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The objective of this paper is to investigate the parametric characteristics of oscillating beam using an analytical theory
of beam vibration. Analytical investigation of the bending oscillations of a finite elastic beam is considered for criteria
based on minimal acoustic radiation. The solution of the task is defined by solving of Helmholtz equation and
inhomogeneous differential equation for beam bending vibration with harmonic time dependence. For calculation of the
acoustic field a model of a plane piston, which is set in an infinite rigid baffle, is used.

Introduction

The sound radiation from a vibrating beam is of
practical importance and has been investigated
extensively over many years. First of all, these works
can be applied to optimum control of the oscillations of
elastic beams [1; 2]. For a beam, which is set in an
infinite baffle, the radiated sound field can be calculated
by integral approach [2]. There are two methods are
used usually to determine the acoustics radiation from
vibrating beams.

First is based on integration of the far field acoustic
intensity over hemisphere enclosing the beam.

Second method allows integrating the acoustic intensity
over the surface of the vibrating beam. In this study for
parametric investigation of acoustical characte-ristics of
vibrating beams the second method is used.

Description of the method of analysis

Mathematical formalization of noise emission by a
beam includes a model of the objects and the noise
evaluation criterion.

The mathematical model for bending vibrations of
elastic beam is represented by differential equations
like following:
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where p (x) is a beam material density; E(x) is an

Young’s modulus; /(x) is a moment of inertia for the
cross section of the beam S(x); F(x,¢) is a load per

unit length of the beam.

For harmonic vibration the displacement of beam
oscillation u(x,?) is represented as follows:

u(x,t) =u(x)exp(—iot).

Also it is supposed [2] that function F(x,t) can be
represented in form:

F(x,t)=F(x)exp(iont).

For the constant beam density, moment of inertia,
cross section, Young’s modulus equation (1) can be
written in form of biharmonic equation (harmonic
vibrations of the beam):
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and o is an angular frequency, a load per unit of
beam length is defined like

F(x)=Fp exp(i@)3(x —x) +
+ %F] exp(i(pj)S(x - x(,‘) s
Jj=1

where xp, x; are points of load and actuator forces’

location respectively; o(x) is a Dirac function;

Fj, ¢, are a amplitude and phase of jth actuator
force respectively.
The differential equation (2) is solved in a closed

form for boundary conditions corresponding to the
simply supported beam.
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For harmonic waves a Helmholtz equation is given by
Ap+k*p=0 3)
and boundary condition are used in form

a—pzpmzu(x) for z=0.

Oz

General solution of the equations (2), (3) and
prescribed boundary conditions can be obtained in
form of the following expansion (for simply

supported beam) [2]:
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where modal frequencies of the beam oscillations
are defined as:
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For solving the Helmholtz equation and for the
calculation of the acoustic field around the beam a
model of plane piston, which is set in an infinite rigid

baffle, may be proposed. For the vibrating plane piston
following conditions must be fulfilled on the beam

u(x)=-

P _ pou(x)
Oz
and on the baffle

(z=0)a—p=0.
oz
In this case exact solution can be presented for

acoustic pressure in a form [2]
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where b is the beam width.
Acoustical power of the beam in this case is
specified by

Lb
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where w(x) =—iou(x) .
Program structure and input/output parameters

The above mentioned solution was realized in
computer program. Using this program the
parametrical investigation of forces location, their
value and phase influence on sound radiation
characteristics was performed. The flowchart of the
program operation has the following view (fig. 1).

Thus sound radiation becomes a function of this
parameters and frequency. In order to find the best
set of actuator parameters their influence is
summarized in the frequency range under
investigation and total sound power level is defined,
then its minimum must be found.

Next steps are used for calculations:

— frequency step is equal to 5 Hz;

— force location step is equal to 0,1 of relative beam
length (the beam is considered of a unit length);

— force value step is equal to 0,1 N;

— phase step is equal to 7/6;

— pressure array steps (along both coordinates x and y)
are varied in accordance with beam dimensions.

One can see that the solution (4) enters in form of
the expression for the transverse motion of the beam.
The influence of actuator location is defined by

sm( / j, which represents a sinusoidal passing

through zero in mode nodes.

Therefore the actuator doesn’t influence the beam
acoustic radiation on the given mode if it is located in
the node. And influence is increasing if the shortest
distance to the mode node increases.

The force influence on transverse motion of the beam is
proportional to its value.

The influence of actuator location

The load force of the value 1 N and actuator of 0,6 N
are applied to the beam (fig. 2).

The curves, depicted in the figure, represent the
shapes of the beam oscillations corresponding to
different modes. In calculations just four first natural
frequencies are used, because, as it can be seen from
the figures below, other modes of oscillation can be
considered insignificant.

The result of numerical investigation is represented
in fig. 3, a.

This surface looks like to have the vertical planes.
They represent the modes of beam oscillation.
Locating the force at 0,5 of relative beam length
(in centre of the beam) the minimum for the first
mode of beam oscillations may be achieved, at 0,7
of relative beam length the minimum of second
mode occurs, and the third one has the minimum at
points 0,2 and 0,8 of relative beam length.
Summarizing the sound spectrum the most efficient
total noise reduction achieved if actuator is located
at 0,7 (fig. 3, b).

Vertical axis of the graph corresponds to the total
sound power level (SPL) of the beam oscillated just
by single load (initial total SPL = 125,78 dB). So
noise reduction of the received results may be
defined by comparison with initial beam loading.
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Data input:
Beam dimensions, material characteristics, errors and steps
of integration, quantity of modes, parameters of actuators
(moments and forces)

Y

Intermediate parameters calculation: complex Young’s modulus, mass of the
beam. square, moment of inertia of beam cross-section
Y

|| Calculating of the eigen frequencies and frequency range under investigation ||

A

|| Determining of the forces impact on transverse motion of the beam for each mode ||

Y

Starting power summarizing from zero. Determining the size of pressure array

y

—)" Finding w’-w,’ for each mode These are 2 loops calculated separately
for:

1. all natural frequencies
2. the whole frequency range

™

Y

Setting x, y equal to the half of
corresponding steps
¥

Pressure calculation, real part Integrand Determining
of integrand integration, evaluation displacement
Pressune calculation, imaginary Integrand — Determining
part of integrand integration, evaluation displacement
I
Y Y
—" Change x, y || Beam dimensions are reached, Converting coordinates x, y
result are the pressure arrays into pressure array indices

Acoustic power assessment, real ] | Integrand
part of integrand integration evaluation
Y . .
) Determining
|| Sound power level calculation l displacement

Y
Speed of beam transverse , i

|| Adding power to the total power motion calculation

The end of
frequency range
has been reached

Change

Total sound power
level calculation

frequency
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Fig. 1. Flowchart of the program
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Fig. 2. Vibration displacement of the beam at the first four resonance frequencies
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Fig. 3. Sound spectrum (a) and total SPL (b) for varied actuator location on the beam
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Fig. 4. Scheme of a load and actuator location (for two actuators)
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Fig. 5. Sound spectrum (a) and total SPL () for varied second actuator location on the beam



126

ISSN 1813-1166. Bicnux HAY. 2005. Ne4

For the next investigated case two actuators are
applied: one with the fixed position — 0,2 of relative
beam length and value 0,5 N and second — with fixed
value 0,5 N and variable location (fig. 4).

The first mode minimum is achieved by applying the
second actuator at points 0,3 and 0,7 of relative beam
length (fig. 5).

For the second mode SPL increasing is observed when
actuator is located inside the first half of the beam and
decreasing — inside the second half. The third and
fourth modes can be neglected because of their small
sound power contribution. As the result the minimum
total SPL is achieved inside beam length range 0,7 — 0,8.
Influence of actuator force value

The actuator is fixed in point 0,5 of relative beam
length and the task is to find its value, which
produce the lowest total SPL of the beam (fig. 6).
The actuator value at this location doesn’t influence the
SPL of second mode. As it can be seen in fig. 7 an
efficient noise reduction for the first mode takes place
for value 0,7 N. But due to slight SPL increasing of third
mode the total sound power level minimum is achieved
around 0,6 V. For the case shown in fig. 8 two actuators
and one load are applied again. The load has the fixed
parameters 0,75 of relative beam length and value 1 .
One of the actuators also has constant parameters:
located at 0,2 of relative beam length and with value
0,5 N. Second actuator also has the fixed location,
but is varied in value. The received spectrum is
shown in fig. 9. The minimum of the first mode is
achieved for value equal to 0,4 N. The second mode
slightly increases with the actuator value increasing.
The third and fourth modes can be neglected
because of their small SPL.

The influence of actuator phase

For current case (shown in fig. 10) both — an
actuator value and its location — are fixed, they
correspond to the minimum taken from previous
situation (graphs), and current task is to define: with
what phase the actuator should be used to
compensate the load.

The results in the fig. 11 show that this phase is
equal to 7. The major influence on total sound power
level is given by first mode of beam oscillation. But the
first mode cannot be compensated if load and actuator
have the same phase. Thus for simplest case — one load
and one actuator — the result is evident and equal tow . In
all further investigations phase difference between load
and actuator is taken to be equal to 7.

The influence of actuator distribution

Now let us consider the different cases of actuators
distribution along the beam. For uniform actuator value
distribution, depicted in fig. 12, the location of the
actuator group is varied.

The x coordinate on the both graphs (fig. 13)
corresponds to the location of the central force from the
actuator group.

The minimum of the first mode corresponds to locations
0,3 and 0,7 of relative beam length. The second mode
increases when the actuator group is located inside
the left half of the beam, and if it is located inside
the right half of the beam the SPL little bit decrease.
The third mode has minima at locations 0,2 and 0,8
of beam length. 4th mode does not give the
significant contribution to the total SPL, where the
minimum corresponds to location 0,7.

Comparing with first case (fig. 2 and 3) the
distributed actuator has the same effectiveness as
local one, their noise reduction is around 8 dB. In
the case shown in fig. 14 a linear actuator value
distribution is investigated. Again the location of
actuator group is varied with aim to find its position
corresponding to SPL minimum. As it can be seen from
the fig. 15 minimum of SPL for all modes of beam
oscillation corresponds to location 0,7 of relative beam
length. In the case depicted on fig. 16 the reverse linear
actuator value distribution is considered.

The actuator group location is variable. The results
of calculation shows that 0,8 of relative beam length
corresponds to the reduction of sound power level
for all natural mode (fig. 17). Also minima corresponding
to 0,3 take place for first and third modes. Summarising
the received spectrum we get minimum total sound power
level corresponding to 0,8. Actuator group location was
varied also for inverse triangular value distribution is
shown in fig. 18. From the fig. 19 it can be seen that
minimum of the first mode corresponds to locations 0,3
and 0,7 of relative beam length.

The second mode increases if locating the actuator
group inside the left half of the beam, and if locating it
inside right half of the beam the SPL little bit decreases.
The actuator value doesn’t influence the SPL of the
third mode almost.

The total SPL reduction of acoustic radiation is the most
efficient for location 0,7 and it is up to 6 dB.

In fig. 20 the triangular type of actuator distribution is
shown. Fig. 21 is quite similar to the previous actuator
value distribution (fig. 19). But minimum for the first
mode is not so deep as it was in the previous case and
more efficient noise reduction for the second and third
modes leads to deeper reduction of the total SPL — up
to 9 dB, becomes near to similar to the most efficient
case in fig. 15.

In the case of parabolic actuator distribution, shown in
fig. 22, the sound power level (fig. 23) appears to be
very similar to case shown in fig. 18, 19. But in this case
the reduction of total SPL reaches on 0,2 dB more.
Another case of parabolic actuator distribution (inverse)
is considered in fig. 24. As it can be seen from fig. 25
the SPL has not so deep minimum like it was in the
previous case and it is very similar to SPL of triangular
actuator distribution depicted in fig. 20, 21.
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Fig. 6. Scheme of load and actuator location (one load and one fixed actuator)
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Fig. 7. Sound spectrum («) and total SPL (b) for varied value of the actuator,
fixed at location 0,5 of the beam length
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Fig. 8. Scheme of a load and actuator location (for two actuators)
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Fig. 9. Sound spectrum (a) and total SPL (b) for varied value of the two actuators, fixed at
specified location



128 ISSN 1813-1166. Bicnux HAY. 2005. Ne4

Load
Force - 1N

Actuator
06N

Fig. 10. Scheme of simplest load and actuator location
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Fig. 11. Sound spectrum (a) and total SPL (b) for varied force phase of the actuator,

fixed at the same location as a load
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Fig. 12. Scheme of load and actuator for uniform actuator value distribution
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Fig. 13. Sound spectrum (a) and total SPL (b) for varied location of the uniform actuator distribution
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Force - 1N

Actuators 0.3N
Fig. 14. Scheme of load and linear actuator value distribution
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Fig. 15. Sound spectrum (a) and total SPL (b) for varied location of the linear actuator distribution

Actuators
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Fig. 16. Scheme of load and reverse linear actuator value distribution
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Fig. 17. Sound spectrum (a) and total SPL (b) for varied location of the reverse linear actuator distribution
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Fig. 18. Scheme of load and inverse triangular actuator group location
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Fig. 19. Sound spectrum (a) and total SPL (b) for varied location of the inverse triangular actuator distribution
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Fig. 20. Scheme of load and triangular actuator distribution
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Fig. 21. Sound spectrum (a) and total SPL (b) for varied location of the triangular actuator distribution
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Fig. 22. Scheme of load and parabolic actuator value distribution
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Fig. 23. Sound spectrum (a) and total SPL (/) for varied location of the parabolic actuator distribution
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Fig. 24. Scheme of load and inverse parabolic actuator value distribution
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Fig. 25. Sound spectrum (a) and total SPL () for varied location of the inverse parabolic actuator distribution
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Fig. 26. Scheme for fixed locations and varied value of the actuator
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Fig. 27. Sound spectrum (a) and total SPL () for fixed location and varied value of the actuator distribution

Fig. 28. Scheme for fixed actuator group location and value, but its phase is variable
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Fig. 29. Sound spectrum (a) and total SPL (b) for varied force phase
of the actuator with fixed location and force value
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The reduction of total SPL reaches 9 dB. And this
minimum corresponds again to location 0,7 of relative
beam length.

The results of actuator value distribution investigation
shows that the best noise reduction corresponds to linear
and reverse linear actuator value distribution. But for
these cases some shifting (relatively to load location) of
actuator group location is preferable.

The fig. 26 represents the case when locations of load
and actuator are fixed, actuator force distribution is
uniform (so each of this forces in actuator group has the
same value) and actuator value is variable — from 0 N to
0,3 N.

Result shows that the first mode SPL minimum
corresponds to 0,15 N (fig. 27). The second mode SPL is
indifferent to the actuator value. And the third mode
SPL slightly increases with the actuator force value
increase. But nevertheless the total SPL is defined by
first mode and corresponds to 0,15 N. For the case
shown in fig. 28 actuator group location is fixed, it’s
value is constant, but the phase is variable. All unit
actuators have the same phase.

Fig. 29 shows that the minimum of the first mode
corresponds to phase difference equal to 7 (the same
result as in fig. 11). But for other modes the maximum
occurs for this case, because of location difference.
Nevertheless, because of small contribution of their
SPL, minimum of total sound power level corresponds
to 7 again.

Conclusion

As beam acoustic radiation control is defined by
actuator parameters, such as the delayed phase of
actuator forces, their location and distribution law
along a beam, all of them are analyzed.

For most of cases the results show that first four
modes of simply supported beam oscillation are
enough to be considered for the noise radiation
investigation. Te influence of actuator parameters is
different for each mode of beam oscillations.

For the simplest case of loading the minimum of
sound power level can be achieved with delayed
phase on a m between load and actuator.

The results show also the correlation between load
and actuator values, specially the influence of
actuator distribution on optimal sound power level
of the beam was investigated.

The modeling approach can be used for forming and
grounding of feedback control of the system with
vibrating loads by means of optimal distributions of
the actuators along the beam length.
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