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The peculiarities of the identification problem of the longitudinal motion of one aircraft class according to flight
test records in the presence of intensive noises are considered. It is shown, that for the given aircraft class with
the given input signals only identification of the short period component of the longitudinal motion is possible.
The identification of the short period motion of aircraft using the maximum likelihood method is executed.

Introduction

Identification of the aerodynamic characteristics of
the airplane lateral motion in the presence of noises,
recorded in the flight test data, based on the Kalman
filtration and maximum likelihood function as the identi-
fication criterion was considered in the papers [1; 2].
The identification of the aerodynamic characteristics
of aircraft longitudinal motion on the basis of the
flight test data has its own peculiarities. As is known
the longitudinal motion consists of the short period
and the phugoid motions. Division of the longitudin-
al motion into short and long period components is
especially important for big airplanes, because their
long periods are 100 times more, than their short
ones. Such systems are known to be called “stiff”
systems.

Attempts of this problem solution are given in [3; 4],
however, in these papers the attention to the identi-
fiability problem has not been paid. The previous
analysis of the dynamic properties of a real plant
will allow to determine the identification algorithm
and to estimate its mathematical models (MM). This
article is devoted to the analysis of the peculiarities
of the aircraft longitudinal motion identification and
to building the corresponding procedure.

Statement of the problem

The identification problem of the longitudinal mo-
tion of the airliner such as DC-8 [5] in cruising flight
based on the records of variables which characterize
the longitudinal motion, namely, longitudinal and
vertical speeds u and w respectively, pitch angle 9
and pitch rate ¢q, is considered. These variables are

the components of state vector

x=[u,w,9,q]",

the control input is the deflection of the elevator de.
Records of these variables are contaminated with
noises of different nature. We shall consider that the
received records of the flight test contain only un-
correlated stochastic noises with zero expectation.
Linearized MM of the aircraft longitudinal motion is
described with the well known linear state space
equations [5].

It is necessary to determine parameters of the state
space model, i.e. elements of state, control, observa-
tion and direct transfer matrices on the basis of flight
test data.

The presence of the measurement noises in the flight
records results in the biased estimations of parame-
ters of the dynamic model, therefore the important
task at data processing is the minimization of errors,
which are due to these factors. At the same time the
number of parameters to determine is rather great. It
is explained by the following circumstance: the air-
craft model has to be identified in state space, and
the parameters of this model are aerodynamic deriv-
atives of linearized model of aircraft dynamics for a
selected mode of flight.

The model of the longitudinal channel

and its properties

As it is known [5], the linearized model of the aircraft
longitudinal motion is described with the following state
space equations with constant coefficients:
x=Ax+Bu+o;

(1

where A, x are the state matrix and the state vector
respectively; B, u are the control matrix and the
input vector respectively; C, y are the observation

y=Cx+Du+om,,

matrix and the observation vector respectively; D is
the matrix of the direct transfer from control input to
output; ®, and ®, are uncorrelated white noises
with intensities Q and R respectively.

For the aircraft longitudinal motion these matrices
and vectors are the following [5]:
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where x,, x, and z,, z,, z5, are the corresponding

partial derivatives of the longitudinal and vertical
forces respectively; m,, m,, m_ , mg, are the cor-

e

u? u>d

u W q°
responding partial derivatives of the pitch moment.

The vector of unknown parameters for the identifica-
tion of the aircraft longitudinal motion has the fol-

lowing form:
"
e:[xu’ xw’ Zu’ Zw’ mu’ mw’ mq’ Z:Se’ mSe] . (3)

According to [5] the nominal values of elements of
parameter vector are shown in tab. 1.

Solution of the problem

As measurements of the state vector components are
contaminated with the considerable noises it is de-
sirable to use the maximum likelihood method for
the parametric identification of the aircraft state
space model [3; 6 — §].

This method results in the estimations, unbiased
asymptotically, with the minimal variance in the
case of Gaussian noise by selection of parametrical
model which corresponds to the maximal value of
likelihood function, that is

Table 1
Nominal values of parameters
Parameters | x 1/s | x,,,1/s| z,,1/s | z,,1/s | m, 1/(ms)|m,, 1/(ms)| mg, /s | z4, m/(s*rad) | Mg, 1/s°
Nominal | -0,0140 | 0,0043 | -0,0735 | -0,8060 -0,0026 -0,0364 | -0,9240 -10,5489 -4,5900
values

Before starting of the identification procedure it is
expedient to investigate identifiability of the plant.

For this purpose it is necessary to check up whether the
system (2) with vector of parameters (3) satisfies the
identifiability condition, which is the following [3; 6]:

rank[m} =k, 4)
00

Q,®)=|CB)" (CAB)" - (CA™BY|;
where £ is the size of vector of unknown parameters.

As a result of the check it has been revealed, that the
system (2) is uniquely determined by parameter vector
(3) as the Jacobian matrix (4) has a full rank £ .
Nevertheless for practical application it is necessary
to make the numerical estimation of the identifiabi-
lity of specific MM parameters. It can be made on
the basis of the singular values analysis of the Jaco-
bian matrix

_ Q)

Q 00

Relation between their numerical values will show
how many parameters of the identified model are
weakly identifiable.

The eigenvalues of the longitudinal motion model of
airliner DC-8 are —0,8662 +3,0237; and. The fre-
quency of the short period component of longitudin-
al motion is 3,1453 rad/s, and the frequency of the
phugoid component is 0,0240 rad/s. These frequen-
cies differ more than by two orders; therefore it is
necessary to carry out identification of the longitu-
dinal channel for the given aircraft in two stages:
identification of the short period component of lon-
gitudinal motion on short length of realization and
identification of the phugoid component on the
greater length of realization.

0,,(Y,)=argmax L(Y,,0),

0e0,

where 0,0, are a vector of unknown parameters

and its estimation; Y, is the measured output

vector; L is the likelihood function.

For convenience it is expedient to find not the max-
imum of likelihood function, but the minimum of the
negative logarithm of this function, that is

J(0)=—In{L(Y,,.0)} =
= 0,5{% (Y, -Y) R(Y, -Y)+ (5)

+NIn|R,, [+mNIn@2mn)},

where Y is the output vector of model; Y, — Y is

the vector of innovations; |R, | is the Frobenius

in

norm of innovation’s matrix; N is the number of
measurement points (it depends on the length of

realization); m is the size of output vector Y (it
depends on the number of measured values).
Identification procedure of aircraft in the state space
on the basis of the maximum likelihood method is
based on application of the optimal Kalman observer
of aircraft dynamics and optimization procedure
together with logarithmic likelihood function as a
cost function. The block diagram of this procedure is
presented in fig. 1.
Digital data U,, and Y,

n

received as a result of the

flight test are processed in the block Data
processing. The Kalman gain matrix (KGM) and the
aircraft state space model (ASSM) represent the
optimum observer. The parametrical identification
algorithm (PIA) represents iterative procedure of
parametrical optimization which arranges the model
parameters using the error E .
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Fig. 1. The block diagram of the identification
algorithm

The convergence of identification procedure
depends on the sensitivity functions.

The gradient of logarithmic likelihood function with
respect to the vector of parameters is equal to:

N A ~
Vol =2 (V4 (Y, —Y) R, (Y, —Y);
i=1
Vo(Y, -Y)=V,Y.
The sensitivity of each parameter can be approx-
imated as follows:

oY, _ Y, (6, +36,) - Y,(6,)
00, 30,
where 06, is a small disturbance of the k—th

b

parameter.
The value of the disturbance 60, must be small

enough to ensure the linear variation in response.

The records received as a result of simulation in
Simulink package of the cruising flight, that was 20
seconds long, were used for the identification proce-
dure. It has been revealed, that unknown parameters,
which correspond to the phugoid component of lon-
gitudinal motion of the given aircraft, are poorly
sensitive as compared to unknown parameters which
correspond to the short period component. As it is
known, the phugoid component of longitudinal mo-
tion should be identified on a greater length of reali-
zation, than the short period component. So the re-
search of sensitivity function on the basis of simu-
lated flight test data of the cruising flight, whose
duration was 200 s, has been carried out. Unknown
parameters corresponding to the phugoid component
of longitudinal motion of the given aircraft were

found to grow less sensitive as a result of the realiza-
tion length increase. Owing to the long period
parameters insensibility, its identification cannot be
made with sufficient accuracy. This conclusion can
be confirmed also by the analysis of the singular
values of the Jacobian matrix Q;. The range of

these values is from 0,0374 to 32693,0022. The first
four smallest singular values indicate, that the cor-
responding parameters of state space model are
weakly identifiable.

Identification algorithm of the short period
component of aircraft longitudinal motion

The matrices and vectors which describe the short
period component in state space (1) are the follo-
wing [5]:

A:{:{; Zj X:[ﬂ;
B{Zﬂ; u=[5e] y:m.

The identification problem of the short period
component of the aircraft longitudinal motion is to
estimate vector of model parameters (6)

(6)

9:[2 m,,, m,, Zs,, mgeT. (7

w? w? q >
As a result of research of the identifiability (4) of the
short period component it has been discovered, that
this component of longitudinal motion is completely
identified.
As has been specified earlier, the most effective
identification method of aerodynamic derivatives
which determine aircraft dynamics in state space is
the maximum likelihood method. Identification pro-
cedure in state space by the maximum likelihood
method is based on the application of optimal
Kalman observer of aircraft dynamics and optimiza-
tion procedure together with logarithmic likelihood
function as criterion [3; 4; 6].
At each step of the optimization procedure the
steady state Kalman filter is used for optimal obser-
vation of measured responses of the aircraft motion
model.
The first step of this procedure consists in determin-
ing the covariance matrices of the state variables Q
and measurements R. Then it is necessary to
determine the covariance matrix of innovations R,
of Kalman filtering
R, =CPC” +R, 8)
where P is the Riccati equation solution.
Several methods for iterative determination of this
matrix [4] are discussed. The problem is that R;, in

(8) depends on the covariance matrix P of the state
variables, which can be defined later as the Riccati
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equation solution that in its turn depends on the
matrix R, . In the given work the authors propose

the simplest way for this problem solution. As the
first step before Riccati equation solution, the matrix
R,, can be approximated as:

R, =CQC" +R. )

This approximation can be successfully used for
Kalman filtering at each step of the optimization
procedure.

As offered in [4], better results (in comparison with
the results which refer to the purely discrete case)
can be received using the first order approximation
of the continuous Riccati equation instead of the
discrete one:

AP +PA" —(1/dPC" (R,)'CP+Q =0,

in (10)
where d is sampling interval.

Solution of this equation gives the state variables
covariance matrix P, which is then used for deter-

mination of Kalman gain matrix K

K=PC'(R,)". (11)

The updated state space vector can be calculated as
follows:

X, (i/i-1)=FX_ (i-1)+B,U(i-1), (12)

where F=1+dA; B, =dB are matrices of the
state space description for the discrete system;
Y(i)=CX, (i/i—1)+ DU -1);

(13)
X, ()= X, (#i-1)+K(Y, - Y). (14)
The equations (8)—(14) describe steady-state Kalman
filtering procedure.
Logarithmic likelihood function as a cost function
for the optimization procedure can be written as (5).
The problem is to find the optimal value of the pa-

rameters vector 0,, with the components deter-

mined by expression (7), which delivers the minimal
value of the cost function J(0):

opt

0 = argrerg)?J(ﬂ) .

Here the quasi-Newton method of optimization as
one of the most reliable from the view point of
convergence is accepted [9].

The optimization algorithm can be described shortly
in the following way:

0 +1)=00) —yH ' ()VI(0())),

where v is the scalar parameter which determines
the step size; VJ(0(i)) is the vector of gradient,
derivatives

which is determined by partial

0J/00,(i) in our case k=1,..,5; H(@) is the
matrix of the second derivatives H(i) = VJ(0(7)).

It is recommended to apply scaling of the optimiza-
ble function and the parameters vector for conver-
gence improvement.

Scaling of optimizable function allows to prevent a
divergence of optimization procedure at its
beginning, and scaling of parameters vector allows
to improve its convergence at the end.

Results of parametrical identification
of the short period component

Records of the elevator deflections, vertical speed
and pitch rate have been received as a result of simu-
lating cruising flight which was 20 s long in
Simulink package taking into account the noises of
real sensors.

Identification of the short period component was
made according to the offered identification
algorithm with different input control signals
(elevator deflections): the sinusoidal and the trape-
zoidal waveform [3; 6] signals. The results of identifica-
tion at input signals used do not differ essentially. Initial,
nominal and estimated values of unknown parameter
vector at sinusoidal input signal are presented in tab. 2.
Comparison of the measured and calculated output
signals is presented in fig. 2.

Time, s

g, deg/s

Time, s

b

Fig. 2. Comparison values of the measured and
estimated output data:

a — vertical speed; b — pitch rate;

1 — measured output data; 2 — estimated output data
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Table 2
The results of parametrical identification
Parameter
Value z,,1/s m,, 1/(m-s) m,, 1/s Z 4, -m/(s>rad) my,, 1/s*
Initial values -0,70 -0,07 -0,84 -17,19 -2,70
Nominal -0,8060 -0,0364 -0,9240 -10,5489 -4,5900
Estimated -0,8626 -0,0328 -0,8719 -12,4314 -4,0590
Conclusion 3. Kacwanos B.A., Yoapyee E.Il. Onpenenenue

Before starting the identification of the aircraft dy-
namics it is necessary to analyze the plant for identi-
fiability and sensitivity to change of the parameters.
As has been proved, it is expedient to carry out iden-
tification of the short period component only.
Identification of dynamics of the short period of
aircraft motion using Kalman filtration and the max-
imum likelihood function as criterion of identifica-
tion is sure to yield good results.
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InenTrdiKoBaHICTh Ta imeHTH}IKAMIS TO30BKHBOTO PYXY JITAIBHUX anapaTiB METOJOM MaKCHMaJIbHOI IIpaBAomoi0-
HOCTI

Po3rnsiHyTo 0co0MMBOCTI 3a1a4i ieHTU(IKALT MO3T0BKHROTO0 PyXy OJHOTO KJIACYy JITAJbHHUX arapariB 3a 3alucaMu
JILOTHUX BUIIPOOYBaHb B YMOBaxX iHTEHCHBHUX 3aBaj. [loka3aHo, 110 AJIs IIOTO KJacy JITAIbHHUX anapariB MpU JaHUX
BXIIHUX CHTHaJIaX MOXJIMBA IICHTU(IKAIISA TIIBKH KOPOTKOMEPIOAUIHOT CKIIaI0BOI MO30BXKHBOT0 PyXy. BukopucTo-
BYIOUM METOJI MaKCHMaJbHOI IpPaBAOIOAIOHOCTI, BUKOHAHO IIEHTH(DIKAII0 KOPOTKONEPIOAWYHOTO PYXy JITAIbHUX
araparis.

A.A. Tynuk, A H. Knuna

WnentndunupyeMocTs U NISHTH(YUKAIINS TPOIOIFHOTO ABIDKEHHS JICTATEIBHBIX allllapaToB METOIOM MaKCHMAIbHOTO
MIPaBIOTIOA00US

PaccMmoTpeHsl 0COOCHHOCTH 3a/1a4¥ MISHTH()HUKALINN TTPOJOIEHOTO JABIKSHUS OJHOTO KJlacca JICTATENbHBIX allapaToB
10 3aIUCSIM JIETHBIX MCTIBITAHUH B YCIOBHSX WHTCHCHUBHBIX IoMeX. [loka3zaHo, YTO Ui 3TOTO Kitacca JeTaTeNbHBIX all-
[aparoB MMPH JaHHBIX BXOIHBIX CHUTHAJIAX BO3MOYKHA HWACHTH(HKAIKS TOIHKO KOPOTKOIEPHOIHUECKON COCTABIIIONICH
MPOJIOJILHOTO NIBIDKEHUSI. METO0M MaKCHMAaTbHOTO TMPABIONOA00WS BBHIMOJHEHA HWIACHTH(PHUKAIUSA KOPOTKOIIEPHUOIU-
YECKOI'0O IBMXKCHUS JICTATCIIbHBIX annapaTOB.



