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Abstract

The computer simulation problem of the dynamics of elastic tube serpentines with internal flows of boiling liquid is set
up. The clots motion model of the non-homogeneous boiling liquid is proposed. The numerical solution technique of the
constructed equations based on the use of an algorithm for numerical integration in time and a method of the transfer
matrix.
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1. Introduction Tube rods in the shape of screw cylindrical

. . . spirals (Fig.1) interacting with internal movable
The dynamics of pipes for transporting liquid has (liquid) medium have gained wide application in

long been the subject of extensive research, since it technology as manifolds of heat exchangers in
is taken into account in the calculation of pipelines  nuclear and heat power stations, in hydraulic
and serves as a practical example of the dynamics  systems of air- and spacecrafts, in pump units, etc.
of non-conservative systems. However, most The spiral shape of the tubes allows both the
studies concern the stability and vibrations of enlargement of the heat acceptance surface and the
straight pipes. Theoretical fundamentals of the intensification of the heat acceptance, to
dynamics of curvilinear pipelines have been compensate to esse_ntia}l temperature deformatic_)ns
developed little. Therefore, the present work is Of the structure. Liquid inside a tube, on being
devoted to curvilinear pipes. heated, be_glns to boil and transforms |_nto Wat_er—
vapour mixture. In response to the interaction
between the internal flow of boiling liquid and the
curvilinear tube, complicated static and dynamic
effects are generated, which appear under the
influence of forces acting on the tube from the
flow side and which are accompanied by exchange
of the potential and Kkinetic energies, as well as by
static or dynamic loss of stability.

The forces initiating the effects incorporate the
tangential forces of viscous friction dependent on
the liquid viscosity and its velocity, as well as the
centrifugal inertia forces normal to the rod axial
line. The intensity of the latter is proportional to
the moving liquid element mass, square of its
velocity and curvature of the tube segment.
Moreover, the Carioles inertia forces are generated
as a consequence of interaction of rotational and
linear motions. On exposure to these forces, the
tube structures begin to be involved into dynamic

Fig. 1. Design scheme of a tube spiral with moving
fluid clot flows
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processes, analogous to the phenomena proceeding
in elongated structures subject to action of moving
loads and masses. The peculiarities of the dynamic
behaviour of this type of structure are connected
with the effects, that in these cases the elements of
moving masses take part in several types of motion
simultaneously and are exposed to the action of
inertia forces which depend upon the element
position, and gyroscopic inertia forces conditioned
by interplay of rotation and linear components of
motion. As this takes place, the modes of the
elastic ~ system vibrations become  more
complicated, inasmuch as the phases of vibrations
of its elements diversify, modes of its periodical
motions cease to be steady, the node points begin
to move and the vibration mode assumes the shape
of a running wave, following motion of movable
masses. Note also, that permanent varying of the
considered elastic system mass geometry occurs at
the flowing of the boiling fluid inside its channel,
which is accompanied by change of its frequency
spectrum. For this reason, in this case two sources
of vibration generation come into being. The first
one is connected with parametric generation,
provoked by periodic variation of the system
parameters (its mass geometry). The second source
is excitation of purely forced vibrations, induced
by action of the inertia forces of movable fluid
masses, which play the role of active forces in this
case. By virtue of the fact that, owing to the
absence of the spectrum of natural frequencies, the
elastic system loses the mode of natural vibrations
and the possibility to study it by the methods of
spectral analysis is excluded. The most suitable
methods for its investigation turn out to be the
numerical methods of its immediate computer
simulation.

The questions of analysis of dynamic behavior
of rectilinear tubes with internal continuous flows
were studied in [1, 4, 8, 9]. Influence of elastic
foundation on the tube flutter was investigated in
[3, 7]. Dynamic instability of rectilinear tubes with
unsteady discontinuous flows was considered in
[6]. Below the analysis of tube serpentine
vibrations excited by nonstationary discontinuous
internal flows, simulating boiling fluid, is
performed.

2. Differential equations of the spiral tube
motion

To describe the dynamics of the tubular serpentine,
it is convenient to use jointly internal and external
geometries, applying the first to individualize the

points of the curvilinear tubular rod and moving
liquid clots, and the second to describe its
geometry in the deformed state.

The internal geometry of the rod is specified by
the coordinate, measured as the length of the axial
line from the initial to the current point, and a
moving right-handed coordinate system (u,v,w),

the orientation of which at every point of the tube
axial line is rigidly connected with the examined
cross-section. The origin of this system lies at the
center of gravity of the cross-section area, the u
and v axes are directed along the principal central
axes of inertia of the cross-section area, and the w
axis is directed along the tangent to the elastic line.
In this case the coordinate s is a concomitant one.
The external geometry of the rod determinates the
location of each of its points and the entire elastic
line in the fixed inertial coordinate system Oxyz.

The Frenet natural trinedron of the elastic line
of the rod with unit vectors of the principal normal
N, binormal b and tangent t is introduced.

The equations of bending an elastic tubular rod
with distributed forces f and moments m are

written in the form of the system of equilibrium
equations [5]

d—F+mxxF+f =0;

ds

dd—M+0)x><M+‘r><F+m=0 (1)
S

equations of elasticity

M, =A(p-p,). M, =B(d—-q,),
MW :C(r_ro)y

A=El,, B=EIl,, C=Gl, )

and equations of kinematics

dr 1 dn 1 1, db 1
—=-—n;, —=—-—1+=b; —=-=n;
ds R ds R T ds T
dp
— =1, 3
el (3)

where F, M are the vectors of the internal forces
and moments with components F,, F,, F, and
M,, M,, M, respectively; R is the radius of
curvature; T is the torsion radius; p = Xi+ yj+zK

is the radius vector of the points of the axial line;
A, B, C are the parameters of the flexural and

w !
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torsional stiffnesses; p, g, r are the curvatures

and torsion of the axial line in a deformed state;

Po, Gy, T, are the similar values of the
undeformed spiral; E is the elasticity module of
the rod material; G is the shear module; 1, I,

are the inertial moments of the rod cross-section;
is the polar inertia moment; o, is the Darboux

IW

vector which equals @, = %b + [Tl + 3—7(]1: :
S

In deduction of equations (1) it is taken into
account that they are written out in the (u,v,w)
coordinate system, which changes from a point to
point, so the total derivatives dF/ds and dM/ds
are calculated through the use of the equalities
M = d—M +o,xM

dF _dF dm
ds ds

—=—+0 xF,
ds ds 7
which stem from the Euler’s equalities known in
classical mechanics. Here dF/ds and dM/ds are
the local derivatives. So the vectors F, M,
dF/ds, dM/ds and o, have the components F,,
F,, F,, M,, M,, M,, dF/ds, dF,/ds,
dF,/ds, dM, /ds, dM /ds, dM /ds and p,
g, r correspondingly.

w! u? v w !

If the axial line of the rod is preset by the
equalities

x=x(s), y=y(s), z=z(s) (4)

its geometrical characteristics can be determined
via the formulae

1 1 X! y! Z!
= Xn2+ "2+Z”2,—=R2X" ﬂZN ,
R \/( ) (y) ( ) T I!ly”! "
X" y"z
1. 1 1 dy
=—siny, g=—C0Sy, =—+—=. 5
p=psiny, q=_cosy T+ s ()

Here v is the angle between the n unit vector
and the u axis, the superindex prime denotes
differentiation with respect to s .

It is useful also to remember, that the equations
of kinematics are not independent, inasmuch as
they have six first integrals

|‘r|=1, |n|=l,‘r-n:0,‘r><n:b (6)

issuing from the condition of the Frenet basis
orthonormality.

It is further assumed that with the selected
system parameters, the tubular coil will accomplish
small vibrations that can be described by linear
differential equations. These equations can be
relations (1) linearized in the vicinity of an initial
undeformed state. One can write them in scalar
form, having eliminated the vector b from them
by means of first-integral formulas:

OAF,/0s = F,Ar + AFr, — F,Aq - AF,q, - Af,,

OAF,/0s =—F,Ar —AFr, + F,Ap + AF, p, — Af,,
OAF,/0s=F,Aq+AF,q,—F,Ap—AF, p, —Af,,
0Ap/os = (AF, —Cq,Ar + Br,Ag)/ A ,
0Aq/0s = (-AF, — Ar,Ap+Cp,Ar)/B ,
OAr /0s = (—Bp,Aq+ Ag,Ap)/C ,

OAt,/0s = An,[ p; + 05 +N,(P,Ap+0,Aq)/

1N P+,

OAt, /0s = Anyw/ pe+07 + n,(p,Ap+0,Aq)/

I\ ps +9 |

OAt, /05 =An,\[p; +05 +n,(p,Ap+0,Aq)/
I\ Ps +ds

()

OAN /0s = —At,\p; +05 —1,(p,Ap +0,Aq)/

I\ P; +0ds +(Ar—0AY/0s)(z,n,

+(r, —0y/0s)x (At n, + T, An, —At,n —1,An ),
0An, /0s = —Arym—ry(pOAer q,Aq)/
1\ pe+qZ +(Ar—0Ay/0s)(x,n,
+(r,—0y/0s)x(At,n +1,An —At n,—1,An),
AN, /35 = —At,\[pZ + 2 —T,(PAD + Gy AQ)/
I Ps +05 +(Ar —dAy/0s)(t,n,
+(r, —0yx/os)(At,n, +T,An, —At n —T An),

—rzny)+

- Txnz) +

—rynx)+

OAX/0s = At, ,0Ay/0s=At, ,0A7/0s = At, .
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Now on the left-hand sides of these equations,
the derivatives with respect to § are partial, since
the terms Af,, Af,, Af, contain derivatives with

respect to time t.

3. Simulation of the inertia forces of the boiling
liquid

To determine forces generated by a boiling liquid,
it is necessary to elaborate a model of dynamic
interaction of the spiral tube and liquid moving
inside it. As experimental studies carried out in
connection with analysis of boiling fluid motions
in glass tubes heated on the outside testify, at some
thermodynamical states and values of geometrical
and mechanical parameters of the system there
appear the cases of the so-called slug flows. They
reside in the fact that in the tube heat-exchanging
systems the regimes of fluid boiling are possible,
when the generated vapour-water mixture is not
homogeneous but consists of some fluid and
vapour segments alternating and moving at high
velocities. As the mixture flows, the process of
boiling continues, thus the lengths of the tube
segments filled with a fluid (called fluid clots) are
decreasing and the lengths of cavities filled with a
vapour (gas slugs) are increasing. In this case their
velocities considerably increase.

The observations made on heated glass spiral
tubes show that the lengths of fluid clots change
from approximately 10 internal diameters of the
pipe on their formation to a zero on a complete
evaporation, and the volume of a fluid, as it
evaporates, increases tenfold. On boiling, the
volume of gas cavities can change from a zero to
50 diameters of the pipe and then, as a result of
clot evaporation, they merge.

In studying the dynamical interaction between
an elastic pipe and an inner flow, T.B. Benjamin
[1] showed that viscous friction forces occurring
during flow appeared to be relatively small. As
these forces are directed along the axis line of a
pipe, they may be neglected in investigation of its
transverse vibration. Thus, the fluid is assumed to
be perfect and, while investigating its influence on
the dynamics of the tube, only its inertial
properties will be taken into consideration. In
investigating the problem of vibrations of a pipe
with an inner nonhomogeneous flow, the motion of
a fluid element along a vibrating and dynamically
bending pipe-line will be considered. Calculation
will be made of its acceleration in the direction

perpendicular to the pipe axis and determination of
the inertial force acting on the fluid element and
transferring to the pipe walls.

In the calculations, the distributed moments of
external forces m are ignored. The role of the
vector of external forces in this case is played by
the summarized vector f =f'+f™ of the inertial-
forces vector f' and friction forces vector .
Since a fluid element accomplishes compound
motion, its absolute acceleration a, is calculated

by formula
a;=a‘+a’'+a“ (8)

Here, a® is the vector of the reference-frame

acceleration of the fluid in its movement with the
tube. Therefore,

aj:i(,af,:y,a::Z'. (9)

The acceleration a" of the fluid element caused
by its motion in the curvilinear channel of the tube
is relative. The vector a'lies in a contiguous

plane; therefore, it is conveniently represented in
the axes of a moving trihedron

a" =tdv/dt+.p*+q°v°n.

In the considered case v = const, but this term
is not taken into account, as the inertia force
connected with it is not applied to the tube walls.

The Coriolis acceleration a® is due to
interaction of the rotational motion of the tube
when it vibrates and the relative motion of the
liquid in it. It is calculated as

a=2mxV

The vector @ determines the angular velocity
of rotation of the trihedron n, b, t in the Oxyz
system. It is expanded in the components of the
unit vectors

o, =1,db, /dt+7 db /dt+7,db,/dt ,

(10)

@, =ndr,/dt+n dr, /dt+ndz,/dt, (11)

, =b dn,/dt+b dn /dt+bdn, /dt

Knowing the total acceleration a,, one finds
the inertial force acting on the fluid element

f;l =—pyay (12)
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For a tube element, one has
fti =—pa, =—p,(Xi + yj+ k) (13)
The sum of f' and f gives the total inertial
force acting on a coil element with liquid

fl =f +f, (14)

After corresponding transformations the f'
vector projections on the axes of the movable
coordinate system Oxyz can be represented as

follows:
£l =—(p, +py)X—2p,V,[t, (b} +n) +1,(b,b, +

+nxny)+;tz(bxbz +nxnz)]_pﬂvﬂ2 p2+qznx’

fyi =—(p, +pa)V—2p4Vy [tx(bxby + nxny)+:cy X

(15)
x(by +n7) +,(b,b, +n,n,)]-pViyp* +atn,,

fi==(p. +p4)i—2p,V,lt,(b,b, +n,n,)+

+’ty(bybz + nynz)—i_’tz(bz2 + nzz)]_pﬂvfl2 p2 +q2 nz

Note, that here p, denotes the mass of the unit

length of the flow. Depending on the type of the
medium fraction, which is located at the
considered point of the tube channel, it can be
associated either with the liquid density or with the
vapour density.

If the external friction forces f™ are taken into
account their components are represented in the
form

fr=—mx, f"=-ny, f"=mz,

where n is the friction coefficient.

In constitutive equations (7) there are the
linearized components Af,, Af,, Af, of the total
external forces. For their construction it is also
necessary to linearize f,, f , f, in the vicinity of
the equilibrium state. Then,

Af =—(p,+py)AKX—2p,vy[AT, (0] +n])+
+At,(bb, +nn ) +At,(bb, +nn,)]-p,vi x
N (P,AP+0,AQ)/

X
P2 +2 +/p2+02An, ++/pZ+q2n,

—-NnAX,

A fy = _(pt TPy )Ay - 2pfl Vi [Arx (bxby + nxny) +

+ AL (02 +02) + At (byb, +1,0,)] - pyVE x (16)
{m(mAp+%A®/

X

_nAy 1
/J%+%+J%+%Am+v%+%m}

Af, =—(p, +pg)AZ-2poVvy[AT,(bb, +nn,)+

+At, (bb, +nn,)+At, (b +nl)]-p,vi x
[m(mAp+%Am/
X

—nAZ.
/J%+%+J%+%AW+J%+%W}n

In that the problem solving the constitutive
equations (7) are expressed through the
components along the axes u,v,w, then using
correlations (16) and the formulae of transition [1],
one can transfer from the components
Af Af Af, tothe projections of the Af vector

on the axes

Y= arcth
q

uv,w. To do this an angle
is introduced between the unit vector

n and axis u. After straightforward
transformations [5] one can write down

Af, =(Afx n,+Af n +Af, nz)cosx+
+(Af, b, +Af b +Af, b, )siny

Af, =—(Afx n,+Af n +Af, nz)sinx+

, (17)
+(af, b, +Af b +Af,b,)cosy

Af, =Af 1 +Af 1 +Af T,

To calculate the forces Af,, Af,, Af,, one

must take into account discontinuities in
parameters of density and inner flow velocities of
the liquid-vapour mixture, and assign the law of
the fluid clot flow and the vapour-filled cavities
motion in its channel proceeding from the
condition of preserving the overall vapour-water
mixture flow mass rate at the inlet and outlet. The
model for changing the flow parameters of motion
is formed assuming that the clots of length a,

enter the channel with a velocity of V,. At the

inlet, a gap between two neighbouring clots is
equal to zero. During the motion caused by boiling,

the length of a clot varies as a, =a.e™ and
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decreases at the rate of a=da, /dt =—ka,e™ . As

a result, the lengths of the spaces (cavities)
between clots increase at the rate of

b=db,/dt =cka,e™ . The volume of vapour in a

space is considered to be ¢ times as much as that
of a fluid from which it was formed, therefore the
relation p,=cp, is performed between the

densities of the fluid and the vapour.

As the volume of the space of a cavity
increases, the velocity V,, of the i+1-th clot
increases relative to the previous one as
V., =V.(c-Da. The velocity of vapour in the
cavity between clots is assumed to be distributed
linearly.

The system of equations (7) and (17), along
with the corresponding boundary and initial
conditions, determines the dynamics of a
curvilinear tube with internal fluid flow. Underline
its total order with respect to variable s equals 15.
But inasmuch as it has three first integrals, only 12
boundary conditions should be formulated at the
edges s=0, s=S, as additional 3 boundary
conditions issue from the first integrals.

4. The technique of solution

With the aim of reducing the system of equations
(7), (17) with partial derivatives relative to the
independent variables s, t to the system of
ordinary differential equations relative to the
variable s, use an implicit time finite difference
scheme (the Houbolt method), according to which
the derivatives relative to time at the t , time
moments are substituted by their four-step finite-
difference analogs [5]

) ; 1
X(s,t,,) =X,,(8) =—x
(s:t.0) ) =oxt

x[11xn+1(s>—18xn(s)+9xn,1(s)—2xn,z<s)]’

1

X(st,) =X, .,(8) = —x

( +1) +1( ) (At)z (18)
x[2X,,,(5)=5X,(s) +4X,,(s) = X, ,(s)]
where At is the time increment. Its value is

predetermined by the condition of the calculation
convergence.

Assume, that at the time instants t _,, t
the deformed states of the tube system are known.
Then substituting the derivatives by t in (7), (17)

t

n-17 ™n

by finite-differences (18), one gains the system of
ordinary differential equations of the 15th order at
the time instant t,, . This system is rewritten in the

general form

n+2 *

dy/dx = A(x)y + f(x).

Here ¥ =y(s) is the 15-dimensional vector of
the unknown functions; x the independent
redenoted variable S changing within the limits of
0<x<S; S the spiral length; A(x) the known
discontinuous matrix-function of the independent
variable x; f(x) the preset vector of right
members determined by the known solution
functions at previous steps in time.

It should be noted that the deformed state of the
tube system at the t time instant in (18) is
determined through application of equation (19) at
t=t, using the deformed states at the previous
time instants t,,, t _,, t., and analogously is
done for the states at t=t , and t=t _, in (18).
The tube system states at t,=0, t =At and
t, =2At are found via the use of appropriate

initial conditions at t =0.
The solution to (19) must be subjected to
boundary conditions at the interval bounds, which
are predetermined at the beginning * =0 and at
the end x =S of the integration interval.
They are represented in the general form as
By(0)=0,Dy(L)=0,

(19)

(20)

where matrices B and D measure (6x15).

Notice, that the number 12 of boundary
conditions (20) is not equal to the system (19)
which is of order 15. This is associated with the
availability of the systems first three integrals
which complement the number of boundary
equations making a total of 15.

For constructing the solution Vy(x), 6

components y,(x) are chosen from the y,(x)

(i =1T5) components, any values y,(0) of which

don't violate the first equation (20) and the three
first integrals at zero values of the other
components. After renumbering the unknown

values ,(x) (i =1T3) in such a way that the index
j could take on the values j :1,_6, the solution to
problem (19), (20) can be given as [6]

7= Y(C + 5,
where Y, is the solution to the Cauchy problem for
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system (19) at zero initial conditions, Y(x) is a
(15x9) matrix of particular solutions y; to the
homogeneous matrix differential equation

dY/dx = A(x)Y (21)

with initial conditions y,(0)=5! (i=115,j=16)
for independently modified variables, and with

initial conditions chosen from the first equation of
system (20) and three first integrals for the other

variables y, (0) (j :m)
Here &’ is the Kronecker symbol.

The vector of the constants C =(C1,Ca)T is
chosen so that the equality

DY(L)C +Dy,(L)=0
following from the second conditions of system

(20) could be satisfied.

The construction of the matrix- function Y(x)
and the vector-function V,(x) is made by
integrating equations (19) and (21) by the fourth
order Runge-Kutta method. The peculiarity of
using such an approach is that due to the presence
of large factors in the coefficients of system (7), it
is rigid and there are rapidly growing functions
among its particular solutions. Therefore in
constructing the matrix of its fundamental
solutions, the method of discrete orthogonalization
by Godunov [6] is additionally used which makes
it possible to obtain a stable computational process
by orthogonalizing the vector-solutions to the
Cauchy problems in the finite number of argument
change interval points. Its essence is in the fact that
the integration interval is divided into sections, and
the numerical integration of the initial differential
equation is carried out on each of these sections in
the same way as in using the method of transfer
matrix. The lengths of the sections are such that the
particular solutions to a homogeneous equation
within the limits of one section could remain
linearly independent. When passing from one
section to another, the matrix of the solutions is
subject to linear transformation so that the vectors
of particular solutions of the homogeneous and
nonhomogeneous equations become orthogonal.
Thus it is possible to preserve the linear
independence of the equation solutions in the
whole interval of integration. To avoid excessive

increase of the numerical values of the
nonhomogeneous  equation  solutions,  the
normalization factor is introduced at the section
boundaries.

5. The investigation results

The procedure for solution of a system of
equations (7), (17) with partial derivatives
employs the Hubolt implicit difference scheme,
which is distinguished by enhanced accuracy for
its integration with respect to time [5]. It is used
to construct a step-by-step process in each step
of which a two-point boundary-value problem is
solved for the 15th-order equations with
independent variable s that have three first
integrals. Since some of the coefficients of this
system have small divisors equal to the squares
of the steps of integration with respect to time,
this system is rigid and rapidly increasing
functions are among its partial solutions. It is
therefore solved by the joint application of the
transfer ~ matrix ~ method, the discrete-
orthogonalization method [2, 5] and the Runge-
Kutta method.

In the initial undeformed state, the axial line
of the tubular coil is determined by the equations

X= Rcos[ﬂsj y = Rsm[wsj
R R

Z=SSih«a 22)

where R is the radius of the cylindrical surface of
the coil and o is the angle of ascent of the coil.

They are used to calculate the components of
the unit vectors of the moving trihedron

cosa . [ COSa
n,=—-Cos{ ——S |, n,=-8nj ——s |,
R R

. (cosa
T, =—Ccosasin| ——s
R

T, = cowcos(co% s) , T, =Sina, (23)

b =t,n,-1t,n,b =1n-1n,

b, =t,n, —1,N,

and the parameters of curvature and torsion

P =0, g, =(X)2 +(y")? +(2")? C°‘;°‘,



E. Tolbatov. Numerical Simulation Of Dynamics Of Elastic Tubular Spirals Conveying Internal Masses Of Nonhomogeneous Boiling Liquid 48

Xr yr Zr .
" SIn acosa
h=—|Xy'2|=—F"— (24)
qO memzm R

Relations (23) and (24) are used to calculate
the coefficients of equations (7).

The  above-described  procedure  was
employed to study the vibrations of two types of
steel tubular spirals. The first type tubes have the

following characteristics: number of coils
N=5; R=05m; a=0.07214 rad; the
curvature and torsion parameters p,=0,

0, =1.99m™, r,=0.14m™. For the tube of the
second type these parameters comprise : N =10;
R=01m; p,=0; q,=9.95m™"; r,=719m™.
For both tube serpentines, flexural stiffness
A=B=1253 Nm’; torsional stiffness
C =95 Nm?; outside diameter of circular
section of tube d=0.02m; wall thickness of
tube h=0.003m; mass per unit length of
flowing liquid (water) p, =1.54¢10" kg/m;
mass per unit length of tube p, =1.24 kg/m

It is impossible to determine beforehand the
period in which the tubular coil will respond to
the inertial forces of the internal flow. The
nature of the dynamic response of the coil is
established after analysis of the calculation
results.

Eight problems were solved in each case for
the selected values of the parameters, which

were different by the lengths |, of the water
clots and /, of the cavities.

The tube dynamics over a time interval equal
to 9+10s, sufficient for establishment of general
regularities of the dynamic process, was studied
for each problem at a fixed clot velocity V.
Then, to find the resonance modes of motion, V
was changed and the motion modeling was
repeated for the new V value. The smallest V
value at which the vibration amplitude began to
increase without limit was considered to be
critical. The step AV of V variation was

AV =1m/sec. In the vicinity of the critical state,
this value was AV =0.1m/sec.

Table
The values of critical velocities of liquid clots entering into tube spiral
nl;rrﬁ%lér N R, m I, 1 Critical velocities and type of stability loss
Vie, M/s Voo, M/S
1. 5 0,5 S./8 75./8 15,5-15,9 39
vibrations vibrations
2. 5 0,5 S./4 3S./4 14,6-15,5 32,4
vibrations vibrations
3. 5 0,5 S./2 S./2 13,7-14,4 22,9
vibrations vibrations
4, 5 0,5 3S./4 S./4 12,8-13,3 18,4
vibrations vibrations
5. 5 0,5 7S./8 S./8 12,5-12,8 17
vibrations divergence
6. 10 0,1 S./8 75./8 35-35,6 113
vibrations divergence
7. 10 0,1 S./4 3S./4 33,6-34,6 80,6
vibrations vibrations
8. 10 0,1 S./2 S./2 31,2-32,4 53,7
vibrations vibrations
9. 10 0,1 3S./4 S./4 29,6-30,3 44,8
vibrations vibrations
10. 10 0,1 7S./8 S./8 28,9-29,2 42,2
vibrations divergence
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It was established in consequence of the result
analysis that critical values V, of the velocity of a
water clot entering into the tube could be achieved
when the amplitude of the spiral chatter began to
enlarge indefinitely. In doing so, as the clot
motions are not absolutely periodic, conventional

periods T of conventional resonances of the tube
vibrations can be established for every element of
the spiral. Usually these values are different for the
directions Ox and Oy. It can be seen from it that

there can be several critical values V , or even
unstable segments for the velocity V and that V
enlarges when |, diminishes.

2

X
t=0,15 s
z
X
y
t=0,24 s

It is necessary to note that an increase in clot
velocity increases not only the frequency of clot
action on the structure but also the intensity of the
inertial forces, which is proportional to the square of
the velocity. Unlike in ordinary vibrational systems,
therefore, the spiral vibrations can again be unstable
in supercritical states, when V is larger than the
first critical value.

It is not simple to separate a 3D mode of forced
vibrations of the tube as the dynamic processes are
not steady, so the deformed states of its centerline
were analyzed for different time instants. In Fig. 2
the outlines of the spiral states are shown for Case 1
in Table. They have different geometrics and it is
rather difficult to distinguish any regularity in the
spiral motion.

t=0,18 s

t=0,27 s y

Fig. 2. Modes of the serpentine motions for case 1 in Table 1 (V =17 m/s)

6. Conclusions

The problem of computer simulation of tube spiral
vibrations under action of internal flows of boiling
fluid is considered. A mathematic model of dynamics
of the elastic serpentine is elaborated with allowance
made for a discontinuous distribution of the
parameters of the internal flow caused by the process
of its heating and boiling. The action of inertial forces
of positional and gyroscopical types is taken into
account. The analysis of the results obtained for
different values of the parameters of the flow

nonhomogeneity and velocity makes it possible to
make the following conclusions:

1. The nonhomogeneity of the inner fluid flow
manifests itself both in the nonhomogeneity of
centrifugal inertial forces acting on the pipe in the
transverse direction and in the change with time of
the system general mass geometry. In this connection
purely dynamical and parametrical excitations of
vibrations take place.

2. The possibility of establishment of stable and
unstable regimes of motion is found out, which
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depend on the character of nonhomogeneity and
velocity of the fluid clots and the rate of their
evaporation.

3. The spatial modes of forced vibrations of the
tube spiral are constructed. It can be noted that the
centrifugal inertia forces normal to the elastic line of
the curvilinear rod and the Carioles inertia forces
caused by slewing and rotation of the rod cross-
sections lead to expansion and intricating of the
vibration modes. Besides, generation of combined
modes including longitudinal, bending and torsional
modes followed by condensation and rarefaction of
the spiral coils as well as by the enlargement and
diminution of their diameters is peculiar to the
studied regimes.

4. The influence of external friction forces on the
tube forced vibrations is analyzed. It is noted that
these forces lead to displacement of critical values of
the fluid velocities and to change of the vibration
amplitudes.

€. 10. ToaoaToB
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YuceabHe MOIETIOBAHHS THHAMIKH €JIACTUYHUX TPYOUYACTHX cHipaieid, 10 TPAaH CIOPTYIOTh

BHYTPIllIHi MACH HEOTHOPITHOT KUIJISTYOI PiTMHH

HarrionansHuii aBiartiiinuil yaisepcuTer, rpoct. Kocmonasra Komaposa, 1, Kuie, Ykpaina, 03058

E-mail: Eugene_t@ukr.net

[TocramneHo 3agady KOMITTOTEPHOIO MOJICTIOBAHHS AWHAMIKH MPYKHUX CITIpAIGHUX TPYO 3 BHYTPINTHIMH
ITOTOKAaM{ KWITUISYOI PiAWHU. 3aIllporioHOBaHA MOJICTh PYXy 3TYCTKIB HEOMHOPIMHOI KUIULTIIA piadHH.
Meroqyka YHCEIBFHOTO PIlIeHHS TMOOYAOBAaHMX PIBHAHB PO3POOJICHA HA OCHOBI METOIIB HYHCEIBHOrO
IHTerpyBaHHS 32 9aCOM 1 METOy ITOYaTKOBHX ITapaMeTpiB.

Ki1ro4oBi cjioBa: MWTHAPWIHI CITipati; THHAMIKA; PITAHHI TPOOKH; HEOAHOPIAHA PiMHA; YHCSITHHIA METO;
MBUKICT; TTEP10TN; KOMMBAHHS

E. IO. Tonr6atoB

YucjieHHOe MOJIETMPOBAHUE JHHAMHUKH YNPYTUX TPYOUATHIX CHHpaJieli, TPAHCIIOPTHPYIOIIUX BHYTPeHHHE
Macchl HEOTHOPOIHOW KUIISIIIEH sKHIKOCTH

HarmonansHbIi aBHaIMOHHBIN yHUBEpcHTeT, ipoctt. Kocmonasta Komapoga, 1, Kues, Ykpauna, 03058

E-mail: Eugene_t@ukr.net

[ocrapneHa 3amada KOMIIBIOTEPHOIO MOJENMPOBAHUS ITHHAMUKH YIIPYIHX CIHPATBHBIX TPYO ¢ BHYTPEHHHUMU
MOTOKaMU KHUIISILLIEeH xuaKocTu. [IpennoxeHa Moaenb IBMXKEHUS CTYCTKOB HEOIHOPOJHOW KHUIISILEH MKHUIKOCTH.
MeTommKka YHCICHHOTO PeIIeHHUs] MOCTPOCHHBIX YpaBHEHWH pa3pa0oTaHa Ha OCHOBE METONOB UHCICHHOTO
HMHTErpUPOBaHUSI IO BPEMEHH U METOa HaYaJIbHBIX TapaMeETPOB.

KioueBble cjioBa: IMWIMHIPUYCCKUE CHHUPAIH; JTUHAMHUKA, XKAIAKOCTHBIC MPOOKH; HEOAHOPOAHAS KUIAKOCTH;
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