ISSN 1813-1166. Bicnux HAY. 2006. Nel

169

UDC 534.1

'Olexander Zaporozhets, Prof., Dr. Sc. (Eng.)
2yadim Tokarev, Prof,, Dr. Sc. (Eng.)

*Werner Hufenbach, Prof., Dr.-Ing. habil. (Germany)
*Olaf Taeger, Dr.-Ing. (Germany)

*Niels Modler, Dipl.-Ing. (Germany)

Martin Dannemann, Dipl.-Ing. (Germany)

"Vitaly Makarenko

INVESTIGATION OF SOUND RADIATION BY CANTILEVER BEAM

2"NAU Department of Safety Human Activities, e-mail: zap@nau.edu.ua
343 Dresden Technical University (Germany)

The research investigates vibration of a cantilever beam loaded with actuators and load. The equation of motion
is based on Bernoulli-Euler-Timoshenko theory of beams with corresponding boundary conditions. This
equation is solved by the method of Green functions. A feature of this investigation is taking into account the
influence of concentrated force parameters, namely the value, location of actuator and phase difference between
load and actuator. In the work represented the contribution of actuator parameters on total sound power level as

well as on each mode separately.

Introduction

The sound radiation from a vibrating beam is of
practical importance [1; 2]. A direct calculation of
radiated power for a beam is possible for some
simplest task [3]. In general case a radiated power of
the vibrating beam can be obtained for model of
plane piston, which is set in an infinite baffle [2]. In
this study it is used for parametric investigation of
acoustical characteristics of the cantilever beams.

Vibration of finite cantilever beam

Let us consider the sound radiation of the cantilever
beam of finite length L, which includes next
boundary conditions

u(0)= 29 _,

o’u(Ll) d'u(L)
o’ o =0 )

The solution of boundary problem (1) is defined by
solving the Helmholtz equation and equation of

transverse motion of beam (for harmonic waves)
4

d’u
Ap+k2p=0; W—k;uzo,
_a %P 2
z=0; —=pou(x). 2)
z

Seeking solution of transverse motion of the beam
u(x) for homogeneous equation of the beam motion
in form

u(x) =Acoskb%+Bsinkb%+

x X
+ Cchk, —+ Dshk, — , 3
ch SbL (3)

where k, =Lk,

the four unknown constant 4, B, C, D of solution
was determined from condition (1):
A+C=0, B+D=0.

In general case a solution for (3) can be obtained in
form (by setting the forcing function equal to zero)

(cos ks, % —chk,, %] +

, sink,, = shk,, ( .

ink,, X shk,, i
cosk,, +chk,, L L

u(x)= i A,
n=l1

where k, must be determined from characteristic
equation:
cosk,chk, =—1. 4
The numerical calculation of characteristic equation
(4) gives:

ky, =1,875;

ky, =4,694;

k;, =(n—0,5)m,
for n=34,....

Solution for 3D acoustic field for surface of beam
can be written as

2 Lb .

o ¢t exp(ikr

p(x..0) =~ [T, 1y,
2n 3o T

where

r =\/(x—x0)2 +(y_)70)2 .

Acoustic power of an oscillating beam is defined as:

Lb
W = Re [ plr v 0w ()
00

where w(x) =—iou(x).
Sound power level can be calculated from the
formula:

w
L, =10lg—,
W gWo
where
w,=10" .
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Forced vibration of finite cantilever beam

Let we use equation (2) for cantilever beam
subjected to the point harmonic time force F:

Ap+k*p=0;

d*u By F

dx* CE

z=0;

P _ pou(). )
Oz

M
F =% F exp(iop,)d(x—x;),

j=1
where@; is a phase of j-th load in point x;;
d(x —x;) is a Dirac function.
In order to solve the second equation in set (5) a
method of Green function can be used.
We consider a concentrated force applied at the
point
x=xp, 0<x,<L.
The solution of boundary problem (1) is defined by
solving the equation of transverse motion of beam
and include the Green’s function approach (for
harmonic waves)

dG—k“G S(x—x,). (6)

The exact Green function G(x,x,), as a solution of
equation (6), can be found for the regions x <x, and
for x > x,, in following forms accordingly:

X X
G (x,x,)=A_cosk, —+B_sink, —+
_(x,x0) i b

, X< Xy}

+C_chk, ~+ D_shk, >
L L

x X
G, (x,x,)= A, cosk, Z+ B, sink, z+

X
, X> X,

+ C, chk,
where k, = Lk -

In the vicinity of x, ([xo|<e, where € is an arbitrary

+D shk, —

small volume) for continuity conditions like
following:
G (xy—8xy)=G,(x)+&X) ;
0G_(xy—¢€,x%))  0G, (xy+¢€,xy) .

Ox - Ox ’
0°G_(x,—¢&,%,) _0°G,(x,+8,%,) .

o’ - o’ ’
O°G, (x, +&,x,) 0°G_(x_—xy,%,) _q

ox’ ox’ -

and for boundary conditions (1) solution for 8
constants A, B, C, D. A., B+, C., D, may be
obtained.

Thus, the results for Green functions will be
represented in form

L3
X
4, [1+ cos(k, )ch(k,)]

G_(x, )CO) ==
x {chlk, (—xL—O +1)]sin[k, (—% +1)]-
— shk, (—ﬁ +1)]cos[k, (—% +1)]-

X+ X,

—sin(k, )chlk, (-

+1)]+

+cos(k, )shlk, (2 +1)] +

+sin[k, (—X—L0 +1)lchlk, (—% +1)]-

— cos[k, (—X—LO +1)]shlk, (—% +1)]+

+ sh(k, ) cos[k, (—0 4 1)] + cos(k, 1)sh(k,, x—LO -

_sin(Xe%yep KXo Ky
sin( ; Yeh( ; )— h( %) sin(=220 i )+

— sh(k, %) cos(k, ’2—0) +sin[k, (——0)]

—X+X,

— shik,( )= ch(k,)sinlk, C—2+D]}; (7)

L3
41 [1+ cos(k, ch(k, )] §

G+('x’x0) ==

x {cos(ky )shlk, (— xo

+1)]+

Xy . x
+chlk, (_T +1)]sin[k, (—z +1)]-
— shik, (—X—LO +1)]cos[k, (—% +1)]-

—sin(k, )ch[k, (— 0+ 1)] +

+sin[k, (—% +1)Jch[k, (—% +1)]-

— cos[k, (—x—LO +1)]shlk, (—% )]+

+ sh(k, ) cos[k, (—20 4 1))+

+ cos(k, 1)sh(kb ﬁ) —sin(k, %)ch(kb % -

+x0

—ch(k,)sin[k, (— +D)]-

. x X,
—ch(k, Z) sin(k, TO) + sh(k, Z) cos(k, TO) —~

—X+ X, x+x0

—sin[k, (

)]+ shik,(

)1}
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Influence of actuator location
The solution of second equation in (5) can be written as

u(x)zéiFj explio; )- G, (x,x,), (8)

where a Green function G;(x,x;) for cantilever beam

is given by above solutions (7).

Function (7) satisfies to both equations (5) and boundary
condition for cantilever beam.

Parametric investigation of sound radiation of the
cantilever beam is done using the formula (8).

The load force of value 1 N is located at 0,75 of relative
beam length and actuator of value 0,6 N has a variable
location. They have an opposite phase (fig. 1).

Load
force- 1N

%m%m/

Actuator 0.6 N

Fig. 1. Scheme of the load and actuator
location (actuator location is variable)

As it can be seen from the fig. 2 the sound power level
(SPL or L,, in corresponding figures) for the first mode
decreases if actuator location becomes near to the load
location.

Lw, dB

X, parts

128 1203021

Lw, dB

1] 0.z 0.4 0.6 0.6 1

¥, parts

b

Fig. 2. Sound spectrum (a) and total SPL (b)
for varied actuator location on the beam

The results of the researches show that locations 0,2
and 0,7 of relative beam length correspond to the
second mode minima. The third mode has the
minimum in 0,7 of relative beam length, locations
0,2 and 0,8 produce the fourth mode minima. After
summation along the frequency range the total SPL
minimum corresponds to 0,7.

Influence of actuator force value

Next investigation case considered for analysis of
actuator value.

The locations of actuator and load are fixed and
equal 0,75, 0,9 correspondingly (fig. 3).

Load
force- 1IN

Actuator
Fig. 3. Scheme of the load and actuator location
(actuator value is variable)

According to our model the minimum SPL can be
achieved at 0,8 N (fig. 4).

Second and third modes are increased with the
actuator value increase, while the SPL of fourth
mode is decreased.

Nevertheless after summation total SPL has a
minimum corresponding to 0,5 N.
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Fig. 4. Sound spectrum (@) and total SPL (b)
for varied actuator value of the cantilever beam
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Influence of actuator phase

The next factor we are going to research is a phase
of the actuator and load.

This study represents a major step towards
employing active methods for realistic flexible
structure of cantilever beam.

The scheme of the forces applied to the beam is
depicted in fig. 5.

/
0

Fig. 5. Scheme of the load and actuator location

Load
force- 1N

Actuator 0.6 N

(actuator phase is variable) -~ ¢, rad
Actuator has both location and value fixed. i £ —
The result (fig. 6) shows that phase difference = 5
provides minimal noise for the first three natural o
modes of cantilever beam oscillations, while the

fourth mode have maximum Corresponding to . vy - SR T S T T
On the total SPL graph the evident result, equal to =,
is observed. In the majority of cases the same result
should be get because the first mode gives the main i ;
compensate first mode is to apply load and actuator
with the phase difference m. Also the situations are
possible when the contribution of the first mode is P :
not dominant (e.g. when the actuator is placed at the "o 2 8 4 5 & 7
free beam end). In this case another result for B

. . : . b
optimum phase difference is possible. Fig. 6. Sound spectrum (a) and total SPL (b)

for varied actuator phase of the cantilever beam

Lw, dB
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Conclusion

An analytical model has been presented for vibrating
cantilever beam. The method employs usage of Green
function approach. Closed-form expressions have been
developed for the cantilever beam structure subjected to
the different loading conditions. Numerical results have
been presented for the conditions of the different types
of loading with the varied actuator parameters. It is
hoped that the simplicity and ease of this technique will
initiate a renewed interest in active optimal vibrating
cantilever beam control.
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Crarrs Hagivmia 1o pemakiii 24.03.06.

HaBeneHno pesynbraT AOCIHiIKEHHS BiOparlii KOHCONBbHOI OajKy, 10 HABAHTA)XEHA aKTyaTOPOM Ta HABAHTA)KEHHSM.
PiBHAHHS pyXy, sike 6a3yeTbes Ha Teopii 6anku beprymni—Eiinepa—TuMmomnieHko 3 BiAMOBIIHUME KPaHOBIMH yMOBaMH,
BupinieHe MeTogoM (yHkuii ['pina. OcoOIMBICTIO TOCHIDKEHHS € BpaXyBaHHs BIUIMBY IapaMeTpiB KOHIIEHTPOBAHOT
CHJIM, a caMe BEIMYMHH, PO3MILIEHHs aKTyaropa Ta Pi3HUII (a3 MK HaBaHTaXEHHSIM Ta aKTyaTopoM. PosrisHyTo
BHECOK IapaMeTpiB aKTyaTropa Ha CyMapHH piBeHb 3ByKOBOT IIOTYKHOCTI 1 Ha KOYKHY MOJLy OKPEMO.

[IpuBeneHbl pe3ynbTaThl HCCIENOBAaHHWS BHOpAlMM KOHCOJBHOW Oallky, Harpy>KeHHOH aKTyaTOpOM M Harpy3KOM.
VYpaBHeHHE [BIDKEHHUS, OCHOBaHHOe Ha Teopun Oanku beprymm—Eiinepa—TUMOIIEHKO € COOTBETCTBYIOIMMHU
TPaHUYHBIMHU YCJIOBUSIMH, penieHo MeTosioM QyHkumii ['pruaa. OCOOEHHOCTBIO MCCIIEN0BaHUS SBISIETCS YUET BIWSHUS
MapaMeTpoB KOHIEHTPUPOBAHHOM CHIBI, a MMEHHO BEIMYUHBI, pa3MEIICHHS aKTyaTopa M pasHHIBl (a3 MEexmy
Harpy3Kol M axTyaTtopoM. PaccMoTpeH BKJIaJ MNapaMeTpoB akTyaTopa Kak Ha CyMMAapHBIM YpPOBEHb 3BYKOBOIl
MOIITHOCTH, TaK M OTAEIBHO Ha KaXKIYI0 MOJY.



