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The scientific-methodical analysis of a soil mass modelling method by the elastic-plastic model that is used in
research findings of heterogeneous and anisotropic material soil mass for their strength and stabilization by the

example of system “Plaxis”.

Buxonano nayxoso-memoouunuii ananiz memooy MoOent08anHs IPYHMOBUX MACUBIE 3a OONOMO2010 NPYICHO-
naacmu4Hoi Mooeni, wo 3acmoco8yEMbCs N0 YAcC NPOBederH sl OOCTIONCEHb HANPYHCEHO-0eQOPMOBAHO20 CIMAHY
HEeOOHOPIOHUX Ma aHI30MPONHUX MAMEPIATbHUX cepedosuly 05 3a0e3nedents ix MiyHocmi ma cmitlkocmi, Ha

npuxnadi oouucosanrbHozo komniexkcy “Plaxis”.

The introduction and the problem statement

The stress-strain state researches of heterogeneous
and anisotropic soil mass are connected to using of
the general algorithms for the problem solving of the
elasticity, plasticity, and creep theories, and effective
numerical methods of their computer realization in
which practical application of soil mass
mathematical models is the important and actual
problem of the soil mechanics.

One of actual engineering questions of industrial and
civil, road and aviation objects building is stability
maintenance of soil mass at interaction with
constructions.

It is known from theoretical researches, the soil
strength and soil stability problems are partial
problems of the general theory of limit equilibrium.
The limit equilibrium of a soil in the given
elementary domain is corresponding to such stress
state that some additional influence can break this
balance.

Such a stress state is characterized else by the
equality the shear strength in an elementary domain
(a final element) to limiting value for the given soil.
As a rule, it takes place in the second phase of a
stress state at continuous development of limit
equilibrium zones, when it is necessary to apply the
nonlinearly deformed solid theory consideration of
geometrical nonlinearity — using Koshi-Green's tensor
of finite deformations, and physical nonlinearity —
correlations of the plasticity theory using elasticity
tensor for elastic-plastic deformation [1; 2].

The numerical solution of soil mass stability
problems is carried out using of different models on
the basis of the finite element method (FEM) on the
moment scheme. The target setting is assumed the
discrete modelling of essentially heterogeneous soil
layers taking into consideration the solid shots that
are modelling the pavement and construction
elements in the foundation analysis and design.

In a soil layers that are boundary with solid
disseminations it is necessary to form boundary
discrete layers of model elements (densening of net
domain), where stress concentration take place, and
as consequence, there is a research necessity of half-
space model in the first limit state by the destruction
criterion (shear deformations development) using
correlations of nonlinear soil mechanics [3].

So, there is a research necessity of heterogeneous
soil half-space in view of geometrical and physical
nonlinearity in a target setting, and for input
FEM-correlations is used the nonlinear elasticity and
plasticity theory with application of different
approaches to displacement, stress and deformations
modelling. [4].

The basic models line is developed for
FEM-schemes calculations using, that allows to
solve a problem in view of a soil real behavior.
Realization of the given scheme should take into
account laws of soil behavior and reactions of
models to different influences types that are rather
complicated questions in theoretical researches of
soil half-space.

The Mohr-Coulomb model (perfect-plasticity)

Plasticity is associated with the development of
irreversible strains.

In order to evaluate whether or not plasticity occurs
in a calculation, a yield function, £, is introduced as a
function of stress and strain.

A yield function can often be presented as a surface
in principal stress space.

A perfectly-plastic model is a constitutive model
with a fixed yield surface, i.e. a yield surface that is
fully defined by model parameters and not affected
by (plastic) straining.

For stress states represented by points within the
yield surface, the behavior is purely elastic and all
strains are reversible [5; 6].
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Elastic perfectly-plastic behaviour

The basic principle of elasto-plasticity is that strains
and strain rates are decomposed into an elastic part
and a plastic part (fig. 1):
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Fig. 1. Basic idea of an elastic perfectly plastic model

To relate the stress rates to the elastic strain rates is
used the Hooke's law.

Substitution of equality (1) into Hooke's law
leads to:

& =D =D (e-&").

According to the classical theory of plasticity,
plastic strain rates are proportional to the derivative
of the yield function with respect to the stresses.

This means that the plastic strain rates can be
represented as vectors perpendicular to the yield
surface. This classical form of the theory is referred
to as associated plasticity.

However, for Mohr-Coulomb type yield functions,
the theory of associated plasticity leads to an
overprediction of dilatancy.

Therefore, in addition to the yield function, a plastic
potential function g is introduced.

The case g # f is denoted as non-associated
plasticity. In general, the plastic strain rates are
written as:

&P — xa_g
gleal
where A is the plastic multiplier.

For purely elastic behaviour A is zero, whereas in the
case of plastic behaviour A is positive:
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These equations may be used to obtain the following
relationship between the effective stress rates and
strain rates for elasto-plasticity:
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The parameter o is used as a switch. If the material
behaviour is elastic, as defined by equality (2) the
value of a is equal to zero, whilst for plasticity, as
defined by equality (3), the value of a is equal to
unity.

The above theory of plasticity is restricted to smooth
yield surfaces and does not cover a multi surface
yield contour as present in the Mohr-Coulomb
model.

For such a yield surface the theory of plasticity has
been extended by Koiter and others to account for
flow vertices involving two or more plastic potential
functions:

g7 =2, %8 ,,,%
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Similarly, several quasi independent yield functions
(fi, f> ...) are used to determine the magnitude of the
multipliers (A, A, ...).

Formulation of the Mohr-Coulomb model

The Mohr-Coulomb yield condition is an extension
of Coulomb's friction law to general states of stress.
In fact, this condition ensures that Coulomb's
friction law is obeyed in any plane within a material
element.

The full Mohr-Coulomb yield condition consists of
six yield functions when formulated in terms of
principal stresses:
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The two plastic model parameters appearing in the
yield functions are the well-known friction angle ¢
and the cohesion c.

These yield functions together represent a hexagonal
cone in principal stress space as shown in fig. 2.

_02

Fig. 2. The Mohr-Coulomb yield surface
in principal stress space (¢ = 0)

In addition to the yield functions, six plastic

potential  functions are defined for the
Mohr-Coulomb model:
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The plastic potential functions contain a third
plasticity parameter, the dilatancy angle w. This
parameter is required to model positive plastic
volumetric strain increments (dilatancy) as actually
observed for dense soils. A discussion of all of the
model parameters used in the Mohr-Coulomb model
is given at the end of this section.

When implementing the Mohr-Coulomb model for
general stress states, special treatment is required for
the intersection of two yield surfaces.

Some programs use a smooth transition from one
yield surface to another, i.e. the rounding-off of the
corners. In system “Plaxis”, however, the exact form
of the full Mohr-Coulomb model is implemented,
using a sharp transition from one yield surface to
another.

For ¢ > 0, the standard Mohr-Coulomb criterion
allows for tension.

In fact, allowable tensile stresses increase with
cohesion. In reality, soil can sustain none or only
very small tensile stresses.

This behaviour can be included in a “Plaxis”
analysis by specifying a tension cut-off. In this case,
Mohr circles with positive principal stresses are not
allowed. The tension cut-off introduces three
additional yield functions, defined as:
fi=0]-0,<0,

fs=0,-0,20,

fe=05-0,<0.

When this tension cut-off procedure is used, the
allowable tensile stress, o; is, by default, taken equal
to zero.

For these three yield functions an associated flow
rule is adopted.

For stress states within the yield surface, the
behaviour is elastic and obeys Hooke's law for
isotropic linear elasticity.

Hence, besides the plasticity parameters ¢, ¢, and y
input is required on the elastic Young's modulus £
and Poisson's ratio v.

Basic parameters of the Mohr-Coulomb model

The Mohr-Coulomb model requires a total of five
parameters, which are generally familiar to most
geotechnical engineers and which can be obtained
from basic tests on soil samples. These parameters
with their standard units are listed below:

E is Young's modulus, kN/m?;

v is Poisson's ratio;

¢ 1is Friction angle, °;
¢ is Cohesion, kN/m?;
v is Dilatancy angle, °

Young’s modulus E

“Plaxis” uses the Young's modulus as the basic
stiffness modulus in the elastic model and the Mohr-
Coulomb model, but some alternative stiffness
module are displayed as well. A stiffness modulus
has the dimension of stress.

The values of the stiffness parameter adopted in a
calculation require special attention as many
geomaterials show a non-linear behavior from the
very beginning of loading.

In soil mechanics the initial slope is usually
indicated as E, and the secant modulus at 50%
strength is denoted as Esq (fig. 3).

For materials with a large linear elastic range it is
realistic to use Ej, but for loading of soils one
generally uses Esg. Considering unloading problems,
as in the case of tunneling and excavations, one
needs E,, instead of Es.
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Fig. 3. Definition of E, and E5, for standard

drained triaxial test results

For soils, both the unloading modulus, £, and the
first loading modulus, Es, tend to increase with the
confining pressure. Hence, deep soil layers tend to
have greater stiffness than shallow layers.

Moreover, the observed stiffness depends on the
stress path that is followed.

The stiffness is much higher for unloading and
reloading than for primary loading. Also, the
observed soil stiffness in terms of a Young's
modulus may be lower for (drained) compression
than for shearing.

Hence, when using a constant stiffness modulus to
represent soil behaviour one should choose a value
that is consistent with the stress level and the stress
path development.

Note that some stress-dependency of soil behaviour
is taken into account in the advanced models. For
the Mohr-Coulomb model, there is a special option
for the input of a stiffness increasing with depth.

Poisson’s ratio v

Standard drained triaxial tests may yield a
significant rate of volume decrease at the very
beginning of axial loading and, consequently, a low
initial value of Poisson's ratio (vy).

For some cases, such as particular unloading
problems, it may be realistic to use such a low initial
value, but in general when using the Mohr-Coulomb
model the use of a higher value is recommended.
The selection of a Poisson's ratio is particularly
simple when the elastic model or Mohr-Coulomb
model is used for gravity loading (increasing
XM, eign from 0 to 1 in a plastic calculation).

For this type of loading “Plaxis” should give
realistic ratios of

K,=0,/ o,.

As both models will give the well-known ratio of
on/oy =V/(1-v)

for one-dimensional compression it is easy to select
a Poisson's ratio that gives a realistic value of K.
Hence, v is evaluated by matching K,,.

This subject deals with initial stress distributions.

In many cases one will obtain v values in the range
between 0,3 and 0,4. In general, such values can also
be used for loading conditions other than
one-dimensional compression. For unloading
conditions, however, it is more common to use
values in the range between 0,15 and 0,25.

Cohesion c

The cohesive strength has the dimension of stress.

It can handle cohesionless sands (¢ = 0), but some
options will not perform well.

To avoid complications, non-experienced users are
advised to enter at least a small value
(use ¢ > 0,2 kPa).

There is a special option for the input of layers in
which the cohesion increases with depth.

Friction angle ¢

The friction angle, ¢, is entered in degrees. High
friction angles, as sometimes obtained for dense

sands, will  substantially increase  plastic
computational effort.
The computing time increases more or less

exponentially with the friction angle. Hence, high
friction angles should be avoided when performing
preliminary computations for a particular project.
The friction angle largely determines the shear
strength as shown in fig. 4 by means of Mohr's stress
circles.

——
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Fig. 4. Stress circles at yield; one touches
Coulomb's envelope:

a is main stresses;

b is shear diagram

A more general representation of the yield criterion
is shown in fig. 2. The Mohr-Coulomb failure
criterion proves to be better for describing soil
behaviour than the Drucker-Prager approximation,
as the latter failure surface tends to be highly
inaccurate for axisymmetric configurations.

Dilatancy angle y

The dilatancy angle, v, is specified in degrees. Apart
from heavily over-consolidated layers, clay soils
tend to show little dilatancy (y ~ 0).

The dilatancy of sand depends on both the density
and on the friction angle. For quartz sands the order
of magnitude is y = @ — 30°,
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For ¢-values of less than 30°, however, the angle of
dilatancy is mostly zero.

A small negative value for y is only realistic for
extremely loose sands.

Advanced parameters
of the Mohr-Coulomb model

When using the Mohr-Coulomb model, may be enter
some additional parameters for advanced modelling
features.

The advanced features comprise the increase of
stiffness and cohesive strength with depth and the
use of a tension cut-off. In fact, the latter option is
used by default.

Increase of stiffness Ej.

In real soils, the stiffness depends significantly on
the stress level, which means that the stiffness
generally increases with depth. When using the
Mohr-Coulomb model, the stiffness is a constant
value.

In order to account for the increase of the stiffness
with depth the E;,.-vaiue may be used, which is the
increase of the Young's modulus per unit of depth
(expressed in the unit of stress per unit depth).

At the Level given by the y,, parameter, the
stiffness is equal to the reference Young's modulus,
E,.s as entered in the tab sheet. The actual value of
Young's modulus in the stress points is obtained
from the reference value and E,,..

Note that during calculations a stiffness increasing
with depth does not change as a function of the
stress state.

Increase of cohesion Cj.

An advanced option for the input of clay layers in
which the cohesion increases with depth.

In order to account for the increase of the cohesion
with depth the c¢;,.-value may be used, which is the
increase of cohesion per unit of depth (expressed in
the unit of stress per unit depth).

At the level given by the y,.r parameter, the cohesion
is equal to the (reference) cohesion, c,.; as entered in
the tab sheet.

The actual value of cohesion in the stress points is
obtained from the reference value and c;,,.

Tension cut-off

In some practical problems an area with tensile
stresses may develop. According to the Coulomb
envelope shown in fig. 4 this is allowed when the
shear stress (radius of Mohr circle) is sufficiently
small. However, the soil surface near a trench in clay
sometimes shows tensile cracks. This indicates that
soil may also fail in tension instead of in shear. Such
behaviour can be included in “Plaxis” analysis by
selecting the tension cut-off. In this case Mohr
circles with positive principal stresses are not
allowed. When selecting the tension cut-off the
allowable tensile strength may be entered. For the
Mohr-Coulomb model and the Hardening-Soil
model the tension cut-off is, by default, selected
with a tensile strength of zero.

Conclusions

Thus, the choice and application of this model
depends on a target setting, parameters definition, is
carried out by classical geotechnical methods of
traditional soil mechanics, or demands application of
special optimizing technique.

Adequate using of the considered soil behavior
model, with parameters that are determined on the
basis of the different approaches coordinated with a
reliable and universal final element, is a basis for
research operation for stress-strain state of soil half-
space at the of real problems decision.
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