
ISSN 1813–1166. Proceedings of NАU. 2005. №2

98

UDC 004.4.(045)

N.A. Sidorov, Dr.Sci. (Eng.)

SOFTWARE STYLISTICS

Institute of computer technologies, NAU, e-mail:sna@nau.edu.ua

Considered is the application of style in software development. Stylistics of software as a section of the software
engineering is introduced.

Introduction

In connection with distribution of engineering
methods of the software development, the models of
life cycle, based on component development and
reuse [1; 2], and extreme programming are put and
solved the problems connected with reading of
program texts, written on different programming
languages and at various times [3–7]. It is known,
that character of the program text is influenced not
only algorithm or the programming language, but
also ideological, and cultural features of the time in
which the program was created [7]. Therefore, to
understand texts of programs, it is often necessary to
know either specified features of the time of their
writing, or ideologies dominating over this period
and ideas of authors. It leads to the necessity for a
programmer to be able to represent idea or ideology
and to transfer representation together with the
program. In various areas, this aspect of activity of
the person concerns style, and its research – is a
subject of stylistics [8]. Expansion of application of
engineering methods in software shows, that style in
software development as in other human activity,
can be connected not only with program texts, but
also with other products of software life cycle
phases, for example, architecture [9].

Researches and publications

Application of style in software development is old,
but not often investigated problem. The first results
of research style have been presented in work [10].
The results of following researches are presented in
works [11; 12]. I.V.Velbitsky has introduced graphic
style of programming [13] A.P. Ershov considered
style as fundamental professional property of the
programmer, marking the role of educational process
in purchase of style property and the role of
industrial requirements in its preservation [14].
I.V. Pottosin describes requirements which the
“good” program should satisfy [15]. Works [16; 17]
reflect the results of researches of modern aspects of
the style which are mainly connected, with the use
of designs of object-oriented programming
languages.

Ontology of programming stylistics

Let's define stylistics of programming as a section of
the software engineering [1; 2] which subject is

application of style in programming. The analysis of
literature [3–7; 9–19] shows, that in programming
there is no satisfactory definition of style. Likewise,
there exists no definition of other spheres of human
activity, that could be used in programming. As a
basis of reasoning on style we shall take the
definition of style as means of expression of some
ideology or an idea in human activity [8].
Thus, considering style, it is necessary to consider
two measurements: one reflects a set of ideologies
and ideas, and the other is a set of types of human
activity. Defining style of human activity, first of all
it is necessary to identify ideology or idea which it
expresses, and then, projecting them on human
activity to define other concepts connected with it in
this activity. Obviously, defining style, which has
found application in different areas of human
activity, description of characteristic features or
attributes of corresponding ideology or idea is
enough. Then this description will represent style as
a domain-independent concept. Considering style
from ontological positions, as object (“essence”,
“thing”), possessing properties it is necessary to
specify essential properties of style and its
communication with other objects of the domain.
We shall define style – “essence” (class) as a system
of three following properties (fig. 1):
– to express some ideology or idea;
– to have the period (time) of existence;
– to have connection with human activity.

«style denotation»: style

Idea (ideology) = «any»
Existent time = «some time»
Action = «no»

Fig. 1. Class-style

For style as domain-dependent concept all three
properties are essential. The first and second
properties remain essential always, that are qualities
of style as domain-independent concept. Importance

ISSN 1813–1166. Proceedings of NАU. 2005. №2

99

of the third property leads to the domain-dependent
concept of style of human activity.
Thus, to style, as to domain-independent concept,
there corresponds essence (means) expressing any
period of time, some ideology or idea, the way
which has not been connected with specific human
activity. As a matter of fact, style represents the
basis on which styles of various human activities are
constructed. Considering stylistics of programming
as a subject domain, for representation of its
ontology, we shall use both computer and
mathematical approaches [18]. Application of the
first approach will be shown by means of
UML-diagrams, and for the second we will use the
axiomatic method widespread at the description of
subject domains of databases. Representation of
style within the limits of the second approach can
look like St = <А, S, D>, where A – set of own
axioms of style not depending on an essence of
expressed ideology, S and D – sets of the axioms
describing characteristic features of ideology of style
in static and dynamics. The last sets can be used for
description of style of programming.
Set A may contain such axioms:
1) uniqueness of style: if exists ideology I and style,
based on it, then there are no styles that are also
based on this ideology

));()((~)(IStItSIISt
2) existence of style of human activity: if there exists
ideology I, style St, based on it, and human activity
P, then exists style of human activity Stp(St (I), P),
based on the style St(I)

);),((~)(PIStPStIISt p

3) reflexivity: every style is the substyle of itself
)(StStSt ;

4) antisymmetry: substyle (style, which is derived from
some style) can’t be a style for a style, it was based on it

));,(~),((122121 StStRStStRStSt
5) transitivity: if style St2 is substyle of some style
St1 and style St3 is substyle of St2, then St3 is
substyle of St1

)),(~),((~),((,, 313221321 StStRStStRStStRStStSt .

Axioms of static S describe peculiarities of condition
of the style in definite domain of human activity.
Usually in description of style, multiple essences
and relations between them are used. Description of
their conditions is description of static. Axioms of
dynamics D describe changes that occur during style
existence time. For example, axiom that describes
property, is called “time of style existence”: if exists
style St, then it exists during some finite period of time:

)(~)),(,(2121 ttttStStT .

For description of dynamics of changes in domain, it
is possible to use modal logic. We may obtain
different classes of human activity by assigning
different values to the property “human activity” in
class “style” (fig. 2).

«programming style denotation»:
programming style

Idea = «any»

Existent time = « some time »

Action = « programming »

Fig. 2. Class-programming style

Thus, programming style is the style that is used in
human activity (domain), whose essence consists in
programming.
We are able to construct a model of the
“programming” domain while considering in human
activity (domain) three essences (subject, tool and
product), and taking into consideration that in
programming such essences are programmer,
programming language and program (fig. 3).

Programming
language

Programmer Program

Studies Belong

1

1

1

1

Writes

*

Fig. 3. Programming domain

ISSN 1813–1166. Proceedings of NАU. 2005. №2

100

Considering connection of essences, mentioned
above, with style of human activity, we may define
such conceptions, as style of a subject, style of a tool
and style of a product. For “programming” domain,
they correspond to such conceptions, as:
programmer’s style, style of programming language
and style of program. At the same time, while
subject and product obtain new properties because of
connection to style (style of subject-programmer and
product-program) (fig. 4), tool is involved into
creation of new essence (style of tool-programming
language)(fig. 5).

 Programmer Programming
language style

Program

Studies

Acqusting of
style

Writes program

Acqusting of style

Fig. 4 Sequencer diagram

Action style

Tool

Tool style

Fig. 5. Tool style

A fragment of model of “programming” domain,
that takes into consideration influence of style, is
represented by three classes – style of programming
language, programmer and program (fig. 6).

Programming language
style

Programming language
Programming style
Programming style control
Means

Programmer

Programmer style

 Program

Program style

Studies Belong

1
 Writes

 1 1

*

* 1

Fig. 6 Programming domain and style

Style of programming language is a tool (a subset of
programming language), in which definite style of
programming is supported (fig. 7).

 Programming style Programming
language

Programming style
control means

Programming
language style

Fig. 7. Style of programming language

Usually, in style of programming language,
some subset of programming style is realized.
Support must be realized in the form of means,
providing representation of corresponding style in
the context of programming language means. As a
rule, programming style expression doesn’t exceed
the limits of vocabulary and syntax of programming
language and is provided automatically. But it is
necessary to keep to style of programming, that’s
why it’s necessary to provide tools, controlling
programming style, just as the way controlling
syntax. It will provide obligatory realization of style

ISSN 1813–1166. Proceedings of NАU. 2005. №2

101

property of the program in the context of the given
style of a programming language. It is possible to
realize control over the programming style by means
of empirical methods and tools, in particular –
measurements and measuring devices.
Style of programmer is the acquired quality of
programmer to be acquainted with definite style of
programming and apply it in programming.
Acquirement of this quality is performed by
studying the style of programming language. In the
strict sense, style of programmer must be his
professional quality, like the ability to paint for an
artist and must be acquired while training skills [14].
Style of programmer is connected with processes of
motivation of training, retraining and application of
programming style.
Style of a program is the ability of a program to
satisfy requirements of the programming language.
Incomplete satisfaction of the requirements of
programming language leads to stylization of a
program. For example, many programmers use
stylization to Hungary notation.
Thus, the main system-generative factor for style is
ideology or idea. Style may be formed during some
time, and then differentiate in human activities.
During some period of time, one style may arise and
dominate – “style of the epoch”.

Style in programming

During existence of programming, some epochs passed.
In each epoch there was one culture that aroused and
dominated and which had own ideology, defined style
of programming typical for that epoch.
We may distinguish four epochs (tab. 1), using their
relation to one of fundamental conception
programming, structured programming, directly
connected to code writing, so – with styles of
programming.

Style in software engineering

By means of architectures, the notion of style began
to penetrate deeper into software and so the notion
of architectural style appeared.
Architecture is a conception of the main structural,
functional and consumer properties of the software
[9]. Usually architecture is composed of components
of two types – computing (clients, servers, filters,
levels, databases) and connecting (calls, events,
protocols, pipes). Interacting with each other, these
components form the software architecture.
Architectural style is a means of expressing some
ideology or idea in the form of an architectural model or
template. That’s why the architectural stylistics
designates the family of a program systems offering a
list of computing and connecting components and a set
of rules, that define how thy can be connected into
architecture. The existing architectural styles and their
characteristics are shown in tab. 2. Application of style
in software, let us consider it in the context of software
lifecycle, which consists of the following phases:
– formation, under the influence of ideology or an idea;
– identification of a style (determining and presenting
characteristic features of the ideology or an idea);
– creating a programming style on the basis of the
identified style;
– creating programming language styles, that support
programming styles or creation of architectural styles;
– training programmers and architects (“creating”
programmer and architect styles);
– applying programming language styles in the process
of software writing (“creating” software styles) and
architecture styles at the stage of architectural
programming (“creating software system styles”);
– style withers away, as a rule, because of “withering
away” of the style’s ideology.
The software stylistics is a part of software engineering
[1; 2], which at present studies following conceptions:

Table 1

Programming Epochs

Programming
Epochs

Paradigm facilities

Time Orientation Ideology Attention Methods and style

«Until
structuring
programming»

1951– 1975 On processor,
program
performer

Efficiency Programming
technique

Enigmatic
programming,
literate programming,
template programming

«Structural
programming»

1975– 1990 On programmer,
reader of program

Understanding Programming
technique

Structural
programming,
understanding
programming

«After structural
programming»

1990–1996 On designer Reusable Design
technique

Module and object
oriented-programming

«Software
engineering»

1996 On software
engineer

Software design
condition

Prove
programming

Empirical, literate
programming

ISSN 1813–1166. Proceedings of NАU. 2005. №2

102

Table 2
Architecture styles

Style Architectures Program system types
Dataflow Batch, sequential, pipes and filters Dataflow processing systems
Call-and-return- systems Main program and subroutines Object- oriented systems
Independent components Communicating processes Event systems
Virtual machines Interpreters, Rule-based Rule-based systems
Data-centered Data bases, hypertext Hypertext systems
Client-server Distribution Client-server systems

programming style and architectural style, as a means of
expressing ideology or an idea in human activity – soft-
ware development; programmer’s style, as a professio-
nal quality, facilitating the use of programming styles;
styles of programming languages and other tools, as the
means of software style implementing; program styles –
program properties as a result of software styles
application. The goals pursued by software stylistic are
directed towards studying the described concepts on the
basis of software style lifecycle, in the context of software
lifecycle, by studding the processes, resources and
products of software lifecycle phases and developing
technologies that facilitate their implementation.

Conclusion
A.P. Yershov, considering the inner nature and the
aesthetical nature of programming, points out, that the
profession of a programmer “approaches to the level of
a writers profession”, while development and support of
the software is closer to that of a typography, namely in
a similar way that the books accumulate the outer image
of the world in the authors eyes, the programs
accumulate informational and operational models of the
world. In our opinion, in the first case and the second,
the style and its application in programming is a striking
example of the peculiarities of the programmer’s
profession noted by A.P. Yershov or in modern speech
a software developer (engineer). That’s why the
software stylistics deserves more attention, than it has
received from programmers.

Literature

1. Соммервил И. Инженерия программного обес-
печения. – М.: Вильямс, 2002. – 620 с.
2. Сидоров Н. Повторное использование, перера-
ботка и восстановление программного обеспече-
ния. – УсиМ. – 1998. – №3. – C. 74–84.
3. Knuth D.E. Literate are programming // Computer
Journal. – 1984. – Vol. 27, N 2. – P. 42–44.

4. Weisen M. Source Code // Computer. – 1987. Nov. –
P. 66–73.
5. Goldberg A. Programmer as Reader.-IEEE Software.
– 1987. Sept. – P. 62–70.
6. Robson D.J., Bennett K.H., Cornelins B.J., Munro M.
Approaches to Program Comprehension // J.Systems
Software. – 1991. – Vol. 14, N. 2. – P. 79–84.
7. Software cultures and evolution // V. Railich,
N. Wilde, M. Buckellew et. al. Computer. – 2001. –
Sept. – P. 25–28.
8. Соколов А.Н. Теория стиля. – М., 1968. – 210 с.
9. Bosch I. Design and use of software architectures.
– Addison–Wesley, 2000. – 325 p.
10. Тассел В. Стиль, разработка, эффективность, от-
ладка и испытание программ. – М.: Мир, 1980. – 280 c.
11. Керниган Б., Плоджер Ф. Элементы стиля прог-
раммирования. – М.: Радио и связь, 1984. – 160 с.
12. Боровин Г.К. Ошибки – ловушки при програм-
мировании на Фортране. – М.: Наука, 1987. – 144 с.
13. Вельбицкий И.В. Технология программирова-
ния. – К.: Техніка, 1984. – 274 р.
14. Ершов А.П. Предварительные соображения о
лексиконе программирования //Кибернетика и
вычислительная техника. – М.: Наука, 1985. –
Вып. 1. – С. 199–210.
15. Поттосин И.В. «Хорошая программа»: попытка
точного определения понятия // Программирование.
– 1997. – 2. – С. 3–17.
16. Нуквист Е. Правила хорошего тона для програм-
мирования на С++. – К.: Наук. думка. –1994. – 85 с.
17. Mейерс С. Эффективное использование С++. –
М.:ДМК. – 2000. – 325 с.
18. Клещев А.С., Артемьева И.А. Математические
модели онтологий предметных областей. Ч. 1.
Существующие подходы к определению понятия
«онтология» // НТИ. Сер. 2. Информационные
процессы и системы. – 2001. – №2. – С. 20–27.

The editors received the article on 8 July 2005.
М.О. Сидоров
Стилістика програмного забезпечення
Розглянуто застосування стилю в розробці програмного забезпечення. Запропоновано стилістику програмного
забезпечення як розділ інженерії програмного забезпечення.

Н.А. Сидоров
Стилистика программного обеспечения
Рассмотрено применение стиля в разработке программного обеспечения. Введена стилистика программного
обеспечения как раздел инженерии программного обеспечения.

