 

[3, 7]. Dynamic instability of rectilinear tubes with 
unsteady discontinuous flows was considered in 

[6]. Below the analysis of tube serpentine 

vibrations excited by nonstationary discontinuous 
internal flows, simulating boiling fluid, is 

performed. 

2. Differential equations of the spiral tube 

motion 

To describe the dynamics of the tubular serpentine, 
it is convenient to use jointly internal and external 

geometries, applying the first to individualize the 

points of the curvilinear tubular rod and moving 
liquid clots, and the second to describe its 

geometry in the deformed state. 

The internal geometry of the rod is specified by 

the coordinate, measured as the length of the axial 
line from the initial to the current point, and a 

moving right-handed coordinate system  wu ,v, , 

the orientation of which at every point of the tube 
axial line is rigidly connected with the examined 

cross-section. The origin of this system lies at the 

center of gravity of the cross-section area, the u  

and v  axes are directed along the principal central 

axes of inertia of the cross-section area, and the w  

axis is directed along the tangent to the elastic line. 

In this case the coordinate s  is a concomitant one. 

The external geometry of the rod determinates the 
location of each of its points and the entire elastic 

line in the fixed inertial coordinate system Oxyz . 

The Frenet natural trihedron of the elastic line 
of the rod with unit vectors of the principal normal 
n , binormal b  and tangent τ  is introduced. 

The equations of bending an elastic tubular rod 

with distributed forces f  and moments m  are 

written in the form of the system of equilibrium 
equations [5] 
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where F , M  are the vectors of the internal forces 

and moments with components u
F , v

F , w
F  and 

u
M , v

M , w
M , respectively; R  is the radius of 

curvature; T  is the torsion radius; kjiρ zyx   

is the radius vector of the points of the axial line; 

A , B , C  are the parameters of the flexural and 



ISSN 1813-1166 print / ISSN 2306-1472 online. Proceedings of the National Aviation University. 2019. N2(79): 41–50 43 

torsional stiffnesses; p , q , r  are the curvatures 

and torsion of the axial line in a deformed state; 

0
p , 0

q , 0
r  are the similar values of the 

undeformed spiral; E  is the elasticity module of 

the rod material; G  is the shear module; u
I , v

I  

are the inertial moments of the rod cross-section; 

w
I  is the polar inertia moment; 

χ
ω  is the Darboux 

vector which equals τbω
χ 
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In deduction of equations (1) it is taken into 

account that they are written out in the ),v,( wu  

coordinate system, which changes from a point to 

point, so the total derivatives sdd F  and sdd M  

are calculated through the use of the equalities 
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which stem from the Euler’s equalities known in 

classical mechanics. Here sd
~

dF  and sd
~

dM  are 

the local derivatives. So the vectors F , M , 

sd
~

dF , sd
~

dM  and 


ω  have the components u
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v
F , w

F , u
M , v

M , w
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If the axial line of the rod is preset by the 

equalities 

 sxx  ,  syy  ,  szz                             (4) 

its geometrical characteristics can be determined 

via the formulae  
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Here   is the angle between the n  unit vector 

and the u  axis, the superindex prime denotes 

differentiation with respect to s . 

It is useful also to remember, that the equations 

of kinematics are not independent, inasmuch as 

they have six first integrals 

1τ , 1n , 0nτ , bnτ               (6) 

issuing from the condition of the Frenet basis 

orthonormality. 

It is further assumed that with the selected 

system parameters, the tubular coil will accomplish 

small vibrations that can be described by linear 

differential equations. These equations can be 

relations (1) linearized in the vicinity of an initial 

undeformed state. One can write them in scalar 

form, having eliminated the vector b  from them 

by means of first-integral formulas: 
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Now on the left-hand sides of these equations, 

the derivatives with respect to s  are partial, since 

the terms u
f , v

f , w
f  contain derivatives with 

respect to time t . 

3. Simulation of the inertia forces of the boiling 

liquid 

To determine forces generated by a boiling liquid, 

it is necessary to elaborate a model of dynamic 

interaction of the spiral tube and liquid moving 

inside it. As experimental studies carried out in 

connection with analysis of boiling fluid motions 

in glass tubes heated on the outside testify, at some 

thermodynamical states and values of geometrical 

and mechanical parameters of the system there 

appear the cases of the so-called slug flows. They 

reside in the fact that in the tube heat-exchanging 

systems the regimes of fluid boiling are possible, 

when the generated vapour-water mixture is not 

homogeneous but consists of some fluid and 

vapour segments alternating and moving at high 

velocities. As the mixture flows, the process of 

boiling continues, thus the lengths of the tube 

segments filled with a fluid (called fluid clots) are 

decreasing and the lengths of cavities filled with a 

vapour (gas slugs) are increasing. In this case their 

velocities considerably increase. 

The observations made on heated glass spiral 

tubes show that the lengths of fluid clots change 

from approximately 10 internal diameters of the 

pipe on their formation to a zero on a complete 
evaporation, and the volume of a fluid, as it 

evaporates, increases tenfold. On boiling, the 

volume of gas cavities can change from a zero to 
50 diameters of the pipe and then, as a result of 

clot evaporation, they merge. 

In studying the dynamical interaction between 

an elastic pipe and an inner flow, T.B. Benjamin 
[1] showed that viscous friction forces occurring 

during flow appeared to be relatively small. As 

these forces are directed along the axis line of a 
pipe, they may be neglected in investigation of its 

transverse vibration. Thus, the fluid is assumed to 

be perfect and, while investigating its influence on 
the dynamics of the tube, only its inertial 

properties will be taken into consideration. In 

investigating the problem of vibrations of a pipe 

with an inner nonhomogeneous flow, the motion of 
a fluid element along a vibrating and dynamically 

bending pipe-line will be considered. Calculation 

will be made of its acceleration in the direction 

perpendicular to the pipe axis and determination of 
the inertial force acting on the fluid element and 

transferring to the pipe walls. 

In the calculations, the distributed moments of 

external forces m  are ignored. The role of the 

vector of external forces in this case is played by 

the summarized vector fri
fff   of the inertial-

forces vector i
f  and friction forces vector fr

f . 

Since a fluid element accomplishes compound 

motion, its absolute acceleration 
fl

a  is calculated 

by formula 
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Here, e
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tube. Therefore, 

xae

x
 , yae

y
 , zae

z
 .                     (9) 

The acceleration r
a  of the fluid element caused 

by its motion in the curvilinear channel of the tube 

is relative. The vector r
a lies in a contiguous 

plane; therefore, it is conveniently represented in 

the axes of a moving trihedron  
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In the considered case constv  , but this term 

is not taken into account, as the inertia force 
connected with it is not applied to the tube walls. 

The Coriolis acceleration c
a  is due to 

interaction of the rotational motion of the tube 
when it vibrates and the relative motion of the 

liquid in it. It is calculated as 
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of rotation of the trihedron n , b , τ  in the Oxyz  

system. It is expanded in the components of the 
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Knowing the total acceleration fl
a , one finds 

the inertial force acting on the fluid element 
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For a tube element, one has 
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force acting on a coil element with liquid 
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Note, that here fl
  denotes the mass of the unit 

length of the flow. Depending on the type of the 

medium fraction, which is located at the 

considered point of the tube channel, it can be 
associated either with the liquid density or with the 

vapour density. 

If the external friction forces fr
f  are taken into 

account their components are represented in the 
form 
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where   is the friction coefficient. 

In constitutive equations (7) there are the 

linearized components u
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In that the problem solving the constitutive 

equations (7) are expressed through the 

components along the axes wu ,,v , then using 

correlations (16) and the formulae of transition [1], 

one can transfer from the components 
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transformations [5] one can write down  
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To calculate the forces u
f , v

f , w
f , one 

must take into account discontinuities in 

parameters of density and inner flow velocities of 

the liquid-vapour mixture, and assign the law of 

the fluid clot flow and the vapour-filled cavities 

motion in its channel proceeding from the 

condition of preserving the overall vapour-water 

mixture flow mass rate at the inlet and outlet. The 

model for changing the flow parameters of motion 

is formed assuming that the clots of length 0
a  

enter the channel with a velocity of 0
V . At the 

inlet, a gap between two neighbouring clots is 

equal to zero. During the motion caused by boiling, 

the length of a clot varies as kteaa 
01

 and 
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decreases at the rate of tkeaktdada 
01

 . As 

a result, the lengths of the spaces (cavities) 

between clots increase at the rate of 
tkeakctdbdb 

01
 . The volume of vapour in a 

space is considered to be c  times as much as that 

of a fluid from which it was formed, therefore the 

relation 
v

 c
fl

 is performed between the 

densities of the fluid and the vapour. 

As the volume of the space of a cavity 

increases, the velocity 1i
V  of the 1i -th clot 

increases relative to the previous one as 

acVV
ii

)1(
1


 . The velocity of vapour in the 

cavity between clots is assumed to be distributed 

linearly. 
The system of equations (7) and (17), along 

with the corresponding boundary and initial 

conditions, determines the dynamics of a 
curvilinear tube with internal fluid flow. Underline 

its total order with respect to variable s  equals 15. 

But inasmuch as it has three first integrals, only 12 

boundary conditions should be formulated at the 

edges 0s , Ss  , as additional 3 boundary 

conditions issue from the first integrals. 

4. The technique of solution 

With the aim of reducing the system of equations 

(7), (17) with partial derivatives relative to the 

independent variables s , t  to the system of 

ordinary differential equations relative to the 

variable s , use an implicit time finite difference 

scheme (the Houbolt method), according to which 

the derivatives relative to time at the 1n
t  time 

moments are substituted by their four-step finite-

difference analogs [5] 

 )(2)(9)(18)(11

6

1
)(),(

211

11

sXsXsXsX

t
sXtsX

nnnn

nn










 
, 

 
 )()(4)(5)(2

1
)(),(

211

211

sXsXsXsX

t
sXtsX

nnnn

nn










 
     (18) 

where t  is the time increment. Its value is 

predetermined by the condition of the calculation 

convergence. 

Assume, that at the time instants 2n
t , 1n

t , n
t  

the deformed states of the tube system are known. 

Then substituting the derivatives by t  in (7), (17) 

by finite-differences (18), one gains the system of 
ordinary differential equations of the 15th order at 

the time instant 2n
t . This system is rewritten in the 

general form  

   xfyxxy


 Add .                (19) 

Here  syy


  is the 15-dimensional vector of 

the unknown functions; x  the independent 

redenoted variable s  changing within the limits of 

Sx 0 ; S  the spiral length;  xA  the known 

discontinuous matrix-function of the independent 

variable x ;  xf


 the preset vector of right 

members determined by the known solution 
functions at previous steps in time. 

It should be noted that the deformed state of the 

tube system at the n
t  time instant in (18) is 

determined through application of equation (19) at 

n
tt   using the deformed states at the previous 

time instants 3n
t , 2n

t , 1n
t  and analogously is 

done for the states at 1


n
tt  and 2


n

tt  in (18). 

The tube system states at 0
0
t , tt 

1  and 

tt  2
2  are found via the use of appropriate 

initial conditions at 0t . 

The solution to (19) must be subjected to 
boundary conditions at the interval bounds, which 

are predetermined at the beginning x  0  and at 

the end Sx   of the integration interval. 

They are represented in the general form as 

  00 y


B ,   0Ly


D ,                    (20) 

where matrices B  and D  measure ( 156 ). 

Notice, that the number 12 of boundary 

conditions (20) is not equal to the system (19) 
which is of order 15. This is associated with the 

availability of the systems first three integrals 

which complement the number of boundary 

equations making a total of 15. 

For constructing the solution )(xy


, 6 

components  xy
j  are chosen from the  xy

i  

 15,1i  components, any values  0
j

y  of which 

don't violate the first equation (20) and the three 

first integrals at zero values of the other 

components. After renumbering the unknown 

values  xy
i   15,1i  in such a way that the index 

j  could take on the values 6,1j , the solution to 

problem (19), (20) can be given as [6] 

   
0

yCxxy


 Y  , 

where 0
y


 is the solution to the Cauchy problem for 
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system (19) at zero initial conditions,  xY  is a 

( 915 ) matrix of particular solutions 
ij

y  to the 

homogeneous matrix differential equation 

 YAY xx dd                       (21) 

with initial conditions   j

iij
y 0   6,1,15,1  ji  

for independently modified variables, and with 
initial conditions chosen from the first equation of 

system (20) and three first integrals for the other 

variables  0
ij

y   15,7j . 

Here j

i
δ  is the Kronecker symbol. 

The vector of the constants  TCCC
61

,


 is 

chosen so that the equality 

    0Y
0

 LyCL


DD  

following from the second conditions of system 

(20) could be satisfied. 

The construction of the matrix- function  xY  

and the vector-function  xy
0


 is made by 

integrating equations (19) and (21) by the fourth 

order Runge-Kutta method. The peculiarity of 

using such an approach is that due to the presence 

of large factors in the coefficients of system (7), it 

is rigid and there are rapidly growing functions 

among its particular solutions. Therefore in 

constructing the matrix of its fundamental 

solutions, the method of discrete orthogonalization 

by Godunov [6] is additionally used which makes 

it possible to obtain a stable computational process 

by orthogonalizing the vector-solutions to the 

Cauchy problems in the finite number of argument 

change interval points. Its essence is in the fact that 

the integration interval is divided into sections, and 

the numerical integration of the initial differential 

equation is carried out on each of these sections in 

the same way as in using the method of transfer 

matrix. The lengths of the sections are such that the 

particular solutions to a homogeneous equation 

within the limits of one section could remain 

linearly independent. When passing from one 

section to another, the matrix of the solutions is 

subject to linear transformation so that the vectors 

of particular solutions of the homogeneous and 

nonhomogeneous equations become orthogonal. 

Thus it is possible to preserve the linear 

independence of the equation solutions in the 

whole interval of integration. To avoid excessive 

increase of the numerical values of the 

nonhomogeneous equation solutions, the 

normalization factor is introduced at the section 

boundaries. 

5. The investigation results 

The procedure for solution of a system of 

equations (7), (17) with partial derivatives 
employs the Hubolt implicit difference scheme, 

which is distinguished by enhanced accuracy for 

its integration with respect to time [5]. It is used 
to construct a step-by-step process in each step 

of which a two-point boundary-value problem is 

solved for the 15th-order equations with 

independent variable s that have three first 
integrals. Since some of the coefficients of this 

system have small divisors equal to the squares 

of the steps of integration with respect to time, 
this system is rigid and rapidly increasing 

functions are among its partial solutions. It is 

therefore solved by the joint application of the 
transfer matrix method, the discrete-

orthogonalization method [2, 5] and the Runge-

Kutta method. 

In the initial undeformed state, the axial line 
of the tubular coil is determined by the equations 








 
 s

R
Rx

cos
cos , 







 
 s

R
Ry

cos
sin , 

sinsz 
                                                        (22) 

where R  is the radius of the cylindrical surface of 

the coil and   is the angle of ascent of the coil. 

They are used to calculate the components of 

the unit vectors of the moving trihedron 








 
 s

R
n

x

cos
cos , 







 
 s

R
n

y

cos
sin , 

0
z

n , 








 
 s

R
x

cos
sincos








 
 s

R
y

cos
coscos ,  sin

z ,           (23) 

yzzyx
nnb  , zxxzy

nnb  , 

xyyxz
nnb   

and the parameters of curvature and torsion 

0
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p , 

R
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Rq
r





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
cossin1

2

0

0

zyx
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                      (24) 

Relations (23) and (24) are used to calculate 

the coefficients of equations (7). 

The above-described procedure was 

employed to study the vibrations of two types of 
steel tubular spirals. The first type tubes have the 

following characteristics: number of coils 

5N ; mR 5.0 ; rad07214.0 ; the 

curvature and torsion parameters 0
0
p , 

1

0
99.1  mq , 1

0
14.0  mr . For the tube of the 

second type these parameters comprise : 10N ; 

mR 1.0 ; 0
0
p ; 1

0
95.9  mq ; 1

0
19.7  mr . 

For both tube serpentines, flexural stiffness 
21253 mNBA  ; torsional stiffness 

2955 mNC  ; outside diameter of circular 

section of tube md 02.0 ; wall thickness of 

tube mh 003.0 ; mass per unit length of 

flowing liquid (water) mkg
lq

11054.1  ; 

mass per unit length of tube mkg
t

24.1  

It is impossible to determine beforehand the 
period in which the tubular coil will respond to 

the inertial forces of the internal flow. The 

nature of the dynamic response of the coil is 

established after analysis of the calculation 
results. 

Eight problems were solved in each case for 

the selected values of the parameters, which 

were different by the lengths 1l  of the water 

clots and l2 of the cavities. 

The tube dynamics over a time interval equal 

to 109  s, sufficient for establishment of general 

regularities of the dynamic process, was studied 

for each problem at a fixed clot velocity V . 

Then, to find the resonance modes of motion, V  

was changed and the motion modeling was 

repeated for the new V  value. The smallest V  

value at which the vibration amplitude began to 

increase without limit was considered to be 

critical. The step V  of V  variation was 

sec1 mV  . In the vicinity of the critical state, 

this value was sec1.0 mV  .  

Table 

The values of critical velocities of liquid clots entering into tube spiral 

 

Task 
number

 
 

N 

 

mR,  

 

1l  

 

2l  
Critical velocities and type of stability loss 

     ,,1 crV  sm  ,,2 crV sm  

1. 5 0,5 8cS  87 cS  15,5-15,9 39 

     vibrations vibrations 

2. 5 0,5 4cS  43 cS  14,6-15,5 32,4 

     vibrations vibrations 

3. 5 0,5 2cS  2cS  13,7-14,4 22,9 

     vibrations vibrations 

4. 5 0,5 43 cS  4cS  12,8-13,3 18,4 

     vibrations vibrations 

5. 5 0,5 87 cS  8cS  12,5-12,8 17 

     vibrations divergence 

6. 10 0,1 8cS  87 cS  35-35,6 113 

     vibrations divergence 

7. 10 0,1 4cS  43 cS  33,6-34,6 80,6 

     vibrations vibrations 

8. 10 0,1 2cS  2cS  31,2-32,4 53,7 

     vibrations vibrations 

9. 10 0,1 43 cS  4cS  29,6-30,3 44,8 

     vibrations vibrations 

10. 10 0,1 87 cS  8cS  28,9-29,2 42,2 

     vibrations divergence 
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It was established in consequence of the result 

analysis that critical values crV  of the velocity of a 

water clot entering into the tube could be achieved 

when the amplitude of the spiral chatter began to 

enlarge indefinitely. In doing so, as the clot 

motions are not absolutely periodic, conventional 

periods T  of conventional resonances of the tube 
vibrations can be established for every element of 

the spiral. Usually these values are different for the 

directions Ox  and Oy . It can be seen from it that 

there can be several critical values crV  or even 

unstable segments for the velocity V  and that crV  

enlarges when 1l  diminishes.  

It is necessary to note that an increase in clot 
velocity increases not only the frequency of clot 
action on the structure but also the intensity of the 
inertial forces, which is proportional to the square of 
the velocity. Unlike in ordinary vibrational systems, 
therefore, the spiral vibrations can again be unstable 
in supercritical states, when V  is larger than the 
first critical value. 

It is not simple to separate a 3D mode of forced 
vibrations of the tube as the dynamic processes are 
not steady, so the deformed states of its centerline 
were analyzed for different time instants. In Fig. 2 
the outlines of the spiral states are shown for Case 1 
in Table. They have different geometrics and it is 
rather difficult to distinguish any regularity in the 
spiral motion.  

 
Fig. 2. Modes of the serpentine motions for case 1 in Table 1 ( smV 17 ) 

6. Conclusions 

The problem of computer simulation of tube spiral 
vibrations under action of internal flows of boiling 

fluid is considered. A mathematic model of dynamics 

of the elastic serpentine is elaborated with allowance 
made for a discontinuous distribution of the 

parameters of the internal flow caused by the process 

of its heating and boiling. The action of inertial forces 
of positional and gyroscopical types is taken into 

account. The analysis of the results obtained for 

different values of the parameters of the flow 

nonhomogeneity and velocity makes it possible to 

make the following conclusions: 

1. The nonhomogeneity of the inner fluid flow 
manifests itself both in the nonhomogeneity of 

centrifugal inertial forces acting on the pipe in the 

transverse direction and in the change with time of 

the system general mass geometry. In this connection 
purely dynamical and parametrical excitations of 

vibrations take place. 

2. The possibility of establishment of stable and 
unstable regimes of motion is found out, which 
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depend on the character of nonhomogeneity and 
velocity of the fluid clots and the rate of their 

evaporation. 

3. The spatial modes of forced vibrations of the 

tube spiral are constructed. It can be noted that the 

centrifugal inertia forces normal to the elastic line of 

the curvilinear rod and the Carioles inertia forces 

caused by slewing and rotation of the rod cross-

sections lead to expansion and intricating of the 

vibration modes. Besides, generation of combined 

modes including longitudinal, bending and torsional 

modes followed by condensation and rarefaction of 

the spiral coils as well as by the enlargement and 

diminution of their diameters is peculiar to the 

studied regimes. 

4. The influence of external friction forces on the 

tube forced vibrations is analyzed. It is noted that 

these forces lead to displacement of critical values of 

the fluid velocities and to change of the vibration 

amplitudes. 
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Є. Ю. Толбатов 

Чисельне моделювання динаміки еластичних трубчастих спіралей, що транспортують 

внутрішні маси неоднорідної киплячої рідини  
Національний авіаційний університет, просп. Космонавта Комарова, 1, Київ, Україна, 03058 

E-mail: Eugene_t@ukr.net 
 

Поставлено задачу комп'ютерного моделювання динаміки пружних спіральних труб з внутрішніми 
потоками киплячої рідини. Запропонована модель руху згустків неоднорідною киплячій рідини. 

Методика чисельного рішення побудованих рівнянь розроблена на основі методів чисельного 

інтегрування за часом і методу початкових параметрів. 
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швидкість; періоди; коливання 

Е. Ю. Толбатов 

Численное моделирование динамики упругих трубчатых спиралей, транспортирующих внутренние 

массы неоднородной кипящей жидкости  
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Поставлена задача компьютерного моделирования динамики упругих спиральных труб с внутренними 

потоками кипящей жидкости. Предложена модель движения сгустков неоднородной кипящей жидкости. 

Методика численного решения построенных уравнений разработана на основе методов численного 

интегрирования по времени и метода начальных параметров. 

Ключевые слова: цилиндрические спирали; динамика; жидкостные пробки; неоднородная жидкость; 

численный метод; скорость; периоды; колебания 

Yevgeniy Tolbatov (1973). Ph.D. in engineering Mechanics sphere.  

Associate professor of the Applied Mathematics Department.  

Education: Mechanics and Mathematics Department of Kyiv National University named after Taras Shevchenko in 

1995, defended the thesis at the Institute of Mechanics in 2000 on mechanics of deformable bodies specialty.  
Research area: vibrations study of curved rods.  

Publications: 19. 

E-mail: Eugene_t@ukr.net 


