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The below is the structure chart o f the tree for the direct and inverse discrete transformation o f the 
signals on the finite interval in the basis o f the Haar functions that allow minimizing the resource 
expenditures fo r  the software or hardware implementation o f the algorithm.

:

Introduction and objectives
The problem of the correct choice of the basis for 

the direct Fourier transformation (DFT) is the para­
mount in the theory and the practice of the spectrum 
signal analysis on finite intervals.

The quality of the signals filtration depends on 
both the choice of the basis estimated by the level of 
the side lobe gain-frequency characteristics of the 
DFT channels and the DFT processor speed.

The processor speed is the most crucial charac­
teristics of the processor as it sets the possibility of 
the signal spectrum calculation in the real time 
otherwise in the rate of the selective reading entry. 
In the harmonic spectrum analysis, the classis basis 
of the discrete exponential functions (DEF) is tradi­
tionally used, the components (phase factors) of 
which are single-step changing irrational number. 
The indicated feature o f DEF basis gradually re­
duces the computation speed of the spectrum signal, 
resulting from the necessity of the complex multi­
plication accomplishments of the irrational operands 
(the entry data and basis functions).

In connection with the abovementioned, the 
problem of the transition to the step function basis 
the main functions of which are the function sys­
tems of Walsh and Haar [1] becomes topical. The 
step function basis in the defined time interval has 
the constant value. In the numerical evaluation of 
the expansion coefficient to the basis functions of 
Walsh, taking on a value +1 or -1 , the unsophisti­
cated operation of adding and subtracting should be 
carried out other then multiplication. Even if the 
step function basis on the separate intervals take the 
positive value, differs from the above mentioned, 
the multiplication of the function by the continual 
single for the whole interval coefficient (function 
system of Haar) is carried out. This is much simpler 
than the multiplication by the cosine and sinus (as in the 
DEF basis) which are changing from point to point.

In the literary sources (for e. g.[2; 3]), the matrix 
methods are viewed as the methods for the calcula­
tion o f the discrete signal analysis of the spectrum in

the basis function o f  iTaar. fn this work, the abjec­
tive arises to develop the pictorial enough and easily 
realized by the software and hardware means fast 
translation algorithms o f Haar.

The Basic Ratios
In analogue, the expansion of the complex dis­

crete signal x(n) on the finite interval N  of the 
Fourier series in DEF basis

x(n) = Nt ôkwkn,
k=0

where ck -  expansion coefficient, and 
W = cxp(J2n/N)  -  phase factor, the signal expan­

sion is carried out x(n), n - 0 , N - \ ,  which is sup­
posed to be substantial in the Haar series

x{n) = Ÿ dCkh{k,n), n = 0 , N - \ ,  (1)
k=0

where h{k,n) -  Haar basis function with the n ar­
gument playing the role o f the normalized discrete 
time. The aggregate o f the basis functions h(k,n) 
forms the square matrix of the Haar transformation of the 
N x N  order. Let us designate the Haar matrix as

H N =[h(k,n)\, k ,n = 0 , N - l .
The expansion coefficients are defined by the 

following expressions
AM
Y^x(ri)h(k,ri)
*=o

k = 0,N - 1 .  (2)

The ratios (1) and (2) identify as Haar discrete 
transformation pair (DTH) at that the (2) defines the 
direct and (1) -  inverse transformation correspond­
ingly.

The aggregate of {ck } forms the discrete signal 
spectrum x(n) in the basis of { h(k, n) } of Haar 
function. The main objective of the spectrum analy­
sis is in the calculation o f spectrum signal in the 
given basis. The matrix of the Haar transformation 
H N is defined on the binary interval N ,  or N -  2m
m = 1,2,..., and is formed in accordance to the fol­
lowing rules
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The zero basis function h(0,n) equals to one in 
the designation interval or

h(0,n) = 1, n = 0 , N - l .  (3)
The firs Haar basis function h(l,n) is defined by 

the equality
f  \,n = 0,iV /2 -1 ;

h(\,n) = \ ---------.—  (4)

As you can see from the ratios (3) and (4), the 
energy o f the zero and the first basis function of 
Haar equals N  and more over these functions are 
orthogonal. Using the terminology o f the wavelet 
transformation (the function system of the Haar is 
the most simple out of the wavelet functions [4]), 
let’s call the function (4) as mother wavelet function 
of Haar or simply Haar wavelet).

Let’s call the first Haar basis function as the 
wavelet function of the zero level. The wavelet 
function number of the / level is defined by the 
formula:

L, = 21, l - \ m ,

.'.here m is the pair indicator in the expression N  = 2m .
Each Haar wavelet function of 1 level is formed 

from the mother wavelet function (4) as the result of 
the consistent operations of the interval compression 
of the function definition by Ll times, the shift on

the interval N, = 2m~‘ , and ranging with the coeffi­

cient y, = 2112. The ranging is executed with the pur­
pose of preserving the invariable value of the basis func­
tion energy that is equal to N ,  and the shift in them pro­
vides the mutual function orthogonality.

Haar matrix of the forth and fifth order has the 
following form:

0 1 2 3
0 ■ 1 1 1 1
1 1 1 -1 -1

Я II a? 7? «)} =
2 V I - V I 0 0

3 _ 0 0 V I - V I
k

0 1 2 3 4 5 6 7

0 " 1 1 1 1 1 1 і 1
1 1 1 1 1 -1 -1 - і -1
2 • I l J l - 4 Ї - - л Я  0 0 0 0

0 0 0 0 Я  V I - VI-- Я
~  4 2 - 2 0 0 0 0 0 0

5 0 0 2 - 2  0 0 0 0
6 0 0 0 0 2 - 2 0 0
7 0 0 0 0 0 0 2 - 2

k

In the same way the Haar squarte matrix of the 
binary order N  = 2m for m> 3 is formed. As fol­
lows for the ratios (5) and (6) Haar function forms 
the orthonormal function system with the weight
that is equal to 1 / ̂ fN .

The Direct transformation algorithm of Haar
Let’s express the direct discrete transformation 

of Haar in the form of matrix:

Cn = ~ ^H n*N’ 0 )

where xN = (x0,v1,...,xJV_1)7 is the column vector of 
the input signal sample, the selection volume of 
which is N ,  cN = (c0,cl,...,cv_l)? is column vector 
of signal expansion coefficient (the discrete wavelet 
spectrum xN in the Haar basis function), and H N is 
squarte matrix of the Haar transformation of the N  
binary order.

Taking as an example the Haar matrix o f the 
eighth order (6) based on the ration (7) we can eas­
ily come to the following structure scheme of the 
eight point DTH algorithm (fig. 1).

y'n H § ) _> CJI
0<>-4-----------Q 0

l i/N
4 o-4-------------- o l

2oJ-------- o 2
!• -Mi n

6 o—-------- ----- o 3

\ o—j-------------- o 4

3 o---------------- o 5
• 2IN

5 O--------------- O 6

7 o j---------------o 7

Fig. 1. The tree of the direct eight points DTH

Fig. 1 demonstrates additional explanations de­
signed to ease the understanding of the transforma­
tion algorithm functionality.

According to the tree depicted at the fig. 1, the 
algorithm of the direct DTH consists of the three 
executed in the series of stages of the data input 
files transformation. On the first stage the pair wise 
transformation o f the discrete signals x„ is made, 
the order of the reading number of which at the 
processor’s input forms the natural scale 
n = 0,N - 1 ,  by the “butterfly “scheme (fig. 2) with 
the rib value that equals one [5].

An o X  = A+ B

B </ \  Y  = A - B

Fig. 2. “B utterfly” transform ation  operator
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Let’s call “Butterfly” operator repercussion X  
as totaj, and Y as the differed operator channel. The 
percussions of the differed operator channels are 
transmitted (transported) directly to the correspond­
ing {y ' } file/array element, and the summery chan­
nels for “Butterfly” operator form input action by 
pairs at the next layer of the transformation phase. It 
is obvious that in the N-point ( N  = 2m) DTH tree, 
the first layer consists of N /2  “Butterfly” opera­
tors, the second layer N /4  operator and finally at 
the top of the first phase o f transformation there is 
only one operator.

The second phase of the DTH tree accomplishes 
the permutation (this operator is marked as of 
the {y ' } data files forming { y" } file. This form of 
transformation includes two types of permutations. 
The firs type makes the double inverted permutation 
(DIP) o f the top half of the data index y'n for

n = 0 , N / 2 - \ . At that same time, the n numbers 
should be presented i n the binary scale (BS). As a result 
of this percussion the content of the zero data element 
will be entered to the zero cell of the {y " } file. The con­
tent of the forth cell of the {y ' } file will be entered to 
the cell of the 001 of the {y ” } file since

DIP
(1) = 001o ->100(4) (8)

and so on.
At the transformation (8), the left part (prior to 

DIP operator) defines three-digit binary number (as 
eight decimal index values n starting with 0 and up 
to 7 can be expressed only with the three-digit bi­
nary number) of the {y ” } file element, and the right 
part -  o f {y ' } file. The corresponding number val­
ues in the decimal notation scale are indicated in the 
bracket. At the low part of the {y " } file element, 
the data from the odd cells of the {y ' } file is lo­
cated in the order depicted at fig. 1.

After making the above-mentioned percussion of 
the data, the data ranging o f the elements with the 
value of 2 '/2 for the i group is performed for the 
groups o f 2 ',  i = \ ,m - \ ,  and then the data is di­
vided by N  (formula [7]).

You can reassure that the given tree and the 
transformation phases of input data correspond to 
the direct discrete transformation of the signals in 
the Haar basis function, and since the number of the 
conducted operations are minimal, then the algo­
rithm of the Haar fast transformation is realized.

The algorithm of the inverse HFT
The matrix formula of the signal xN restoration 

process by its spectrum cN in the Haar basis func­
tion is given by

xN — H NcN, (9)

where H'N is transpose Haar matrix of the o f the 
binary order N .

Let’s express the formula (9) in the form of lin­
ear equation system

N - 1

Xn = І ***1 (*,«), ( 10)
k=0 

Ї.Г/where h (k , n) is the function o f the k order o f the 

H TN matrix.
At interval N  = 2, the Haar matrix coincides 

with the matrix of Adamar [6] and with the trans­
pose matrix of Haar (Adamar):

0 1 n

HT2 =
1 1 
1 - 1

( I D

Based on the ration (9 )-(l 1), we can come to the 
structure scheme of the inverse HFT tree (fig. 3), 
that represents the butterfly-like operator.

Ck
OO, P  Xn

1

C q +  C?1

X, =

Fig. 3. The inverse point -  to-point HFT tree

Let’s assume that N  = 4 that corresponds (see 
formula (5)) to the corresponding transpose matrix

n

( 12)

The structure scheme of the inverse HFT tree 
corresponds to the matrix (12) shown at fig. 4.

0

0 1 2 3
0 1 1 0

II 1 1
1-1

- V 2

0
0

&
3 ! -  ! 0
k

Fig. 4. The tree of the inverse four-point HFT

It should be taken into consideration that accord­
ing to the ratios (9), (10) and (12), the coefficients 
c2 and c3 should be multiplied by 42 .

By indication, it is easy to draw the structure scheme 
of the inverse eight points HFT algorithm (fig. 5) where 
as the addition to fig. 4, the coefficients ck , k = 4,7 , 
should be preliminary multiplied by 2.
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Fig. 5. The tree  o f  the inverse eight-point H FT

Thus, the process of the inverse HFT forming 
can be presented in the form of the pyramid consist­
ing of m butterfly-like transformations layers. At
the i level of the pyramid ( / = 1.,m , and m is calcu­

lated by the ratio m = log2 N ) there are /, = 2'“1 of 
butterfly operators. The coefficients ck , which are 
added to the transformation operators, should be

id
chosen with the weight y, = 2 2 , where i = 1 ,tn is 
the number o f the layer or the transformation phase.

Conclusions

The algorithms for the fast calculations of the 
Haar transformation were introduced by Andrews 
[8] and published in Russian [9]. Concerning the 
structure schemes of FIFT [9], the following remarks 
can be made. First, the column of the inverse Haar 
transformation has typos Coefficients yx (2) and

yx (3) should have the multiplier V2 which is ab­
sent at the picture. Second, the column of the direct 
HFT does not have any indicators regarding the rules for 
die data permutations formed by the butterfly-like opera­
tors. The underlined remarks are corrected in the offered 
algorithms of the direct and inverse HFT a can be classi­
fied as suitable for technical calculations.

Haar transformation (HT) has local as well as the 
global sensitivity characteristics. This quality of HT 
can be demonstrated via turning for instance to the

readings N /4  coefficients, and correspond to the 
connection o f the four adjacent points and so on. By 
matrix (6). By analyzing H s , we can see that N12

of the Haar transformation coefficients ck ,k = 4,7 , 
this, we can define the quality of the local HT sensi­
tivity. The first tow coefficients of HT ( c0, c ,) are 
the functions of all coordinates in the space o f the 
input orders (the quality of the global sensitivity). 
For comparison, let’s indicate for instance that the 
discrete transformations o f Fourier and Walsh have 
only global sensitivity qualities.

The indicated conditions leave broad prospective 
in the use of Haar fast transformation algorithms 
easily realized by the software and hardware means 
in solving spectrum analysis problems.
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