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The formalization possibility of mathematical model describing one-dimensional stationary flow of
compressible gas with the given constant heatflux, friction and massforces that can perform work in
the constant-area channel is considered in the paper. Analytical solution is obtainedfor energy equa-

tion ofthisflow model case.

It is well-known from heat and mass transfer the-
ory the following system of differential equations
describing one-dimensional stationary flow of com-
pressible gas in the constant-area channel [1] is as
follows :

- continuity equation

d(pv) _ q.

dx
- impulse equation

vdv +1P =f dx———2—E~dx\ 2)

P PRh
- energy equation

(1)

d
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dx Cp 2V Ox +fx=w,. (3)

where p - density; v - gas velocity; P - pressure;
fx- mass force;zw - tangent friction stress; Rh-
channel hydraulic radius; cp- specific heat at con-

stant pressure; T - temperature; gx- heat flux den-
sity referred to the mass flow rate unity.

It is evident that (I)-{3) can be reduced to the
following ODE system
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where 2 - loss factor; F - cross section area; g -
acceleration due to gravity; G - gas flow rate; R -
gas constant.

Formulae for gx and rw have the following form
Q _ 1 . 2
G 20 ™
where Q - heat flux; ®=4.

h =

Dividing equation (5) by (4) and making the fol-
lowing substitution variables

T dT d
z—; T-zP\ — =P 4+,
P dP dP
the energy equation of the problem takes the form
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and the general solution of which is
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where
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However, there exits not only the energy ODE
general solution but one of the whole initial problem

(4), (5):
| R2)dz oR(z)
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It is evident, that the above ODE variables are
separable. One can notice that the solution has sin-
gularity when

o \rgrev T _
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presents the sonic flow rate.

Let’s find out the link between pressure and tem-
perature in every channel point. To do it, it is neces-
sary to solve integrals in (G)J&he following integral

\R{z)dz =In Ib\z1+a2\~ (7
where
G,
b=, AN (8)
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and integral \(j(z)e-'  dz split into the following
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It is obvious from (8), (9) that two forms of inte

grals appear which depend on whether sign of a2 is
positive or negative, correspondingly
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The integrals have binomial differentials as inte-
gral functions, where the following substitution
formulae are used for each case

a2+z2=z2y2 or a2-z2=z22, a2>0,
and C \ m

As one can see, both integrals have singularity at
y = 1 that occurs at al- 1. This corresponds to the

nonisentropic adiabatic flow case. Constant ¢ is notv
guarantied to be rational. Thus, the binomial inte-
grals can not be solved analytically. Let’s expand
the following function into a series
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According to d’Alembert criterion of the conver-
gence radius of the above series is expressed as
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Because no restrictions were imposed on choice
of y0, i.e. it is, in a sense, arbitrary, then it means
that there always can be found such y0 from the
physical problem statement which satisfies the con-
vergence radius obtained above. The integrals hi

and /41 take the following forms
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The integration is true because it does not alter
series convergence radius. Integrals of /4 with the

even powers ofy have the solution

¢-2r -1 ) Y 7.1

=0 7+1
T'l ,2n-2i-1

R
tqg )2m-2Ar-1j

but for odd powers ofy the solution is
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then integral /4 at a2 >0 takes the form
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In a similar manner, for integral /3. we have the

following expressions for even and odd powers, re-
spectively
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and integral 73 at a2>0 is
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Finally, taking into account (7) the specific solu-

tion of the energy equation (6) at a2>0 has the

form
P K(T>0) +/4|yo) + COnStl
29 / A2 (10)
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For the case when a2<0 we expand into a se-
ries the function
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which convergence radius is the similar to the one in

case of a2>0
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In a similar way as for a2>0 and taking into ac-
count (7), the specific solution of energy equation

(6) has the following form for a2<0
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Introducing new unknown z and substituting into
(4) solutions (10), (11) the mathematical model of
one-dimensional stationary flow of compressible gas
with the given constant heat flux, friction and mass
forces in the constant-area channel may be reduced
to the single ODE.

But for this common flow case it is not warranted
because it will have to differentiate series and the
resulting ODE will be very complex.

Hence, rather pure numeric methods should be
applied to solving this common flow model.

M.FO. desnopos

99

For one very important case of flow model for
ideal gases such ODE reduction gives good results,
because the energy equation is solved in elementary
functions

P =
x Inz +
a+cCz
H &
fgrRG V
v V 2A
gRG)1 k
gRI F 2D,

That is resulted in the explicit nonlinear ODE
which can be solved with any explicit integration
method.

Such a model permits modeling both subsonic
flow acceleration and supersonic flow deceleration.

Conlusions

Thus, it is shown that general solution exists for
the mathematical model of one-dimensional station-
ary flow of compressible gas with the given constant
heat flux, friction and mass forces that can perform
work in the constant cross area channel.

The analytical solution of the energy equation of
such flow is obtained, and this kind of a flow model
limits application semi-analytical methods for their
formalisation.

Beginning with this problem statement the other
integration methods for its solving should be devel-
oped.
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CrarTd HagiiiLuna ao pegakuii 31.10.03.

MaTtemaTu4HWUiA aHani3 MOAEN0BaHHS CTUCMBOIO MOTOKY ifleafbHOro rasy

Po3rnsHyTOo MOXNMBICTb (hopmManisayii MaTeMaTUYHOT Mogeni OAHOBMMIPHOrO CTaLiOHapHOro MOTOKY
CTUCNMBOrO rasy 3 3afaHUMM NOCTINHUMMW 3HaYeHHSAMUW TEMNI0OBOro NOTOKY, TePTA, MaCOBMMU CUIaMu Ta iX
pobOTOK B KaHafi MOCTiliHOro nepepisy. OTpMMaHO aHaniTUYHWIA PO3B’A30K PIBHAHHA eHeprii Ana faHoro

BUAY Teuil.

M.1O. desnopos

MaTemaTUYecKunii aHann3 MOAEeNIMPOBaHNS CXXMMAEMOro NOTOKa MeanbHOro rasa
PaccMOTpeHa BO3MOXHOCTb (hOpMasiM3auum MaTeMaTU4Yeckoil MOAENW, OMWCHIBAKOLLEA OAHOMEPHbII

CTalMOHapHBbI MOTOK CKMMAEMOro rasa ¢ 3aaHHbIMU MOCTOSHHBIMU 3HAYEHWUSIMM TEMI0BOTO NOTOKA, Tpe-
HWUS, MacCOBbIMMW CUIaMK U PaboTOli MacCOBbLIX CUMI B KaHa/le MOCTOSIHHOTO ceyeHust. MonyyYeHo aHanuTuYe-
CKOE peLLEeHNe YPaBHEHUS 3HEPTUN ANs [AaHHOTO BUAA TEUYEHMS.



