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The objective of this paper is to investigate the parametric characteristics of oscillating beam using an analytical theory 
of beam vibration. Analytical investigation of the bending oscillations of a finite elastic beam is considered for criteria 
based on minimal acoustic radiation. The solution of the task is defined by solving of Helmholtz equation and 
inhomogeneous differential equation for beam bending vibration with harmonic time dependence. For calculation of the 
acoustic field a model of a plane piston, which is set in an infinite rigid baffle, is used. 

Introduction 

The sound radiation from a vibrating beam is of 
practical importance and has been investigated 
extensively over many years. First of all, these works 
can be applied to optimum control of the oscillations of 
elastic beams [1; 2]. For a beam, which is set in an 
infinite baffle, the radiated sound field can be calculated 
by integral approach [2]. There are two methods are 
used usually to determine the acoustics radiation from 
vibrating beams.  
First is based on integration of the far field acoustic 
intensity over hemisphere enclosing the beam.  
Second method allows integrating the acoustic intensity 
over the surface of the vibrating beam. In this study for 
parametric investigation of acoustical characte-ristics of 
vibrating beams the second method is used. 

Description of the method of analysis 

Mathematical formalization of noise emission by a 
beam includes a model of the objects and the noise 
evaluation criterion.  
The mathematical model for bending vibrations of 
elastic beam is represented by differential equations 
like following: 
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where )(xs  is a beam material density; E(x) is an 
Young’s modulus; I(x) is a moment of inertia for the 
cross section of the beam S(x); ),( txF  is a load per 
unit length of the beam.  

For harmonic vibration the displacement of beam 
oscillation u(x,t) is represented as follows: 

)exp()(),( tixutxu  .  

Also it is supposed [2] that function ),( txF  can be 
represented in form: 

)exp()(),( tixFtxF  .  

For the constant beam density, moment of inertia, 
cross section,  Young’s modulus equation (1) can be 
written in form of biharmonic equation (harmonic 
vibrations of the beam): 
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and   is an angular frequency, a load per unit of 
beam length is defined like  
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where xF, jx  are points of load and actuator forces’ 

location respectively; )(x  is a Dirac function;  

Fj, j  are a amplitude and phase of jth actuator 

force respectively. 
The differential equation (2) is solved in a closed 
form for boundary conditions corresponding to the 
simply supported beam.  
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For harmonic waves a Helmholtz equation is given by 
02  pkp                                                           (3) 

and boundary condition are used in form 
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  for z=0.                                    

General solution of the equations (2), (3) and 
prescribed boundary conditions can be obtained  in 
form of the following expansion (for simply 
supported beam) [2]: 
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where modal frequencies of the beam oscillations 
are defined as: 
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For solving the Helmholtz equation and for the 
calculation of the acoustic field around the beam a 
model of plane piston, which is set in an infinite rigid 
baffle, may be proposed. For the vibrating plane piston 
following conditions must be fulfilled on the beam 
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and on the baffle  
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In this case exact solution can be presented for 
acoustic pressure in a form [2] 
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where b is the beam width.  
Acoustical power of the beam in this case is 
specified by 
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where )()( xuixw  .                                     

Program structure and input/output parameters 
The above mentioned solution was realized in 
computer program. Using this program the 
parametrical investigation of forces location, their 
value and phase influence on sound radiation 
characteristics was performed. The flowchart of the 
program operation has the following view (fig. 1).  

Thus sound radiation becomes a function of this 
parameters and frequency. In order to find the best 
set of actuator parameters their influence is 
summarized in the frequency range under 
investigation and total sound power level is defined, 
then its minimum must be found.  
Next steps are used for calculations: 
– frequency step is equal to 5 Hz; 
– force location step is equal to 0,1 of relative beam 
length (the beam is considered of a unit length); 
– force value step is equal to 0,1 N; 
– phase step is equal to π/6; 
– pressure array steps (along both coordinates x and y) 
are varied in accordance with beam dimensions. 
One can see that the solution (4) enters in form of 
the expression for the transverse motion of the beam. 
The influence of actuator location is defined by 
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through zero in mode nodes.  
Therefore the actuator doesn’t influence the beam 
acoustic radiation on the given mode if it is located in 
the node. And influence is increasing if the shortest 
distance to the mode node increases.  
The force influence on transverse motion of the beam is 
proportional to its value.  

The influence of actuator location 

The load force of the value 1 N and actuator of 0,6 N 
are applied to the beam (fig. 2).  
The curves, depicted in the figure, represent the 
shapes of the beam oscillations corresponding to 
different modes. In calculations just four first natural 
frequencies are used, because, as it can be seen from 
the figures below, other modes of oscillation can be 
considered insignificant.  
The result of numerical investigation is represented 
in fig. 3, a.  
This surface looks like to have the vertical planes. 
They represent the modes of beam oscillation. 
Locating the force at 0,5 of relative beam length  
(in centre of the beam) the minimum for the first 
mode of beam oscillations may be achieved, at 0,7 
of relative beam length the minimum of second 
mode occurs, and the third one has the minimum at 
points 0,2 and 0,8 of relative beam length. 
Summarizing the sound spectrum the most efficient 
total noise reduction achieved if actuator is located 
at 0,7 (fig. 3, b).  
Vertical axis of the graph corresponds to the total 
sound power level (SPL) of the beam oscillated just 
by single load (initial total SPL = 125,78 dB). So 
noise reduction of the received results may be 
defined by comparison with initial beam loading. 
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Fig. 1. Flowchart of the program 

 
 

Intermediate parameters calculation: complex Young’s modulus, mass of the 
beam, square, moment of inertia of beam cross-section

Determining of the forces impact on transverse motion of the beam for each mode  

Starting power summarizing from zero. Determining the size of pressure array 

Finding ω2-ωn
2 for each mode 

Calculating of the eigen frequencies and frequency range under investigation 

Pressure calculation, real part 
of integrand integration, 

Integrand 
evaluation

Determining 
displacement 

Change x, y 

Setting x, y equal to the half of 
corresponding steps 

Pressure calculation, imaginary 
part of integrand integration,

Integrand 
evaluation

Determining 
displacement 

Beam dimensions are reached,   
result are the pressure arrays

Acoustic power assessment, real 
part of integrand integration 

Integrand 
evaluation

Speed of beam transverse 
motion calculation

Determining 
displacement 

Converting coordinates x, y 
into pressure array indices

Change 
frequency

The end of 
frequency range 
has been reached 

Sound power level calculation 

Adding power to the total power 

Total sound power 
level calculation 

Data input: 
Beam dimensions, material characteristics, errors and steps 
of integration, quantity of modes, parameters of actuators 
(moments and forces) 

These are 2 loops calculated separately 
for: 

1. all natural frequencies 
2. the whole frequency range 
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Fig. 2. Vibration displacement of the beam at the first four resonance frequencies 

 

 
    a               b 

Fig. 3. Sound spectrum (a) and total SPL (b) for varied actuator location on the beam 

 
Fig. 4. Scheme of a load and actuator location (for two actuators) 

 

 
a                                                                                    b 

Fig. 5. Sound spectrum (a) and total SPL (b) for varied second actuator location on the beam 
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For the next investigated case two actuators are 
applied: one with the fixed position – 0,2 of relative 
beam length and value 0,5 N and second – with fixed 
value 0,5 N and variable location (fig. 4).  
The first mode minimum is achieved by applying the 
second actuator at points 0,3 and 0,7 of relative beam 
length (fig. 5).  
For the second mode SPL increasing is observed when 
actuator is located inside the first half of the beam and 
decreasing – inside the second half. The third and 
fourth modes can be neglected because of their small 
sound power contribution. As the result the minimum 
total SPL is achieved inside beam length range 0,7 – 0,8.  
Influence of actuator force value 

The actuator is fixed in point 0,5 of relative beam 
length and the task is to find its value, which 
produce the lowest total SPL of the beam (fig. 6). 
The actuator value at this location doesn’t influence the 
SPL of second mode. As it can be seen in fig. 7 an 
efficient noise reduction for the first mode takes place 
for value 0,7 N. But due to slight SPL increasing of third 
mode the total sound power level minimum is achieved 
around 0,6 N. For the case shown in fig. 8 two actuators 
and one load are applied again. The load has the fixed 
parameters 0,75 of relative beam length and value 1 N. 
One of the actuators also has constant parameters: 
located at 0,2 of relative beam length and with value 
0,5 N. Second actuator also has the fixed location, 
but is varied in value. The received spectrum is 
shown in fig. 9. The minimum of the first mode is 
achieved for value equal to 0,4 N. The second mode 
slightly increases with the actuator value increasing. 
The third and fourth modes can be neglected 
because of their small SPL.  

The influence of actuator phase  

For current case (shown in fig. 10) both – an 
actuator value and its location – are fixed, they 
correspond to the minimum taken from previous 
situation (graphs), and current task is to define: with 
what phase the actuator should be used to 
compensate the load.  
The results in the fig. 11 show that this phase is 
equal to π. The major influence on total sound power 
level is given by first mode of beam oscillation. But the 
first mode cannot be compensated if load and actuator 
have the same phase. Thus for simplest case – one load 
and one actuator – the result is evident and equal to . In 
all further investigations phase difference between load 
and actuator is taken to be equal to  . 

The influence of actuator distribution 

Now let us consider the different cases of actuators 
distribution along the beam. For uniform actuator value 
distribution, depicted in fig. 12, the location of the 
actuator group is varied.  

The x coordinate on the both graphs (fig. 13) 
corresponds to the location of the central force from the 
actuator group.  
The minimum of the first mode corresponds to locations 
0,3 and 0,7 of relative beam length. The second mode 
increases when the actuator group is located inside 
the left half of the beam, and if it is located inside 
the right half of the beam the SPL little bit decrease. 
The third mode has minima at locations 0,2 and 0,8 
of beam length. 4th mode does not give the 
significant contribution to the total SPL, where the 
minimum corresponds to location 0,7.  
Comparing with first case (fig. 2 and 3) the 
distributed actuator has the same effectiveness as 
local one, their noise reduction is around 8 dB. In 
the case shown in fig. 14 a linear actuator value 
distribution is investigated. Again the location of 
actuator group is varied with aim to find its position 
corresponding to SPL minimum. As it can be seen from 
the fig. 15 minimum of SPL for all modes of beam 
oscillation corresponds to location 0,7 of relative beam 
length. In the case depicted on fig. 16 the reverse linear 
actuator value distribution is considered.  
The actuator group location is variable. The results 
of calculation shows that 0,8 of relative beam length 
corresponds to the reduction of sound power level 
for all natural mode (fig. 17). Also minima corresponding 
to 0,3 take place for first and third modes. Summarising 
the received spectrum we get minimum total sound power 
level corresponding to 0,8. Actuator group location was 
varied also for inverse triangular value distribution is 
shown in fig. 18. From the fig. 19 it can be seen that 
minimum of the first mode corresponds to locations 0,3 
and 0,7 of relative beam length.  
The second mode increases if locating the actuator 
group inside the left half of the beam, and if locating it 
inside right half of the beam the SPL little bit decreases. 
The actuator value doesn’t influence the SPL of the 
third mode almost.  
The total SPL reduction of acoustic radiation is the most 
efficient for location 0,7 and it is up to 6 dB.  
In fig. 20 the triangular type of actuator distribution is 
shown. Fig. 21 is quite similar to the previous actuator 
value distribution (fig. 19). But minimum for the first 
mode is not so deep as it was in the previous case and 
more efficient noise reduction for the second and third 
modes leads to deeper reduction of the total SPL – up 
to 9 dB, becomes near to similar to the most efficient 
case in fig. 15.  
In the case of parabolic actuator distribution, shown in 
fig. 22, the sound power level (fig. 23) appears to be 
very similar to case shown in fig. 18, 19. But in this case 
the reduction of total SPL reaches on 0,2 dB more. 
Another case of parabolic actuator distribution (inverse) 
is considered in fig. 24. As it can be seen from fig. 25 
the SPL has not so deep minimum like it was in the 
previous case and it is very similar to SPL of triangular 
actuator distribution depicted in fig. 20, 21.  
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Fig. 6. Scheme of load and actuator location (one load and one fixed actuator) 

 

 
a                                                                                    b 

Fig. 7. Sound spectrum (a) and total SPL (b) for varied value of the actuator,  
fixed at location 0,5 of the beam length 

 
Fig. 8. Scheme of a load and actuator location (for two actuators) 

 
a                                                                      b 

Fig. 9. Sound spectrum (a) and total SPL (b) for varied value of the two actuators, fixed at 
specified location  
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Fig. 10. Scheme of simplest load and actuator location 

 

 
a                                                                        b 

Fig. 11. Sound spectrum (a) and total SPL (b) for varied force phase of the actuator,  
fixed at the same location as a load 
 

 
Fig. 12. Scheme of load and actuator for uniform actuator value distribution 

 
 

 
a                                                                        b 

Fig. 13. Sound spectrum (a) and total SPL (b) for varied location of the uniform actuator distribution  
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Fig. 14. Scheme of load and linear actuator value distribution 

 
 

 
             a                                                                            b 

Fig. 15. Sound spectrum (a) and total SPL (b) for varied location of the linear actuator distribution 

 

 
Fig. 16. Scheme of load and reverse linear actuator value distribution 

 

 
a                                                                      b 

Fig. 17. Sound spectrum (a) and total SPL (b) for varied location of the reverse linear actuator distribution 
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Fig. 18. Scheme of load and inverse triangular actuator group location 

 

 
a                                                                        b 

Fig. 19. Sound spectrum (a) and total SPL (b) for varied location of the inverse triangular actuator distribution 
 
 

 
Fig. 20. Scheme of load and triangular actuator distribution 

 
 

 
a                                                                       b 

Fig. 21. Sound spectrum (a) and total SPL (b) for varied location of the triangular actuator distribution 
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Fig. 22. Scheme of load and parabolic actuator value distribution 

 

 
a                                                                       b 

Fig. 23. Sound spectrum (a) and total SPL (b) for varied location of the parabolic actuator distribution 
 

 
Fig. 24. Scheme of load and inverse parabolic actuator value distribution 

 

 
a                                                                        b 

Fig. 25. Sound spectrum (a) and total SPL (b) for varied location of the inverse parabolic actuator distribution 
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Fig. 26. Scheme for fixed locations and varied value of the actuator 

 
 

 
a                                                                        b 

Fig. 27. Sound spectrum (a) and total SPL (b) for fixed location and varied value of the actuator distribution  
 

 
Fig. 28. Scheme for fixed actuator group location and value, but its phase is variable 

 

 
a                                                                      b 

Fig. 29. Sound spectrum (a) and total SPL (b) for varied force phase  
of the actuator with fixed location and force value 
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The reduction of total SPL reaches 9 dB. And this 
minimum corresponds again to location 0,7 of relative 
beam length.  
The results of actuator value distribution investigation 
shows that the best noise reduction corresponds to linear 
and reverse linear actuator value distribution. But for 
these cases some shifting (relatively to load location) of 
actuator group location is preferable.  
The fig. 26 represents the case when locations of load 
and actuator are fixed, actuator force distribution is 
uniform (so each of this forces in actuator group has the 
same value) and actuator value is variable – from 0 N to 
0,3 N.  
Result shows that the first mode SPL minimum 
corresponds to 0,15 N (fig. 27). The second mode SPL is 
indifferent to the actuator value. And the third mode 
SPL slightly increases with the actuator force value 
increase. But nevertheless the total SPL is defined by 
first mode and corresponds to 0,15 N. For the case 
shown in fig. 28 actuator group location is fixed, it’s 
value is constant, but the phase is variable. All unit 
actuators have the same phase.  
Fig. 29 shows that the minimum of the first mode 
corresponds to phase difference equal to   (the same 
result as in fig. 11). But for other modes the maximum 
occurs for this case, because of location difference. 
Nevertheless, because of small contribution of their 
SPL, minimum of total sound power level corresponds 
to   again. 

Conclusion 

As beam acoustic radiation control is defined by 
actuator parameters, such as the delayed phase of 
actuator forces, their location and distribution law 
along a beam, all of them are analyzed.  
For most of cases the results show that first four 
modes of simply supported beam oscillation are 
enough to be considered for the noise radiation 
investigation. Te influence of actuator parameters is 
different for each mode of beam oscillations.  
For the simplest case of loading the minimum of 
sound power level can be achieved with delayed 
phase on a   between load and actuator.  
The results show also the correlation between load 
and actuator values, specially the influence of 
actuator distribution on optimal sound power level 
of the beam was investigated.  
The modeling approach can be used for forming and 
grounding of feedback control of the system with 
vibrating loads by means of optimal distributions of 
the actuators along the beam length. 

References 

1. Preumont A. Vibration control of active 
structures, Kluwer academic publishers, Dordrecht, 
2003. – 350 p. 
2.  Modeling of sound radiation by a beam /  
A.I. Zaporozhets, V.I. Tokarev, Hufenbach Werner 
et al. // Вісн. НАУ. – 2005. – № 3. – C. 160–163. 

Стаття надійшла до редакції 30.01.06. 

О.І. Запорожець, В.І. Токарев, Вернер Хуфенбах (Німеччина), Олаф Теге (Німеччина), Нільс Модлер 
(Німеччина), Мартін Даннеманн (Німеччина), В.М. Макаренко 

Параметричне дослідження акустичного випромінювання балкою під навантаженням та актуаторами типу сили 
Досліджено параметричні характеристики коливань балки з використанням аналітичної теорії вібрації балки. 
Аналітичне дослідження згинальних коливань еластичної балки кінцевих розмірів розглянуто для критерію, що 
визначає мінімальне акустичне випромінювання. Розв’язок задачі визначено для рівняння Гельмгольца і 
неоднорідного диференційного рівняння гармонічних згинальних коливань балки. Для обчислення акустичного 
поля застосовано модель поршня, установленого на нескінченний екран. 

А.И. Запорожец, В.И. Токарев, Вернер Хуфенбах (Германия), Олаф Тeге (Германия), Нільс Модлер (Германия), 
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Параметрическое исследование акустического излучения балкой под нагрузкой и актуаторами типа силы 
Исследованы параметрические характеристики колебаний балки с использованием аналитической теории 
вибрации балки. Аналитическое исследование изгибных колебаний эластичной балки конечных размеров 
рассмотрено для критерия, определяющего минимальное акустическое излучение. Решение задачи определено 
для уравнения Гельмгольца и неоднородного дифференциального уравнения гармонических изгибных 
колебаний балки. Для расчета акустического поля использована модель поршня, установленного на 
бесконечный экран. 

 


