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ON GENERAL SOLUTION OF ODE SYSTEM FOR MODELING STATIONARY
COMPRESSIBLE FLOW OF PERFECT GAS WITH CONSTANT HEAT FLUX
AND FRICTION IN THE CONSTANT-AREA CHANNEL

The possibility is demonstrated of taking a general solution of the differential equation system
describing one-dimensional stationary flow of compressible gas with the given constant heat
flux, friction and mass forces that can perform work in the constant-area channel.

It is well-known from heat and mass transfer theory the following system of differential
equations describing one-dimensional stationary flow of compressible gas in the constant-area
channel:

— continuilty equation
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— energy equation
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where p - density; v — gas velocity; P — pressure; f — mass force; T, — tangent friction stress;

dx ; (2)

R, — channel hydraulic radius; ¢, — specitic heat at constant pressure; I — temperature; g, — heat

flux density referred to the mass flow rate unity.
Since a constant area channel 1s considered then
G = pvF,

where F' 1s a Cross section area.

Velocity and density may be expressed through pressure P, flow rate G and temperature T
as follows
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where g — acceleration due to gravity; R — gas constant (for air R =29,27); G — gas flow rate.
Formulae for g_ and 7, have the following form
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where O ~ heat flux; @ =4; A —loss factor.
Let’s substitute formulae (4) into the energy equation (3) to get
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coliecting similar terms we have
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Now we transform the impulse equation, performing substitutions formulae (4) in it and the
expression for 7,
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Collecting similar terms we have
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Expressing from (5) a temperature gradient

N { 9RG T T2 dP

dir | F 1!-"3 dx

=T ‘ "

gRG
N TF P2

and substituting it into (6) we get
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With algebra the last equation 1s reduced to
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The dominator can be transformed to be
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Making further reductions the dominator takes the following final form
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Substituting the dominator (9) in (8) and, in turn, (8) in (7) we have
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The nominator of the previous equation can be reduced to the form
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As the result, we have the following autonomous ODE system for calculation of channel flow
with friction, heat transfer and mass forces that can perform work
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Dividing equation (11) to (10), we have
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Equation (12) groups together pressure and temperature at every flow section, whence, if it

has been possible to solve, it would be possible to eliminate one unknown i.e. to reduce the problem
to solving the single differential equation.

Making the following change of variables

=,
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dP  dP
we have
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Making some reductions in the previous equation, we get
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Making independent variables to be dependent and vice versa, we have
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Doing simple manipulations with the previous equation, it can be reduced to the form
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Introducing for similarity auxiliary variables it is evident that the above ODE is a linear one

of the form

dP
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It is known that such a linear heterogeneous ODE has a solution in the form
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Equation (13) is an integral of energy of one-dimensional stationary flow of compressible
perfect gas with friction, heat transfer and mass forces that can perform work 1n the constant-area

channel.

We demonstrate below, that for the given problem (1)—(3) or (10)-(11) the general solution
may be taken. For this purpose we differentiate (13) in x

dx

_ \ _
R{z)dz — | R{z)dz ~§ R(z2)dz R(z)dz d
ili-': IQ(Z) ej dz +constIe '[ iz-+ff: j IQ(z) ej dz + const ﬁ

4 z

=

dx

_

/

Finally, the above denivative may be rewritten as follows
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Further, we introduce variable z in equation (10), then
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We substitute the derivative obtained and (13) in the previous equation to get
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It is evident, that the above ODE variables are separable, consequently, it is demonstrated that
for the one-dimensional stationary flow model (1)-(3) of compressible perfect gas with fnction,
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heat transfer and mass forces that can perform work in the constant-area its general solution exists.
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