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The theory of one-dimensional magnetic field penetration into conducting medium (flat plate) has been 
developed taking into account the motion of plate under the action of magnetic field at the linear growing of 
field intensity in the time on the external border of conductor. The process has been described by the equation of 
diffusion with convection term together with the equation of medium motion under the specific boundary 
conditions. The solution is obtained for the time interval in which the skin depth is less than thickness of plate. 
The depth of skin layer has increase in comparison with the classical case of immovable medium. This is a 
summarized effect of the field increase reduction on the medium surface and of the medium motion.  

Introduction 

Recently in the paper [1] a phenomenological theory 
of elastic electro-conducting medium reaction to the 
penetration of external magnetic field has been 
developed. A connection between the skin depth of a 
field penetration and velocity of medium motion 
(both value and direction) has been shown there.  
The analysis of this process can be done in the terms 
of more general equations of electromagnetic field 
beyond the simple approach used in the paper [1]. In 
addition, the time dependence of magnetic field on 
the surface of medium has not been considered in 
this work. That is why a more detailed consideration 
is undertaken in this paper to study the real 
dependence of the medium motion on the field 
penetration. The change of the applied external field 
in the time is obviously able to affect the field 
diffusion into the medium. More strict analysis with 
respect to movable medium can show the influence 
of both sides of electromagnetic induction 
phenomenon (caused by the time variation of 
applied field and by the medium motion) on the 
peculiarities of the field diffusion into depth of 
medium. Thus, a deeper connection between 
electromagnetic and mechanical processes can be 
established in this consideration.  

Theoretical model for analysis 

Analysis of the process described is done using the 
model of conducting medium that is shown in fig.1. 
It is like one in the book [2] fig. 1. 
The medium surface is designed as the plane YZ,  
X-axis is directed into the depth of medium. Instead 
of the condition about immovable external border of 
medium which has been used in the book [2], we 
have supposed the possible motion of this border 
under the action of electromagnetic force caused by 
the external magnetic field.  

Equation of diffusion for a magnetic field intensity 
H in the moving medium situated at x > 0 can be 
written as [3]: 
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where u

 = u


(x’,t) is the field of velocity for the 

medium, x’ is an abscissa in the laboratory co-
ordinate system connected with the source of 
external magnetic field of intensity H: DM is the 
coefficient of magnetic field diffusion: DM = () −1; 
 is the coefficient of electrical conductivity of 
medium;  is the magnetic permeability of medium.  
It is natural to suppose that magnetic field intensity 
has only z component: 

H


 = (0, 0, Hz). (2) 
Then the electrical field and current density have 
only y components: 

E


= (0, Ey, 0); (3) 
j


= (0, jy, 0). (4) 

Commonly usable physical approach allows to 
restrict our consideration only by x component of 
motion velocity for medium ux, due to assumption 
about non-deformable medium. 

 
Fig. 1. Schematic view of calculation model (the 
element of conductor volume under the action of 
external magnetic field on the surface x’ = 0) 
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But in general case of plastic medium it would be 
necessary to take into consideration the other 
components of velocity. 
The one-dimensional problem is under consideration 
here with the next simplifications:  
 ux 0, uy = uz = 0.  
Thus, at such conditions the equation (1) has the 
view 
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i.e. this equation contains, besides time derivative of 
field intensity, the first and second partial 
derivatives of the field intensity on the co-ordinate 
as well as the intensity in zero order.  
Now the initial condition and boundary conditions 
must be written. The presence of medium velocity 
indicates a taking into account of convective transfer 
of magnetic field by the moving medium. Let 
suppose that the magnetic field in the medium is 
absent at the initial time instant t = 0:  

  00, xH z .  (6) 

It is most simple to suppose that the external 
magnetic field on the surface of medium is growing 
in the time according to linear correlation 

tv
t

t
HH H

0
01 , (7) 

while the medium is immovable.  
In the correlation (7) the magnitude  

00 tHvH /  

is the speed of magnetic field intensity increase on 
the surface of immovable medium measured in 
А/(ms). A displacement of the border is considered 
going in the positive direction of X-axis and can be 
taken into account in the expression of the field 
intensity on the surface of medium.  
Given the interval of length occupied by the magnetic 
field area outside of conducting medium along the X-
axis is equal to l0 at the initial time instant. Taking into 
account a motion of medium with variable velocity u(t), 
this interval of length will increase in the time as 
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So, at the time variation of magnetic field for an 
immovable medium given by (7), magnetic field 
intensity at the surface of movable medium will have 
reduced resulting value through an influence of the 
linear interval increase (8) between this surface and 
the source of the field:  
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Now the boundary condition can be written as  
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So, magnetic content of problem is expressed by 
equation (5), initial condition (6) and boundary 
condition (9). As seen in (9) it is necessary to define 
additionally in the boundary condition the velocity 
of displacement u(t) for the border of conducting 
medium. It can be done if we shall consider that a 
conducting medium has the view of a flat plate of 
thickness L along the motion direction, with density of 
matter . The magnetic pressure on the external side of 
this plate facing the source of magnetic field is equal to  

2/),0(2 tHp zH    

and can be included into the equation of plate 
motion in the form [2]: 
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The next expression can be used as the initial 
condition for the equation of motion (10):  
u (0) = 0.   (11) 
Resulting, the boundary conditions for the problem 
under consideration include two equations:  
– integral expression (9), that gives a dependence of 
the border field intensity on the geometric 
parameter, namely, on the velocity of border (and 
whole medium) motion; 
– differential equation (10), that gives an 
interconnection between the velocity of motion for 
conducting medium and magnetic pressure on the 
surface of medium. 
After obtaining the magnetic field intensity in the 
medium  txH z ,  the induced current density can be 

found using the Ampere’s law:  

Hj


rot .  (12) 

For our problem that is defined now by equations  
(2)–(4) the equation (12) has the form 

x

H
j z


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 .  (13) 

As we have accepted that the medium under 
consideration presents the plate of limited thickness, 
we can suppose it moving as solid, i.e.  

uux  .  
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Algorithm of solution 

At the relatively small time of process the depth of 
the field penetration will be significantly less than 
the plate thickness. In this situation in 
correspondence with general classification of 
diffusive phenomena our equation (5) belongs to the 
class of diffusion problems with time-dependent 
value of diffusive flux on the surface of semi-infinite 
medium.  
The expression of the field intensity can be obtained 
by analytical way for the initial interval of time. On 
condition of relatively small displacement of border 
for medium 
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the magnetic field intensity can be define by the 
approximate expression 
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Taking into account condition (11), the velocity of 
the plate motion can be defined in the first 
approximation by the expression 
u = a t , 
here a is an acceleration of medium. 
The integral in expression (14) is equal 
approximately to  
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Substitution of (15) to (14) and further on into (10) 
gives the equation related to medium acceleration: 
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In the last expression we have neglected the term 
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Equation (16) leads to obtaining the approximate 
time dependence for acceleration:  

1

0
2
0

42
0

2
0

22
0

2
1

2
































ltL

tH

tL

tH
a .  (17)  

Using correlation (17) integral in the expression (9) 
can be written in the following approximation: 
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The expression for the magnetic field intensity has 
been obtained after substitution of (18) to (9), and 
the expression below is correct for the interval of 

space 0  x  l (t), including the border surface of 
conducting plate at the end of this interval:  
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To calculate the magnetic field intensity inside the 
plate, the known formula of mathematical theory of 
diffusion [4, p. 57] can be used:  
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Distribution of the field intensity inside the plate can be 
calculated in (20) using the numerical methods.  
The skin depth for the magnetic field intensity can 
be calculated using the known expression 
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with substitution of H (0, t) from (19) and H ( x , t) 
from (20). 
The magnetic field intensity can be expressed using 
the velocity of Alfven’s waves  
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Substitution of (22) to (13) has resulted in the 
expression for the current density distribution inside 
conducting medium (plate under consideration):  
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It is important to take into consideration that in  
accordance with the obtained expression (22)  
for distribution of magnetic field intensity we have 
obtained electric current density distribution (23) with 
zero current density on the surface of conducting 
medium:  

.0),0( tj y   

Numerous calculations must be done to get the skin 
depth using formula (21). It is expedient to find the 
approximate value of the skin depth using a more 
simple way. On this way we shall consider that the 
field intensity inside the plate at depth x  is equal 
approximately to  see (22)   
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Approximation for determination  
of skin layer depth 

According to the classic definition skin depth is a 
depth distance for the field intensity reduction up to 17% 
with respect to its value on the surface of medium. So it 
is possible to use the approximate correlation 
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Simple, but painstaking calculations based on 
equation (24) have resulted in the correlation  
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Finally, the non-dimensional (normalized) skin layer 
depth for the pulsed magnetic field determined by 
the time dependence (7) has been written in the form  
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where 0  is the classic value of the skin layer depth 

in the immovable medium: 
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where the magnetic pressure of the field source is 
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There are presented also the ratio of initial gap value 
to the thickness of plate ( Ll /0 ) as well as 

normalized time 0tt /  and some basic value of 
velocity tlVb /0 , calculated via initial distance 
between the plate surface and the surface of the 
external field intensity application. In the other 
designations, the parameter )( t  can be written as  

  Alt 2161  /)( ,  (27) 

here the known magnetic criterion of Alfven [5] has 
been used:  
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The amplitude value of magnetic field intensity 0H  

and basic velocity bV  govern this criterion. 
In the expression (26) the non-dimensional value 

0l l  can be included, it can present here the 

relative distance between the surface of medium 
under consideration and field source. In such a case 
the criterion of Alfven can be written with real mean 
velocity of plate ttlV /)(  instead of bV .  
The graphical interpretation of dependence (25) is 
given in fig. 2. 
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Fig. 2. Dependence of a normalized depth  
of skin layer (25) on the correcting parameter 
β  given by expression (26) 

The obtained mathematical dependence (25) 
displays a certain degree of similarity with the 
dependence for elastic motion of conducting 
medium given in the paper [1] at the constant value 
of the field intensity H jump on the border. 
Alternatively, in the result obtained in this paper the 
correcting term under the root sign in the expression 
for 0 /  is defined only by the magnetic criterion 

of Alfen, while in the result presented in the paper 
[1] the correcting term was defined by the Alfven’s 
number and magnetic Reynolds’ number. As it is 
seen in (26) a correction to the classic value of skin 
layer depth has been presented here by the term 

which depends on the time as proportional to 4t .  
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Additional factors  and   in (27) reflect the 
peculiarities of the applied field, taking into 
consideration increase of the field intensity at the 
initial interval of time and its decrease as a result of 
conducting plate surface runaway. 

Conclusion 
In the paper presented the theory of one-dimensional 
magnetic field penetration into conducting medium 
(flat plate) has been developed taking into account 
the motion of plate under the action of magnetic 
field at the linear growth of field in the time on the 
external border of conductor. The process is defined 
by the equation of diffusion with convection term 
together with the equation of medium motion under 
the specific boundary condition. The last includes 
the integral expression for the connection of 
magnetic field intensity with velocity of medium 
motion, while the velocity of medium in this 
expression is found by the equation of motion.  
By combination of interconnected magnetic, mechanical 
and geometrical conditions described above, the 
normalized skin layer depth has been derived on condition 
that it is less than the thickness of plate. The depth of skin 
layer has increase in comparison with the classical case of 
immovable medium for two physical reasons: 1) as a 
result of the field reduction on the border of conducting 
medium caused by motion of conducting medium away 
from the external field source; 2) as a result of reaction to 
the medium motion away from the field source due to the 
action of electrical field induced by motion. Both reasons 
can be considered as connected with one another, but each 
of them leads to the similar increase of skin layer depth 
independently.  

The result obtained here on the basis of diffusion theory 
can be considered as a new demonstration of skin layer 
depth dependence on the velocity of conducting medium 
motion, in addition to presented earlier in [1].  
The correcting term that causes difference in 
comparison with immovable medium is time-
dependent as  4t . It has been determined via the 
magnetic criterion of Alfven, normalized time and 
normalized geometric data.  
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В.Т. Чемерис, А.І. Райченко 
Уточнене визначення скінової глибини під час дифузії імпульсного магнітного поля в рухоме електропровідне 
середовище 
Розроблено теорію одновимірного проникнення магнітного поля в електропровідне середовище (плоску 
пластину) з урахуванням руху пластини під дією магнітного поля за умови лінійного зростання напруженості 
поля в часі на зовнішній межі провідника. Процес був описаний рівнянням дифузії, що враховує конвективний 
перенос, і рівнянням руху середовища за спеціальних граничних умов. Розв’язок отримано для часового 
інтервалу, в якому товщина скінового шару залишається меншою, ніж товщина пластини. Скінова глибина при 
цьому збільшується порівняно з класичним випадком нерухомого середовища. Цей результат пояснюється 
уповільненням зростання поля на поверхні середовища в результаті переміщення межі провідника та 
безпосередньо впливом руху середовища. 

В.Т. Чемерис, А.И. Райченко 
Уточненное определение скиновой глубины при  диффузии импульсного магнитного поля в движущуюся 
электропроводящую среду 
Разработана теория одномерного проникновения магнитного поля в электропроводящую среду (плоскую 
пластину) с учетом движения пластины под действием магнитного поля при линейном росте напряженности 
поля во времени на внешней границе проводника. Процесс был описан уравнением диффузии с учетом  
конвективного переноса и уравнением движения среды при специальных граничных условиях. Решение 
получено для временного интервала, в котором толщина скинового слоя остается меньшей,  чем толщина 
пластины. Скиновая глубина при этом возрастает по сравнению с классическим случаем неподвижной среды. 
Этот результат объясняется замедлением роста поля  на поверхности среды в результате перемещения границы 
проводника и непосредственно влиянием движения  среды. 


