84 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2017. N2(71): 84-92

DOI: 10.18372/2306-1472.71.11751

Nikolay Sidorov'
Nika Sidorova®
Alexander Pirog’

ONTOLOGY-DRIVEN TOOL FOR UTILIZING PROGRAMMING STYLES

National Aviation University
Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine
E-mails: ' nikolay.sidorov@livenau.net; * nika.sidorova@gmail.com; *pirogman@gmail.com

Abstract

Activities of a programmer will be more effective and the software will be more under standable when within
the process of software devel opment, programming styles (standards) are used, providing clarity of software
texts. Purpose: In this research, we present the tool for the realization of new ontology-based methodol ogy
automated reasoning techniques for utilizing programming styles. In particular, we focus on representing
programming styles in the form of formal ontologies, and study how description logic reasoner can assist
programmers in utilizing programming standards. Our research hypothesis is as follows: ontological
representation of programming styles can provide additional benefits over existing approaches in utilizing
programmer of programming standards. Our research goal is to develop a tool to support the ontology-
based utiliziing programming styles. Methods: ontological representation of programming styles; object-
oriented programming; ontology-driven utiliziing of programming styles. Results: the architecture was
obtained and the tool was developed in the Java language, which provide tool support of ontology-driven
programming styles application method. On the example of naming of the Java programming language
standard, features of implementation and application of the tool are provided. Discussion: application of
programming styles in coding of program; lack of automated tools for the processes of programming
standards application; tool based on new method of ontology-driven application of programming styles; an
example of the implementation of tool architecture for naming rules of the Java language standard.

Keywords: coding standard; description logic; ontology; programming; programming style; reasoner;
software engineering; the Java language.

1. Introduction

Currently, methods and means of software
development and maintenance, which are based on
multiple use and reuse, are spreading [1].
Application of these methods and means requires a
programmer to read and understand a significant
amount of source texts, and major requirement to the
software is its understandability. Activities of a
programmer will be more effective and the software
will be more understandable when within the
software development process the programming
styles (standards) will be used, providing clarity of
software texts. Programming stylistics problems
arose in the period before the structured
programming, but nowadays they remain relevant
[2]. Within the previous years, many programming
standards have been developed [3-7]. But today the
issue of solving the problem of their effective use

receives little attention. The existing problems of
using the standards such as [8]: opposition of
development team to use standards; developers
“forgetting” to use standards; management thinking
that the implementation of standards is too
expensive, are resolved by developing and using
tools that automate the corresponding processes. In
the paper [9], new method of programming styles
application based on the ontology has been
proposed. In this paper, the task of implementing the
ontology-driven tool for utilizing programming
styles based on the proposed method is considered.

2. Analysis of latest research and publications

Programming (coding) style (standard) is a set of
rules and requirements regulating the conditions for
the development of software text. Typically,
standards are composed for a particular

Copyright © 2017 National Aviation University
http://www.nau.edu.ua

Nikolay Sdorov, Nika Sdorova, Alexander Pirog. Ontology-Driven Tool for Utilizing Programming Styles 85

programming language [3-5], but usually cover four
aspects [10]:

1. Formatting - requirements for the general
form of code text lines;

2. Naming - requirements for the names in
programming text (literals, variables, methods,
modules, classes);

3. Commenting - requirements for
commenting in programming text;

4. Coding - requirements for the use of the
language statement basis, definitions and
initialization.

Generally, coding standard is represented in the
form of text document, which sets out the
requirements and rules for the writing of program
text. The set of style rules consists of three types of
rules — syntactic, semantic and pragmatic. For
example, a syntactic rule [3]:

Synopsis: DO not use an underscore |n
dentifiers

Language: C#

Level: 8

Category: Naming

the

Team of programmers should go along the
following steps of path in order to implement a
coding standard [8]:

- reach a consensus as to which coding standard
to implement;

- study the coding standard and modify the
standard (if required);

- follow the coding standard during the coding
process;

- execute monitoring and fixed bugs made
within the implementation of the standard.

Automation of the processes of studying,
following and monitoring (fixing bugs) makes the
implementation of programming standards
beneficial, cheap and reliable. That is why there is a
number of tools aiming at these processes [10,11].
Two key processes that should implement such tools
are to be denoted. The first process is the
presentation of programming standard requirements
and rules to a programmer (the first two steps of the
path), and the second one is checking whether the
programmer has been following these requirements
and rules during the coding (the last two steps of the
path).

Nowadays, the first process is not automated,
paper documentation manuals providing the
following information are being used:

- description of a rule;

- motivation for the existence of a rule;

- example of where and how a rule should be
used;

- example of where a rule should not be used;

- example of where and how a rule can be
verified.

In the paper [12], the results of the
implementation of the first process with the help of
automating bringing information to a programmer
using ontologies are given.

To implement the second process, static code
analysis tools are being developed [13]. These tools
are usually work by scanning the code with the help
of the configuration file, which stores the
information about the programming standard,
usually in HTML or XML, which makes the setup of
tools expensive and inconvenient. The task of
implementing this tool basing on the ontology is
considered in this paper.

3. Purpose and objectives of the research

In this research, tool for the realization of new
software methodology that utilizes ontologies and
automated reasoning techniques for utilizing
programming standards is presented. In particular,
the focus is made on the representation of
programming standards in the form of formal
ontologies, and the study of how description logic
reasoner can assist programmers in utilizing
programming standards. The research hypothesis is

as follows: ontological representation of
programming standards can provide additional
benefits over existing approaches in utilizing

programmer of programming standards. The
research goal is to develop a tool to support the
ontology-driven utilizing programming standards.

4. Tool of ontology-driven
programming styles

application of

To apply the programming style, a programmer should
decide two tasks: study the description of the style; use
and check the style during the coding. Thus, it requires
two tools - one for studying the style and the other one
to check the use of this style. Both tools are based on
the representation of the style. That is why the form of
this representation affects the efficiency of processes
performed by a programmer and the efficiency of tool.
It is proposed to use the ontology as a form of
knowledge representation about programming style

[12] (Fig. 1).

Style Artifacts

(Documentation) Style Ontology

Task

Requirements Coding

Programmer
Fig. 1. Ontology of style in programming
Using appropriate tool (e.g. Protégé [14]), a

formal representation of programming style - an
ontology is developed. A programmer for coding

86 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2017. N2(71): 84-92

uses ontology. Therefore, two tools are required -
one for creating an ontology and assisting the
programmer, the second one to control the
implementation of style during the coding (Fig. 2).

Stvle Ontology

Recasoner

Fig. 2. Ontology-used tools

Stvle Artifacts
(Documentation)

Creating

Checking

Task Use Coding

Requirements

Progmm mer

The first tool creates the ontology template,
which is defining, general programming standards
properties. Style analyst using Protégé setup
template on programming standard. After that the
programmer uses ontology to study programming
standard.

The second tool is a reasoner [15]. In terms of
descriptive logic, the reasoner solves one major
problem — verifies consistency of the ontology [16].
This problem has certain features for the task of
programming style implementation (Fig. 3).

Ontology > Consistency

Reasoner [Inconsistency (Style Errors)

Style Knowledge Base

TBox ABox

Terminology axioms Individual assertions

ANguAZe S Source Code
Conventions i

Fig. 3. Model of style knowledge Base

Protege is used to create TBox, which includes
terms describing programming style. The assertions
about the source code (ABox) are created according
to the source code that is written by a programmer.
Reasoner provides appropriate service based on
TBox and ABox. However, it should be not only
assertion about knowledge base consistence, i.e.
compliance of ABox assertions regarding TBox, but
also indications of specific stylistic errors in the
source code in case of the knowledge base
inconsistency. Thus, “regular” reasoner will not

fully satisfy this service. Therefore, the
implementation of corresponding Style Ontology
Reasoner (SOReasoner) is described below.

As far as the ABox assertions for the operation
of SOReasoner are not generated to TBox, the style
ontology should be implemented in a format for
SOReasoner. This format is recorded in a pattern on
OWL, which is used for creating style ontology.
Means for the creation of OWL template
(OWLParser) and ABox (SourceCodeParser) are
united in SOReasoner (Fig. 4).

OWL API Java Parser API
A A
<<uses>> <<uses>>
‘ OWLParser ‘ ‘ SourceCodeParser ‘

A A

[
‘ StvleOntologvReasoner |

Fig. 4. Style Ontology Reasoner scheme

SOReasoner consists of two main parts: OWL
Parser and Source Code Parser. First part will be
achieved by means of the OWL API and will
generate OWL template when the ontology is
created and it will generate a set of TBox rules when
programming style of source code is checking.
Second part will use Java Parser API to analyze Java
source code, checking consistency style knowledge
base and give feedback. It is also important to design
user-friendly interface. The OWL API is a Java API
and reference implementation for creating,
manipulating and serializing OWL ontologies in the
Java language [17]. Java Parser API is a set of tools
to parse; analyze; transform and generate of Java
source code [18]. The activity diagram of
SOReasoner is given in the Fig. 5.

®

(Get Rules From Ontolog}>

(Parse Source Code)
(Check Covnsistency)
(Displa}fResults)

Fig. 5. SOReasoner activity diagram

Nikolay Sdorov, Nika Sdorova, Alexander Pirog. Ontology-Driven Tool for Utilizing Programming Styles 87

Before source code file is parsed in order to
check the style, it is required to obtain rules from the
ontology. OWLParser provides functionality to
parse ontology in order to obtain rules for checking
code style (Fig.6). After OWLParser successfully
loads the ontology, it starts to go through all axioms
of TBox in order to build set of rules. If this process
goes well, OWLParser returns a list of rules.

C Load Ontology)

v
Visit Individual
C)

[else]

[If it is Rule]
(Parse Rule)
v

(Add new Rule to the List of Rulcs)

[else] A=

[No more Individuals]

Fig. 6. OWLParser activity diagram

OWLParser can also be used to generate
template style ontology with all required structures
for specifying general rules of programming style
conventions. The process of adding new rules to the
ontology (setting) is very simple because all required
structures have been added to the template. In Fig.7,
a part of hierarchy of concepts of the style ontology
template for naming is given.

In Fig. 8, the subclass of the corresponding
class and the description of this subclass are given. It
includes the first symbol of the denotation,
separator, denotation type, and symbols which may
combine the denotation (except the first one).
Specific samples for the denotation will be indicated
when a template is setting in Protege. It is required
to create new individual for each rule and add object
property assertions to specify exact aspects of rule.
After setting the template it is required to check the
ontology in reasoner in order to double check newly
added rules.

v owl:Thing
¥ RuleForCode
¥ & CommentRule
V& NamingRule

: AnyIdentifierRule
ConstantIdentifierRule
InterfaceldentifierRule
MethodIdentifierRule
i PackageIdentifierRule
o VariableIdentifierRule
¥ & WhiteSpaceRule

Fig. 7. Part of Concept Hierarchy in style
Ontology Template

Equivalent To

SubClass Of

NamingRule

General class axioms
Fig.8.Classidentitire Rude Descriptoon
SubClass Of (Anonymous Ancestor)

startsWith some StartChar
isNameTypeOf some NameType
separatedBy some Separator
consistsOf some AcceptableChar

Fig. 8. Class identifier Rule description

Source Code Parser provides functionality to
parse source code using the list of rules (TBox) from
ontology and obtaining ABox assertions about
instances from source code. For parsing source code,
it is required to set a path to desired Java file and
then obtain rules (if any) for checking. After the
preparation is finished, it is possible to start parsing.
General process is as follows (Fig. 9).

(Get Compilation Unit)

»(VisitNode)

[If there are [else]
any Rules
for this Node]

Check Node)

[Is Correct]

[else]

C Update Error Log)

[else]

<
[No more Nodes]
[else]
[Source File
needs update]

< Update Source File)

Fig. 9. Source code Parser Activity diagram

Firstly, SourceCodeParser parses compilation
unit and gets information about all language
constructions from nodes. Compilation unit is the
abstract syntactic tree. While doing so, all nodes of
compilation unit are also checked (if rules were
specified). Then, if the update flag is set as true,
SourceCodeParser will update source file via adding
new comments after all problematic construction.
The sequence diagram of ontology-driven using
programming style is given in Fig. 10.

88 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2017. N2(71): 84-92

@ @
Style }
Programmer Analvst Protege SOReasoner OWLParser SourceCodeParser
'y
T T T T T T
i | Get Template Ontology | . Get Ontology . 1
I I Ll Ll I
} u } Create :
[}] | - C o |
I | | Return Ontology Return Ontology P Ontology !
I e e e e e e ———— S S 1
I < | | T 1
I I]]]
I _] 1 1 1
} Adding Rules Add Rules to Ontology } : : :
I », | I |
I [Convention] I 1 1
I 1 1 1
I 1 I 1
I 1 1 1
I 1 1 1
I 1 1 1
! Return Ontology with Rules I I |
I Pass Ontology | e oo o2 _] 1 | |
S L] I I I
L] 1 1 1
I I 1 1 1
1 I I I I
| Check Source Cade | | Get Rules form Ontology ! '
[l [l Ll Ll |
: } Parse :
: 1 Return Rules Ontology :
1 | (——————————————— 1
1 I] 1
I I I I
g | i
]
1 | Check Source Code ! »
i | Lt
I | | Parse
H | 1 Source
: } : Return Results Code
1 I = mm s [
| Show Resulls } : :
- —mm—m—m— Fo————————— T mm a | I
I I 1 1 1
T 1 I 1 1 1
] I 1 1

In this sequence diagram it is shown how objects
operate with one another and in what order. Diagram
shows the scenario of using SOReasoner through all
its functionality.

Firstly, style analyst runs SOReasoner to get
template ontology. For this purpose, OWL Parser
creates a template and returns it back to style
analyst. Secondly, style analyst runs Protégé and sets
up the template (adds specific rules from convention
language standard to the template). After that, style
ontology is checked for the consistency. If the
ontology is consistent, style analyst passes it to the
programmer, who runs SOReasoner again to check
source code file. This process can be separated into
two main sub-processes: parsing ontology and
parsing source code. First one is performed by
OWLParser which takes ontology and returns a list
of rules (TBox). Second one is performed by
SourceCodParser, which takes source file (ABox),
checks it against TBox rules and returns results.
Finally, SOReasoner shows feedback to the
programmer.

5. Case study
It is proposed to consider the application of
SOReasoner on the example of naming rules from
Java Convention [5].

With the use of OWLParser a template ontology
for programming style is created. It builds all

required classes, individuals, objects and data
properties (Fig. 11, 12). After that, a list of TBox
rules for the code is created.

' RulePart

v-- & IdentifierRulePart
+ 0 AcceptableChar

Separator

StartChar

Fig. 11. Fragment of ontology Template

Equivalent To

SubClass Of

IdentifierRulePart

General class axioms
SubClass Of (Anonymous Ancestor)

Instances

& AnyNameType
& Noun
& verb

Fig. 12. NameType
For example, in descriptive logic:

NamedObject — concept of all object names.
Then:

Nikolay Sdorov, Nika Sdorova, Alexander Pirog. Ontology-Driven Tool for Utilizing Programming Styles 89

Class £ NamedObject

Method = NamedObject

Parameter = NamedObject

NamedObject = =1hasName.Identifier

Identifier £ hasChar Set. {US-English}

Class E 1hasName.Classldentifier

Classldentifier E Identifier

Classldentifier = ConsistsOf Noun

Identifier E hasFirstChar.SmallChars

Identifier E hasOtherChar.AllChars

AllChars C BigChars L OtherChars

For example, there is a naming rule from Java
convention [5] (Fig. 13). Style analyst can open this
ontology template in Protege and use the rule
description from convention to setup template (Fig.
14). In this case, OWLParser will definitely parse
the ontology correctly.

Example of rule from Java Convention: Class names
should be nouns, in mixed case with the first letter of
each internal word capitalized. Try to keep your class
names simple and descriptive. Use whole words—
avoid acronyms and abbreviations (unless the
abbreviation is much more widely used than the long
form, such as URL or HTML).

Fig. 13. Rule description

Description: TemplateRuleForClassldentifiers

Types

' ClassIdentifierRule

Property assertions: TemplateRuleForClassldentifiers

Object property assertions
i consistsOf LowerCaseAcceptableChar
= separatedBy UpperCaseSeparator
= consistsOf UpperCaseAcceptableChar
= startsWith UpperCaseStartChar
= isNameTypeOf Noun

Fig.14. Setup ontology template

Parsing source file for names (identifiers) is one
of the functions of SourceCodeParser. In Fig. 15, a
part of SOReasoner class diagram for names is
given.

90 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2017. N2(71): 84-92

SourceCodeParser

StyleOntologyResoner

OWLParser

-visitor : IdentifierVisitor
+parseSC(scPatl : String) : boolean

il

-scParser : SourceCodeParser
-owlParser : OWLParser

-rules : List<IdentifierRule>
+parseOWL(scPath : String) : boolean

]

+gelResults() : List<String>

IdentifierVisitor

+parseSC(owlPath : String) : boolean

\L +parscOWL(scPath : String) : boolcan +getRules() ; List<IdentifierRule>
+ge(Rules() : List<IdentifierRule> Q
+getResults() : List<String>

+createTemplate() : void

IdentificrRule

-rules ; List<IdentifierRule>
-identifiers : List<Identifier>

Identificr

-idType : IdentifierType
+check(id : Identifier) : boolean

]

+visit() : void

<<Enumeration>>

-name : String
-linc : int
-column : int

IdentifierFault

L -idType : IdentifierType

-faults : List<IdentifierFault>

<<Enumeration>>

IdentifierType

+PACKAGE

+isCorrect() : boolean

+INTERFACE
+CLASS

+START_CHAR
+NAME_TYPE —‘

+ACCEPTABLE_CHAR
+SEPARATOR

+METHOD
+VARTABLE
+CONSTANT

Fig. 15. Fragment of SOReasoner class diagram

In this diagram, all custom classes that are
involved in our case study example are shown. The
main class is SOReasoner, which uses OWLParser
and SourceCodeParser to perform its functions.
OWLParser loads ontology and parses it to obtain
rules, in our case rules from naming section of Java
convention. SourceCodeParser uses IdentifierVisitor
to go through all identifiers from Java source code.
While doing so, IdentifierVisitor also checks each
identifier for a set of rules. After that, SOReasoner
returns results to the user. In code, all identifiers are
presented as instances of Identifier class. It stores
value of name (identifier), its type (class, variable,
etc.), location in source code (line and column) and
list of faults (if any). It also has several constructors
and other methods. Naming rules is presented as
instances of IdentifierRule class. It provides all
required functionality to check identifiers.
IdentifierRule is capable of checking start and
acceptable characters, determine whether identifier
is a noun or a verb and can separate compound
identifiers into simple words. For example:
MyFirstClass = My + First + Class. It can also be
used to directly update source file with comments
that identify problematic areas.

It is proposed to consider updating a file in detail.
Firstly, SourceCodeParser reads source file line-by-line
(Fig. 16). Secondly, SourceCodeParser adds comments to
all lines with identifiers that do not follow rules (Fig. 17).

Finally, SourceCodeParser writes all lines back to the
file.

public class Simple Class ({
public int count;
private int value;
public double Car() {

return (double) (count+ value);
}
}
Fig. 16. Source code
//Problems with Identifier 'Simple Class' [Acceptable Chars]

public class Simple Class {
public int count;
//Problems with Identifier
private int _walue;
//Problems with Identifier 'Car' [Name Type, Start Char]
public double Car() {
return (double) (count+_value) ;

'_walue' [Start Char, Acceptable Chars]

1

Fig. 17. Source code with comments

6. Conclusion

In this research, the implementation of tool for
ontology-driven utilizing of programming styles is
considered. Solutions for the development of general
architecture of tools and main components are
provided. Implementation details are given based on

Nikolay Sdorov, Nika Sdorova, Alexander Pirog. Ontology-Driven Tool for Utilizing Programming Styles 91

the example of naming for the Java
convention.
References

[1] Sidorov M.O., (2007) Software engineering,
Kyiv, NAU, 135p. (In English)

[2] Sidorov N.A., (2005) Software stylistics.
Proc. of the National Aviation University, no.2,
pp-98-103. doi: 10.18372/2306-1472.24.1152

[3] Philips Healthcare (2009) Philips Healthcare
— C# Coding Standard, Philips Healthcare, p. 57.

[4] Blake J., Cirtis P. (2007) CERT C Programming
Language Secure Coding Standard Document N1255,
Carnegie Mellon University, 488 p.

[5] ESA BSSC (2005) Java Coding Standards,
Prepared by: ESA Board for Software
Sandardization and Control, Issue 1.0, PARIS
CEDEX, France, 113p.

[6] Rosen J-P. (2008) A comparison of industrial
coding rules. Ada User Journal, vol. 29, no. 4, pp. 1-5.

[7] Stallman R. (2016) GNU Coding Standards,
July 25, pp.80.

[8] Coding Sandards in the Real
http://submain.com/codeit.rigth

[9] Sidorova N.N. (2015) Ontology-driven
method using programming styles, Software
engineering, no.2 (22), pp 19-29. (In English)

[10] Haijie Z. (2009) Developing a System to
Help Programmers Achieve a Good Coding Style [A
dissertation submitted in partial fulfillment of the
requirements of Dublin Institute of Technology for
the degree of M.Sc. in Computing (Information
Technology)], Dublin, 124 p.

styles

World

M.O. Cunopos', H.M. Cugopoga®, 0.0. Iupor’

[11] Levinson H. L., Librizzi R. M. (2013) Using
Software Development Tools and Practices in
Acquisition, Technical note CMU/SEI-2013-TN-

017, Carnegie Malone University, Software
Engineering Institute, 28p.

[12] Sidorov N.A., Sidorova N.N. (2016)
[Programming style ontology-driven tools].

Abstracts of the International Scientific and Practice
Seminar for Young Scientists and Students, JIympk —
HTYV, ¢.100. (In English)

[13] Black P. (2009) Satic Analyzersin Software
Engineering, CrossTalk, The Journal of Defense
Software Engineering 16-17 March-April, Software
Engineering, pp. 1617,

[14] Protégé at: http://protege.stanford.edu/

[15] Dentler K., Cornet R., Teije A., Keizer N.
Comparison of Reasoners for large Ontologies in
the OWL 2 EL Profile at: http://www.semantic-web-
journal.net/sites/default/files/swj120 2.pdf

[16] Baader F., Calvanese D., McGuinness D.,
Nardi D., Patel-Schneider P.F. (2003) The
Description Logic Handbook, Cambridge University
Press, 320p.

[17] OWL API at: http://owlapi.sourceforge.net/

[18] Java API Specifications, at:
http://www.oracle.com/technetwork/java/api-
141528.html

Received 23 May 2017

KepoBanmuii OHTO/I0Ti€l0 iHCTPYMEHT JUISI 3aCTOCYBAHHS CTHJIEii MPOrpaMyBaHHs
HamionanpHauit aBiarniiiauii yaiBepcurert, mpoctt. Kocmonasta Komaposa, 1, Kuis, Ykpaina, 03058
E-mails: ' nikolay.sidorov@livenau.net; * nika.sidorova@gmail.com; *pirogman@gmail.com

HismpHicTh mporpamicta Oyzae Oimbll eeKTHBHOIO, a MpOTrpamMHe 3a0e3MeYeHHs 3PO3YMUTHMM KOJNW TpH
CTBOPCHHI IPOTPAMHOTO 3a0e3MEeUCHHS 3aCTOCOBYIOTHCS CTHWII (CTAaHAAPTH) TWPOTpaMyBaHHA, SKi
3a0e3MeuyoTh 3p03yMUTICTh IpOorpaMHuX TeKCTiB. MeTa: B 11bOMy JOCIHIKEHHI MPEICTABICHO 3aci0 auis
peammizaliii HOBOTO METONIy, SKHH 3aCTOCOBYE OHTOJOTIi i ABTOMATHU3Y€E MPOIECH BUKOPHCTAHHS CTHIIIB
mporpamMyBaHHs. 30KpeMa PO3TIAAAETHC TPEICTABICHHS CTAaHAApTIiB B (OPMi OHTONOTII 1 3aCTOCYyBaHHS
PU30HEPY IECKPUIITUBHOI JIOTIKK JJIs mporpamMicta. MeTow CTaTTi € po3poOka 3aco0y s MiITPUMKH
KEpPOBAaHOTO OHTOJIOTI€I0 3aCTOCYBaHHS CTWIIB MporpamyBaHHA. MeToam DOCJTiIKeHHsI: OHTOJOTIYHE
MPEJCTABICHHS CTHJIIB MPOrpaMyBaHHs; 00 €KTHO-OPI€HTOBAHE MPOrPaMyBaHHS, KEPOBAHE OHTOJIOTIEHO
3aCTOCYBaHHS CTHJIIB MpOTrpaMyBaHHs. Pe3yJbTaTH: OTpUMaHO apXiTEKTypy Ta MOBOIO Java peanizoBaHO
3aco0M sIKi 3a0e3MeuyIOTh IHCTPYMEHTaNIbHY MiATPUMKY METOAY KEPOBAHOTO OHTOJIOTIEI0 3aCTOCYBaHHS
CTWIIB mporpaMmyBaHHs. Ha npukiani iMeHyBaHHS CTaHAapTy MpPOTpaMyBaHHS MOBH Java HamaHO
0COOJIMBOCTI peaiizaltii i 3acrocyBaHHs 3aco0y. O0roBopeHHsi: 3aCTOCyBaHHS CTaHAAPTIB MPOTPaMyBaHHS
IpU KOHCTPYIOBaHHI IMPOTPaMHOrO 3a0e3ledyeHHs, BIJICYTHICTh 3aco0iB aBTOMAaTH3allil TMpOLECiB
3aCTOCYBaHHS CTaHIApPTIB NpOrpaMyBaHHs, 3acid Ha OCHOBI HOBOTO METOLY KEPOBAaHOTO OHTOJIOTIEO

92 ISSN 1813-1166 print / 1SSN 2306-1472 online. Proceedings of the National Aviation University. 2017. N2(71): 84-92

3aCTOCYBaHHS CTHIIIB MPOTpaMyBaHHsI, MPUKIA] pearizallii apXiTeKTypu 3aco0y AJisi iMeHYBaHb CTaHAAPTY
MOBH Java.

KiouoBi cjioBa: JECKpUNTHBHA JIOTiKA; IHXKEHEPis IMPOrPaMHOTO 3a0E3IEUYCHHS; OHTOJIOTIS; MPOrpaMyBaHHS;
PHU30HEP; CTaHAAPT KOTYyBaHHS; CTIIIb IPOrpaMyBaHHSL.

H.A. Cugopos', H.H. Cuoposa’, A.A. ITupor’

YnpasJisieMblil OHTOJIOTHEH HHCTPYMEHT [1JIsl HCTIO0JIL30BAHUSA CTHJIeil MPOrpaMMHUPOBaHUS
Haunonanbublli aBUallMOHHBIM YHUBEpCUTET, poci. KocMonaBTa Komaposa, 1, Kues, Ykpauna, 03058
E-mails: ' nikolay.sidorov@livenau.net; * nika.sidorova@gmail.com; *pirogman@gmail.com

JlesaTenpbHOCTh TIporpaMMucTa OyneT 6oree 3P ¢heKTUBHON, a MPOrpaMMHOE OOecTIeueHNEe MOHATHBIM KOTa
Py CO3JAaHWM IPOTPAMMHOIO OOECIEYCHHUs] IMPUMEHSIIOTCS CTHiIe (CTaHIapThl) NPOTrpaMMHUPOBaHUS,
KOTOpbIE O0CCIEUnBAIOT ACHOCTh MPOrpaMMHBIX TekcToB. Llesib: B 3ToM wmccnenoBaHuM MpenCTaBlICHBI
CPEJICTBO JUIS Pealn3alldd HOBOT'O METOJa, KOTOPBIA MPUMEHSET OHTOJIOTUH M aBTOMATH3HPYET MPOIECCHI
HMCIOIb30BAHUS CTHIIEH ImporpaMMHUpOBaHUs. B gactHOCTH paccMaTpuBacCTCAd MPEACTABICHUE CTAaHAAPTOB B
(hopMe OHTOJIOTUU W NMPUMEHEHUS PU30HEPY JACCKPUNTHBHOMN JIOTUKH JUIsI ACCUCTUPOBAHUS MPOTPAMMUCTA.
Ienbro cTaThu SIBISETCS pa3paboOTKa CPeACTBA VIS MOANCPKKH YIPABISIEMOr0 OHTOJOTHU MPUMCEHEHUS
CTWJICH TporpaMMHpOBaHUs. MeTOAbl HCCAeIOBAHUS: OHTOJOTMYECKOE IMPEJCTABICHUE CTHIICH
MPOrPaMMUPOBaHUS; OOBEKTHO-OPHEHTUPOBAHHOE MPOrPAaMMHUPOBAHHE;, YIPABISEMOE OHTOJIOTHUU
MPUMEHEHHUS] CTHJCH MporpaMMUpoBaHus. Pe3yJbTaThl MONYYCHBI AapXUTEKTYpy W Ha s3bike Java
pean30BaHO CPEICTBa, KOTOPhIe OOECIEYMBAIOT WHCTPYMEHTAIBHYIO TOAJEPKKY METOAa YIPaBIIEMOTO
OHTOJIOTUH IIPUMECHCHU A CTUJIEH ImporpaMMHUpOBaHUs. Ha mpumMepe HUMCHOBAHHUA CTaHJaapTa
MPOrpaMMUPOBaHUs s3bIKa Java MPEIOCTaBICHO OCOOCHHOCTH pealHu3allid W TPUMCHCHHS CPEICTBA.
Oo6cyxnenue [IpuMeHeHWEe CTaHAAPTOB MNPOTPAMMHUPOBAHHS IPH KOHCTPYHUPOBAHUHM IPOTPAMMHOTO
oOecrieueHUs, OTCYTCTBHE CPEICTB aBTOMATH3al[MM IPOLECCOB MPUMEHEHUS CTaHIapTOB
MIPOrpaMMUPOBAHUs, CPEACTBO HA OCHOBE HOBOTO METOZA YIPABJIIEMOr0 OHTOJIOTUW NMPUMEHEHUS CTHIICH
MPOrPaMMHUPOBAHUS, TPUMED PEATHU3AIUH APXUTEKTYPBI CPEICTBA [T MMEHOBAHUI cTaHIapTa s3bika Java.

KiroueBble ciioBa: OECKPUIITUBHAA JIOTWKA, HWHXCHCPpHUA IIPOTrpaMMHOI0 o6ecnequHﬂ; OHTOJIOT U,
OporpaMMUpPOBAHUC,; PU3OHEP, CTAHAAPT KOAUPOBAHNA; CTUJIb IPOTPpaMMHUPOBAHNA.

Sidorov Nikolay. Doctor of Engineering. Professor.

Head of software Engineering chair of the National Aviation University.
Education: Taganrog Radio Technik, Institute, Taganrog, Russia.
Research area: software engineering

Publications: 130.

E-mail: nikolay.sidorov@livenau.net, sna@nau.edu.ua

Sidorova Nika. Postgraduate student.

Department of Software Engineering. National Aviation University, Kyiv, Ukraine
Research area: Software Engineering

Publications: 12.

E-mail: nika.sidorova@gmail.com

Pirog Alexander. Undergraduate student.

Department of Software Engineering, National Aviation University, Kyiv, Ukraine (2014)
Research area: Software Engineering

E-mail: pirogman@gmail.com

