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The below is the structure chart of the treefor the direct and inverse discrete transformation of the
signals on thefinite interval in the basis of the Haar functions that allow minimizing the resource
expendituresfor the software or hardware implementation o fthe algorithm.

Introduction and objectives

The problem of the correct choice of the basis for
the direct Fourier transformation (DFT) is the para-
mount in the theory and the practice of the spectrum
signal analysis on finite intervals.

The quality of the signals filtration depends on
both the choice of the basis estimated by the level of
the side lobe gain-frequency characteristics of the
DFT channels and the DFT processor speed.

The processor speed is the most crucial charac-
teristics of the processor as it sets the possibility of
the signal spectrum calculation in the real time
otherwise in the rate of the selective reading entry.
In the harmonic spectrum analysis, the classis basis
of the discrete exponential functions (DEF) is tradi-
tionally used, the components (phase factors) of
which are single-step changing irrational number.
The indicated feature of DEF basis gradually re-
duces the computation speed of the spectrum signal,
resulting from the necessity of the complex multi-
plication accomplishments of the irrational operands
(the entry data and basis functions).

In connection with the abovementioned, the
problem of the transition to the step function basis
the main functions of which are the function sys-
tems of Walsh and Haar [1] becomes topical. The
step function basis in the defined time interval has
the constant value. In the numerical evaluation of
the expansion coefficient to the basis functions of
Walsh, taking on a value +1 or -1, the unsophisti-
cated operation of adding and subtracting should be
carried out other then multiplication. Even if the
step function basis on the separate intervals take the
positive value, differs from the above mentioned,
the multiplication of the function by the continual
single for the whole interval coefficient (function
system of Haar) is carried out. This is much simpler
than the multiplication by the cosine and sinus (as in the
DEF basis) which are changing from point to point.

In the literary sources (for e. g.[2; 3]), the matrix
methods are viewed as the methods for the calcula-
tion of the discrete signal analysis of the spectrum in

the basis function of iTaar. fn this work, the abjec-
tive arises to develop the pictorial enough and easily
realized by the software and hardware means fast
translation algorithms of Haar.

The Basic Ratios

In analogue, the expansion of the complex dis-
crete signal x(n) on the finite interval N of the

Fourier series in DEF basis

X(r) =N donkn

where ¢k -  expansion coefficient, and

W =cxp(J2n/N) - phase factor, the signal expan-
sion is carried out x(n), n-0,N -\, which is sup-
posed to be substantial in the Haar series

x{n) =Y dkh{k,n),

k=0
where h{k,n) - Haar basis function with the n ar-

n=0,N-\, (1)

gument playing the role of the normalized discrete
time. The aggregate of the basis functions h(k,n)
forms the square matrix ofthe Haar transformation of the
N x N order. Let us designate the Haar matrix as
HN=[h(k,n)\, k,n=0,N-I.
The expansion coefficients are defined by the
following expressions

AM
Y x(ri)h(k,ri)  k=0,N-1. (2)

The ratios (1) and (2) identify as Haar discrete
transformation pair (DTH) at that the (2) defines the
direct and (1) - inverse transformation correspond-
ingly.

The aggregate of {ck} forms the discrete signal
spectrum x(n) in the basis of {h(k,n) } of Haar
function. The main objective of the spectrum analy-
sis is in the calculation of spectrum signal in the
given basis. The matrix of the Haar transformation
HN is defined on the binary interval N, or N - 2m
m=1,2,..., and is formed in accordance to the fol-
lowing rules


mailto:davletyants@europe.com

BicHuk HAY. 2003. Ne2

The zero basis function h(0,n) equals to one in
the designation interval or

h(O,n) =1, n=0,N-I. (3)
The firs Haar basis function h(l,n) is defined by
the equality
f\n=ojiv/2-1:
h(\,n) =\ = - __ )

As you can see from the ratios (3) and (4), the
energy of the zero and the first basis function of
Haar equals N and more over these functions are
orthogonal. Using the terminology of the wavelet
transformation (the function system of the Haar is
the most simple out of the wavelet functions [4]),
let’s call the function (4) as mother wavelet function
of Haar or simply Haar wavelet).

Let’s call the first Haar basis function as the
wavelet function of the zero level. The wavelet
function number of the / level is defined by the
formula:

L, =21

."here m is the pair indicator in the expression N =2m.

Each Haar wavelet function of 1level is formed
from the mother wavelet function (4) as the result of
the consistent operations of the interval compression
of the function definition by LI times, the shift on

I-\m,

the interval N, =2m-, and ranging with the coeffi-

cient y, =2112. The ranging is executed with the pur-
pose of preserving the invariable value ofthe basis func-
tion energy that is equal to N, and the shift in them pro-
vides the mutual function orthogonality.

Haar matrix of the forth and fifth order has the
following form:

o 1 2 3
oml 1 1 1

11 1 -1 -1

- o
A= ERaEE, VI-VI 0 0
3.0 0 VI-VI
k
0 1 2 3 4 5 6 7
o"1 1 1 1 1 1 i 1
1 11 1 1 -1-1 -i -1
2 <1131 -4i--n19 0 0 0 O
0 0 O 0 A4 VI-VI--g
~4 2-2 0 0 0 0 O 0
5 00 2 -2 00 O 0
6 0 0 O 0 2-2 0 0
7 0 0 O 0o 00 2 -2
k
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In the same way the Haar squarte matrix of the

binary order N =2m for m> 3 is formed. As fol-
lows for the ratios (5) and (6) Haar function forms
the orthonormal function system with the weight

that is equal to 1/ N .
The Direct transformation algorithm of Haar

Let’s express the direct discrete transformation
of Haar in the form of matrix:

G =~ Hn*N’ 0)

where XN =(x0,v1,...,xNV1)7 is the column vector of
the input signal sample, the selection volume of
which is N, cN=(c0,cl,....,cv_1)? is column vector

of signal expansion coefficient (the discrete wavelet
spectrum xNin the Haar basis function), and HN is

squarte matrix of the Haar transformation of the N
binary order.

Taking as an example the Haar matrix of the
eighth order (6) based on the ration (7) we can eas-
ily come to the following structure scheme of the
eight point DTH algorithm (fig. 1).

Fig. 1 The tree of the direct eight points DTH

Fig. 1 demonstrates additional explanations de-
signed to ease the understanding of the transforma-
tion algorithm functionality.

According to the tree depicted at the fig. 1, the
algorithm of the direct DTH consists of the three
executed in the series of stages of the data input
files transformation. On the first stage the pair wise
transformation of the discrete signals Xx,, is made,
the order of the reading number of which at the
processor’s input forms the natural scale
n=0,N-1, by the “butterfly “scheme (fig. 2) with
the rib value that equals one [5].

An oX =A+B
B</\ Y=A-B

Fig. 2. “Butterfly” transformation operator
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Let’s call “Butterfly” operator repercussion X
as totaj, and Y as the differed operator channel. The
percussions of the differed operator channels are
transmitted (transported) directly to the correspond-
ing {y' } file/array element, and the summery chan-
nels for “Butterfly” operator form input action by
pairs at the next layer of the transformation phase. It
is obvious that in the N-point (N =2m) DTH tree,
the first layer consists of N/2 “Butterfly” opera-
tors, the second layer N/4 operator and finally at
the top of the first phase of transformation there is
only one operator.

The second phase of the DTH tree accomplishes
the permutation (this operator is marked as of
the {y'} data files forming {y" } file. This form of
transformation includes two types of permutations.
The firs type makes the double inverted permutation
(DIP) of the top half of the data index yn for

n=0,N/2-\. At that same time, the n numbers
should be presented i n the binary scale (BS). As a result
of this percussion the content of the zero data element
will be entered to the zero cell ofthe {y" }file. The con-

tent of the forth cell of the {y' } file will be entered to

the cell of the 001 ofthe {y” } file since
DIP

(1) = 0010 ->100(4) (8)
and so on.

At the transformation (8), the left part (prior to
DIP operator) defines three-digit binary number (as
eight decimal index values n starting with 0 and up
to 7 can be expressed only with the three-digit bi-
nary number) of the {y” } file element, and the right
part - of {y'} file. The corresponding number val-
ues in the decimal notation scale are indicated in the
bracket. At the low part of the {y"} file element,
the data from the odd cells of the {y'} file is lo-
cated in the order depicted at fig. 1.

After making the above-mentioned percussion of
the data, the data ranging of the elements with the

value of 2'/2 for the i group is performed for the
groups of 2', i=\,m-\, and then the data is di-
vided by N (formula [7]).

You can reassure that the given tree and the
transformation phases of input data correspond to
the direct discrete transformation of the signals in
the Haar basis function, and since the number of the
conducted operations are minimal, then the algo-
rithm of the Haar fast transformation is realized.

The algorithm of the inverse HFT
The matrix formula of the signal XN restoration

process by its spectrum cN in the Haar basis func-
tion is given by

BicHnkHAY. 2003. Ne2

xN —H NCN, 9)

where HN is transpose Haar matrix of the of the
binary order N.

Let’s express the formula (9) in the form of lin-
ear equation system

N-1

xn=1 ***1(*’«)’ (10)
k=0

where H'r{k,n) is the function of the k order of the
H M matrix.

At interval N =2, the Haar matrix coincides

with the matrix of Adamar [6] and with the trans-
pose matrix of Haar (Adamar):

01n

11

1D
1-1 (

HZ =

Based on the ration (9)-(I 1), we can come to the
structure scheme of the inverse HFT tree (fig. 3),
that represents the butterfly-like operator.

(0.0} PXn ca+

1 X, =
Fig. 3. The inverse point - to-point HFT tree

Let’s assume that N =4 that corresponds (see
formula (5)) to the corresponding transpose matrix
01 2 3 n

011 0

_ 11-.v2 0 (12
1-1 0 &

3 1-1 0

k

The structure scheme of the inverse HFT tree
corresponds to the matrix (12) shown at fig. 4.

0

Fig. 4. The tree of the inverse four-point HFT
It should be taken into consideration that accord-
ing to the ratios (9), (10) and (12), the coefficients
c2 and c3 should be multiplied by 42 .

By indication, it is easy to draw the structure scheme
of the inverse eight points HFT algorithm (fig. 5) where

as the addition to fig. 4, the coefficients ck, k =47,
should be preliminary multiplied by 2.
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Fig. 5. The tree ofthe inverse eight-point HFT

Thus, the process of the inverse HFT forming
can be presented in the form of the pyramid consist-
ing of m butterfly-like transformations layers. At
the i level of the pyramid (/ = 1m, and m is calcu-

lated by the ratio m =log2N ) there are /, = 2'“1 of

butterfly operators. The coefficients ck, which are

added to the transformation operators, should be
id

chosen with the weight y, =2 2, where i=1tn is

the number ofthe layer or the transformation phase.

Conclusions

The algorithms for the fast calculations of the
Haar transformation were introduced by Andrews
[8] and published in Russian [9]. Concerning the
structure schemes of FIFT [9], the following remarks
can be made. First, the column of the inverse Haar
transformation has typos Coefficients yx(2) and

yx(3) should have the multiplier V2 which is ab-

sent at the picture. Second, the column of the direct
HFT does not have any indicators regarding the rules for
die data permutations formed by the butterfly-like opera-
tors. The underlined remarks are corrected in the offered
algorithms of the direct and inverse HFT a can be classi-
fied as suitable for technical calculations.

Haar transformation (HT) has local as well as the
global sensitivity characteristics. This quality of HT
can be demonstrated via turning for instance to the

A.4. bineubkuit, O.A. bineubkuii, A.O. [laBneT’saHy,
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readings N /4 coefficients, and correspond to the
connection of the four adjacent points and so on. By
matrix (6). By analyzing Hs, we can see that N12

of the Haar transformation coefficients ck,k =4,7 ,

this, we can define the quality of the local HT sensi-
tivity. The first tow coefficients of HT (cO, c,) are

the functions of all coordinates in the space of the
input orders (the quality of the global sensitivity).
For comparison, let’s indicate for instance that the
discrete transformations of Fourier and Walsh have
only global sensitivity qualities.

The indicated conditions leave broad prospective
in the use of Haar fast transformation algorithms
easily realized by the software and hardware means
in solving spectrum analysis problems.
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CraTTs Hagiiwna go pepakyii 02.10.03.

HaBefeHO CTPYKTYpHY CXeMy [epeBa NpAMOro i 06epHeHOro SUCKPeTHOro MepeTBOPEHHSA CUTHasiB Ha
CKiHYeHHUX iHTepBanax y 6asncax (GyHKUiA Xaapa, fika 3abesnevye MiHIMYM PecypCcHUX BUTpaT npu npo-

rpamHiin abo anapaTHili peanizauii anropuTtmy.

A.4A. beneuknin, A.A. Beneukunid, A.A. laBneTbsiHL,

ANropuTMbl 6LICTPOro npeo6pasoBaHus Xaapa

MpuBeAeHa CTPYKTYpHas CXeMa AepeBa MpPSAMOro U 06paTHOrO AMCKPETHOrO Npeo6pasoBaHWs CUFHANIOB
Ha KOHEYHbIX MHTepBanax B 6asncax QyHKUMiA Xaapa, o6ecrneymBatoias MUHUMYM PECYPCHBIX 3aTpaT npu
MPOrpaMMHOiA UM annapaTHo peann3aunm anropuTma.



