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The paper is devoted to the parametric optimization o f the digital flight control systems from the view­
point o f achieving the necessary compromise between their robustness and performance. This com­
promise could be reached by using modern approach o f multi-model H 2 /Н да-  robust optimization, 
which was described mainly for continuous systems. In this paper the optimization procedure for dis­
crete control systems is proposed. Its efficiency is illustrated by the example o f the digital flight con­
trol o f the small Unmanned Aerial Vehicle.

Introduction

Each Flight Control System (FCS) has to sup­
press exogenous stochastic disturbances produced by 
turbulent atmosphere and to provide required per­
formance and stability in the presence of parametri­
cal internal disturbances in all flight envelope of 
unmanned aerial vehicles (UAV).

FCS for small UAV must have low price, weight, 
power consumption and size. In this case FCS per­
formance is frequently sacrificed in order to satisfy 
the last demands, which strongly influence not only 
FCS but also navigation equipment. The limited 
number of navigation sensors restricts the number of 
measured flight parameters (state space variables), 
which are used as the inputs of a controller.

From the other hand aforementioned demands re­
strict capability of the airborne computer. In this 
situation it is impossible to apply complicated con­
trol laws with high performance and only known 
simple structures of control systems [1; 2] are rele­
vant.

That is why it is possible to enhance performance 
and robustness only by parametric optimization. 
H 2 / H OT multi-model approach is one of the best 
ways allowing to reach the compromise between 
several controversial requirements to performance 
and robustness for deterministic and stochastic mod­
els with nominal and disturbed parameters [3]. This 
approach was successfully applied for control laws 
design for UAV [4] and airships [5; 6]. In these pa­
pers Ffy/Efy robust optimization procedure was 
developed for continuous time, because it was sup­
posed that the airborne computer is powerful enough 
to process data with high sampling frequency in 
comparison with the bandwidth of the closed-loop 
control system. This assumption sometimes is not 
valuable for the small UAV, which bandwidth is 
much wider in comparison with the bandwidth of 
the aircraft or airship; meanwhile the capability of

the airborne computer is much more limited and 
high sampling frequency is unavailable. In this case 
the condition of Kotelnikov-Shannon theorem could 
be satisfied with minimal margin. As a result, if the 
optimization of continuous system would be done, 
any conversion of the analog controller into the digi­
tal one produces closed-loop system, whose dynam­
ics would be very far from optimal (sometimes even 
unstable). This circumstance requires development 
of H j / H ^  -  robust optimization directly for dis­
crete time system, which is the final goal of this paper.

The statement of the optimization problem

The combination of the nominal performance 
with robust stability (NPRS) could be achieved us­
ing mixed H 2/ H OT control of multi-model plants 
[3], which can incorporate deterministic as well as 
stochastic criteria in one performance index, thus 
permitting the reasonable trade-off between contra­
dictory conditions of deterministic and stochastic 
performing indices (PI) minimization, meanwhile 
incorporation of H2 and H x norms allows to 
achieve compromise between requirements to sup­
press external and internal disturbances. The set of 
models of the plant includes all parametrically dis­
turbed models in the different conditions of flight, 
which cover all flight envelopes of the given aircraft. 
So it is necessary to design the composite criterion, 
which contains all aforementioned partial PL

Consider the standard form of the MIMO-control 
system optimization problem, represented in fig. 1, 
where vector rj represents the white noise exogenous 
disturbances, which along with forming filter creates 
vector g of stochastic wind velocities. Spectral den­
sities of components of vector g in accordance with 
standard Dryden models [1] describe their dynamics. 
The matrix of forming filter transfer functions can 
be produced by Wiener factorization of these spec­
tral densities.
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Fig. 1. The standard form of the control system opti­
mization problem

where m v -Nyqist frequency: coA, = — .

In expressions (1), (2) X stands for vector of state 
space variables, u is the control vector, EM stands 
for expectation operator, and Q, R are weighting 
matrices. In expression (3) <5 is the maximal singu­
lar value of the transfer function matrix G(y'co) of 
the closed-loop system over the frequency 
range: 0 <(£><(%.

It is necessary to note, that the control circuit of 
the system shown in the fig. 1 is digital, meanwhile 
the way for the random disturbance g propagation in 
the controlled plant is analog. The obtaining the de­
scription of all system in the discrete time requires 
transformation of this system on the basis of super­
position principle in the equivalent system shown in 
the fig. 2, which permits to obtain discrete time 
model in the stochastic case.

The state-space description of the forming filter 
associated with Dryden’s spectral densities can be 
easily produced also [1] as the quadruple of matri­
ces [Aft Bf, Cf, Df], Matrix B0g is designed to incor­
porate control input U and stochastic vector of wind 
gusts g in one input vector; matrix A is state-space 
matrix of UAV. There are 2 observation matrices: 
Co, associated with output vector Z, that is used for 
computing the PI of the system, and Cc, associated 
with other output vector Y, which incorporates only 
really measured outputs, for creating the actual con­
troller feedback. The forming filter is used for com­
puting the stochastic PI, meanwhile for deterministic 
case it is omitted. Sampling elements (SE) represent 
the discrete time with sampling period Ts.

The continuous plant is represented by the quad­
ruple of matrices [A, B0g, Cc, Dc} for creation of the 
actual closed-loop system and another quadruple 
[A, B0g, C0, D0] for the computation of optimization 
criterion. The optimization procedure is based on 
the composite PI, which includes the following 
components:

1) Efi-norm for each model (nominal and para­
metrically disturbed) in deterministic case, which 
represents the system sensitivity to deterministic dis­
turbances (or command signals):

Jd = j Z [ X T(k)QX(k) + uT(k)Ru(k)] ; (1)
V k=0

2) H2- norm for each model in stochastic case:

J s = -\/e m [XT(k)QX(k) + uT(k)Ru(k)]; (2)
3) Hw - norm for each model:

||g || = Sup o(G(yco)) , 0 < to < (oN, (3)

Ty Actuator Z
7

J Optim ization 

! Criterion

\ J  D9itai А Л
Controller

Fig. 2. The block-diagram of the equivalent digital 
control system

Here the extended forming filter includes the 
plant model along with primary analog forming filter 
derived from Dryden’s model.

For this system it is possible to determine the 
quadruple of matrices [Acl, Bd, Cd, Dd] for the state- 
space description of the deterministic model of the 
digital closed-loop system for nominal and paramet­
rically disturbed cases using standard analog-to- 
digital conversion of “actuator + plant” series con­
nection. The series connection of this closed-loop 
system model with discrete model of the extended 
forming filter (fig. 2) produces the model for inves­
tigation of the stochastic case. So the following 
quadruples of matrices are used for the set of models 
in this case of multi-model approach:
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-  for description of the real closed-loop system 
with vector Y as an output) in the nominal and pa­

rametrically perturbed cases respectively:
-,

A ci B cl and
A  P 

A cl В  cl

L c ci DcJ c p
L '—ci K .

-  for description of this system, calculation of op- 
::mization criterion (with vector Z as an output) in 
:ne deterministic case, for nominal and parametri­
cally perturbed plants respectively:

A  ci B cl

c„ D„
and

A pA cl B CP,

c p D o

( 5)

-  for description of this system, calculation of op- 
::mization criterion (with vector Z as an output) in 
:he stochastic case, for nominal and parametrically 
perturbed plants respectively:

4 l s Bcls

~„s D os
and

4 p
^ c l s Bp" e l s

c pOS DpOS

( 6)

These models permit to calculate the 
H 2 -  norms (1) and (2) for nominal and perturbed 
models using the controllability Gramians of closed 
1 oop systems for deterministic G<i and stochastic Gs 
cases. These Gramians can be found as the solutions 
of Lyapunov equations for deterministic and sto­
chastic discrete systems [7; 8] used in multi-model 
approach:

A clG dA cT1- G d + BdB£T1= 0 ;

AcisG sA^s - G s + B clsB£ls =0 .

They are for nominal and parametrically per­
turbed models. Note, that observation matrices of 
closed loop systems C0 and C0s in (4)-(6) include 
the control inputs also. According to [7; 8] the 
squares of H2-norms (1) and (2) can be calculated as 
follows:

J 2d = trace (C ” G d(C ^ )T) ; (7)

J ]  = trace (C :SG S(C ;S)T) ,  (8)

where C q ,C qs -  weighted observation matrices:

G# - C 0Q; C" = C0SQ;

Q = diag(q, ,...,qn), (9)
qi, qn -  weights of corresponding state space vari­
ables in H2-norms (7); (8).

The usage of controllability Gramians for calcu­
lations of PI is very useful especially in the aero­
space control problems, because it can determine the 
contribution of each component of the state space 
vector in PI calculations. So the optimization criteria 
could be closely matched with the airworthiness re­
quirements [9]. Linear combination of the partial PI

corresponding to different models (5), (6) defines 
the composite PI of all set of models:

j c = x dj 2d + xpd( j s J  + K J s  + k [j ? }  (10)
where Xd ,Xpd , X s , Xp are weighting coefficients of 
partial PI of deterministic and stochastic nominal 
and parametrically perturbed models respectively.

The robustness of the system is determined by 
TL-norm (3) of the complementary sensitivity ma­
trix [10]:

\\T\l = Supa(TO'co)); 0 < m < wN ,
CO

where T(z)=C(z)G(z)[E+C(z)G(z)]'1, z=e)mTs G(z) 
and C(z) are matrices of transfer functions of the 
plant with the actuator and controller respectively. 
Adding these TL-norms forthe nominal and paramet­
rically perturbed models with corresponding weight­

ing coefficients Xx  , Xp to the composite PI, we can 
obtain aggregated performance-robustness index 
(PRI):

Pp- r = j c + ^ | | t | L + ^ | t pL .  ( l i )

Increasing or decreasing weights Xx  , Xp rela­
tively to the weights for performance components 
Xd , Xpd , Xs , Xp it is possible to reach the trade-off 
between robustness and performance of the system. 
PRI (11) is a function of the vector of variable pa­
rameters of controller c„ , including gains of all its 
input signals. Components Cn appear in all quadru­
ples of matrices (4)-(6) from controller’s description. 
The optimization procedure must find such value of 
vector C„ , which provides the minimum of PRI. So 
far as controllability Gramians could be defined only 
for the stable and fully controllable system, it is pos­
sible to find the minimal value of composite PRI
(11) over the space of variable parameters Cn , if 
and only if, in the process of performing optimiza­
tion procedure the closed loop system would be sta­
ble and the search of optimal value Cn * of vector

Cn would be made within stability domain of vari­
able parameter space. Therefore total cost function 
for running optimization procedure has to include 
some penalty function (PF) for violation of the loca­
tion’s area of the closed loop system poles in the 
complex plane. This area D is represented in the 
fig. 3, a, where it is restricted with two bold circles. 
The 1st circle with larger radius determines the sta­
bility margin(distance to the unit circle d0), while the 
2nd one with smaller radius determines the maximal 
bandwidth of the closed loop system. So it is neces­
sary to find the minimal value dm of all distances
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а  Im

Fig. 3. Penalty function in the complex z-plane: 
a -  requested location of the closed-loop system poles; 
b -  graph of PF(dm)

from all poles of nominal and perturbed models to 
the 1st and the 2nd borders of area D in complex 
plane z. The penalty PF](dm) as a function of mini­
mal distance could be graphically shown in fig. 3, b 
and defined over area D for its 1st border as follows: 

0- i f  d m > d ml

p f M - 1 + cos(
p

2
P, i f  d m < d 0

n ( d m - d 0 )  

dml ~  do
( 12)

it d 0 < dm < d m j ,
where P -  of large value (for example P=T04-rl06). 
This function is smoothed and differentiable inside 
the unit circle.

The penalty PF2(dm) for the 2nd border is de­
fined in the same way. Eventually the total cost 
function for the optimization procedure has the fol­
lowing form:

h  = J , + i r f  (13)
/=1

and the optimization procedure will have to find op­
timal values for the components of vector of variable 
parameters under the following condition:

Cn =argm inJv(Cn) Cn e D c , (14)

where Dc is the stability domain within the parame­
te rs  space, which is defined by D.

Penalty function like (12) is of great importance 
in the design procedure because of following rea­
sons:

1) if the optimized system is stable during all op­
timization process, the PI is convex function [11], 
thus ensuring the unique solution of optimization 
process;

2) pole placement in the aforementioned area is 
closely related to the robust properties of closed- 
loop system [12].

Finally it is necessary to add, that in the 
optimization procedure some parameters of 
controller could sometimes be chosen not reasonable 
large. In this case it is useful to add to PF well 
known restrictive term:

PFr = t K P r ,
r = 1

where / -  a number of parameters p r , which is to 
be restricted; Xr -  the weight factor.

Optimization and design procedure

The 1st stage of a design procedure consists of 
determination of a structure and the initial values of 
its parameters from the viewpoint of closed loop 
pole placement in the prescribed area.

As the 1st help to solve this task the standard 
LQR-procedure could be used for determination of 
signs and values of all CL components, when full 
state vector is measured.

Then at the 2nd stage actual sensors are taken 
into account adding PD-controllers or any other 
elements of dynamic feedback, using some known 
structures [1; 2].

Standard MatLab procedures for determination of 
state space description of series and feedback con­
nections permit to find such values of controllers 
parameters, which place closed loop system poles to 
left half-plane inside prescribed area or with some 
its minor violations.

Known pole-placement methods [1; 2] could be 
used as well.

At the 3rd stage aforementioned optimization 
procedure could be applied to find the optimal pa­
rameters, which give minimum to the total cost func­
tion (13).

In our case simple but reliable Nelder-Mead op­
timization procedure [13] was used.

It requires more steps to be done to finde minimal 
value of cost function (13), but on the other hand it 
doesn’t require determination of cost function gra­
dients, which is not trivial task as itself.

Eventually at the 4th stage it is necessary to 
evaluate the actual performance of designed system.
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It could be done analytically with the help special 
program, by evaluation of all components of PRI 
i l )  without the weighting coefficients, and experi­

mentally on the basis of simulation.
In the simulation procedure it is possible to use 

some inevitable non-linear functions (such as satura- 
:ion of actuator, dead zones etc.) in combination 
with linear or full nonlinear model of UAV.

If some state space variables don’t satisfy the re­
quired specifications and are unreasonably large, it 
is necessary to increase corresponding coefficients 
in the weighting matrix Q in expression (10) and to 
execute the optimization procedure again.

The same situation occurs, if it is necessary to 
diminish H2- or FL-norms of nominal or parametri­
cally disturbed model; in this case it is necessary to 
change corresponding weighting coefficients

Kœ , Âf , /v , Xpd etc. and to execute optimization 
procedure with new coefficients again.

Therefore this optimization procedure has to be 
repeated several times until appropriate values of 
separate components of PRI (11) are reached.

Case study
Consider the altitude-hold mode for small UAV 

with the following parameters [4]:
-  cruise speed U0=250 km/hr,
-  altitude H0 = 2 km;
-  maximum take-off weight MTO W=146 kg;
-  moment of inertia Jzz= 124 kg-m2;
-  wings area S = 1,84 m2;
-  mean aerodynamic hord c  = 0,51 m.
Control surfaces are: elevator and ailerons only.

Navigation system provides the longitudinal channel 
of autopilot with three sensors: altitude, pitch angle 
and rate.

The control law has the following form:

8e(z) = Wa(z) [wh{z),K„Kq][hM ]T\

W S z )  = \ + ̂ { z - l \

Wh(z)  = K h + ^ { z - 1),

w here be -  the deflection of elevator; K<h Kq, Kh -  
pitch angle, rate and altitude gained respectively; 
TdBq, Tdh -  time constants of the 1st difference ele­
ments in the angular and altitude circuits.

Vector of adjustable parameters of autopilot C n, 
which has to be determined from optimization pro­
cedure (14), has the following components:

C„=[K 8, Kq,K h, Td9q,T dh], (15)

Parametrically perturbed model occurs, when the 
true air speed decreases to value 200 km/hr. UAV 
longitudinal dynamics state space models corre­
sponding to the nominal and perturbed cases have 
the following form:

-0,0345 6 -9,78 0 0
-0,0041 -1,76 0 0,99 0

A = 0 0 0 1 0
0,0033 -25,7 0 -2,19 0

0 -69,4 69,4 0 0

B = [0,36 -0,16 0 -31,1 Of;

-0,0273 6 -9,78
-0,0064 -1,76 0

0 0 0
0,0036 -16,1 0

0 -55,6 55,6

Bp =[0.36 -0.13 0 -19.9 Of,
where matrices for perturbed case are provided with 
subscript “p”.

The performance-robustness index would have 
the following form:

J  = ̂ O d ^ O d  + K A s  + ̂ -p d -J p d + ̂ p s ^ p s  +
+  ^ o o ^ c o  +  ^ p A p n  !  ( 1 6 )

where J od,Jos stand respectively for deterministic 
and stochastic partial PI of nominal system, k od,X0s 
stand for corresponding weight factors, while the 
same symbols with subscripts “p” stand for the same 
values of perturbed system. Symbols TM (Tpc0) and

K & p J  denote HM -norms for complementary
sensitivity functions and weight factors for nominal 
and perturbed systems. After few tentative execu­
tions of optimization procedure these parameters 
were chosen as

^0d  ~  ̂ p d  ~  ;
K s  = V  =10;

^ = v = 0’4 -
Parameters of PF were chosen as 
i?! = 0,9999;

R2 = 0,0005.
Using PRI (16) and PF (12) with aforementioned 

parameters, optimization procedure determined the 
following vector (15) of control law’s parameters:

Cn =[-9,2-1 -0 ,05  0,14 0,008].

Numerical characteristics of nominal and per­
turbed systems are represented in the tab. 1, 2.
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Table 1 Conclusions
C o m p a r i s o n  o f  c h a r a c t e r i s t i c s  f o r  n o m i n a l  

a n d  p e r t u r b e d  p l a n t  o f  t h e  s t o c h a s t i c  m o d e l

Plant
R.m.s. o f  state space variables

a , rad rad Q, rad-s'1 h, m be, rad
N 0,0007 0,0034 0,003 1,07 0,0017
P 0,0009 0,0063 0,0035 1,39 0,0019

Table 2

C o m p a r i s o n  o f  c h a r a c t e r i s t i c s  f o r  n o m i n a l  

a n d  p e r t u r b e d  p l a n t  o f  t h e  d e t e r m i n i s t i c  m o d e l

Plant Stability margin H2
Phase (deg) Ampi. (dB)

N 145 20 1,59 0,43

P 152 23 1,15 0,29

As it follows from this table r.m.s. of state vari­
ables in stochastic case are varying within reason­
able limits, whereas such integral characteristics as 
H2 -and H„ -norms, are defined by expressions (2), 
(3) and phase stability margins are varying in a vary 
small limits. Amplitude Bode plots of closed loop 
systems (fig. 4) are very flat, thus proving robust­
ness of system. The fig. 4 is the nominal(solid line) 
and the perturbed (dotted line) closed-loopsystem.

0

-40
0.001 0.01 0.1 0 10 w,rad/s

a

b
Fig. 4. Bode plots o f  closed loop systems: 
a -  Magnitude Bode plot; b -  Phase Bode plot

Transient processes in nominal and perturbed sys­
tems, which were simulated taking into account all 
nonlinear functions inherent to the live autopilot as well 
as the influence of the random wind, simulated accord­
ing to the standard Dryden model of turbulence [1]. Re­
sults of the simulation are shown at fig. 5.

These figures along with numerical results, repre- 
• sented in tab. 1, 2 show that desired robustness- 
performance trade-off is achieved.

1. H2/Hoo-optimization procedure for digital con­
trol systems permits to obtaine the flight control law, 
which could be directly implemented in the airborne 
computer without any additional firstly the continu­
ous systems has to be designed and adjustments. 
These adjustments are inevitable when its 
conversion to the digital form must be done at the 
2nd step.

2. Proposed optimization procedure permits to 
achieve desirable compromise between performance 
and robustness of the FCS, when essential variations 
of the aircraft’s dynamic parameters due to the 
variations of the state of rest true airspeed doesn’t 
affect essentially the performance of system.

Fig. 5. Transient processes in the digital control 
systems in the altitude-hold mode: 
a -  angle of attack; b -  altitude

3. This procedure is used to be performed several 
times. Each running of this procedure is made with 
certain values of all weight coefficients of composite 
PRI (10). The values of control law’s parameters 
then are used for the evaluation of all characteristics 
of the closed loop control system under deterministic 
and stochastic disturbances as well as for the simula­
tion of this system under the same disturbances. If 
the deflections of the state-space variables under de­
terministic disturbances (or their r.m.s. under sto­
chastic disturbances) of the controlled plant are tol­
erable from the viewpoint of the system’s perform­
ance, these adjustable parameters must be used in 
the actual controller. Otherwise, it is necessary to 
increase in PRI (16) certain weight coefficients cor­
responding to the state-space variables, which have
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intolerably large values, and to repeat this procedure 
again until these values are restricted inside the 
desirable tolerances.

This work was supported by State Research 
Theme №102-DB “Creation of the Methodology of 
the Robust Control Systems Design for the 
Aerospace Moving Vehicles”.
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А.А. Тунік, О.О. Абрамович
Параметрична робастна оптимізація цифрових систем керування польотом
Запропоновано метод досягнення компромісу між робастністю і якістю систем керування при 

номінальних і параметрично збурених моделях об’єкта в детермінованому і стохастичному випадках. 
Для вирішення цієї задачі використано багатомодельний Н2/Н* підхід робастної оптимізації. У 
вітчизняній та зарубіжній літературі можна знайти застосування цього багатомодельного Н2/Ьи 
підходу робастної оптимізації для неперервних систем. Розглянуто приклад використання для 
дискретної моделі робастної оптимізації повздовжнього каналу малого безпілотного літального апарата.

А.А. Туник, Е.А. Абрамович
Параметрическая робастная оптимизация цифровых систем управления полетом 
Предложен метод достижения компромисса между робастностью и качеством систем управления 

при номинальных и параметрически возмущенных моделях объекта в детерминированном и 
стохастическом случаях. Для решения этой задачи используется многомодельный Н2/Н„ подход 
робастной оптимизации. В качестве примера рассмотрено применение робастной оптимизации 
продольного канала малого беспилотного летательного аппарата для дискретной модели.


