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The approach to simulation of flight dynamics and numerically-analytical method of airship control algorithms
are offered. It’s based on differential transformations of initial mathematical model of airship motion. The given
approach allows for elimination of viewing time function for their differential spectra in the image field. It gives
the possibility to reduce a problem of closed algorithm synthesis of vehicle control to the solution of non-linear

equation system concerning control variable.

Introduction

Among significant problems of lighter-than-air
(LTA) vehicles operation the poor efficiency of their
low-speed control, especially during takeoff and
landing is selected. In this connection frequent there
are difficulties at their ground maintenance and the
relevant restrictions for safe vehicle operation are
inlet with gusts present. The use of the power-plant
with thrust vector control on LTA vehicle essentially
dilates  aircraft = performance  characteristics,
simplifies taking-off and landing, improves ground
maintenance, safety and the pliability of operation
also at active gusts [1; 2].

Automation of LTA vehicle motion control,
qualitative improvement of the board and ground
equipment are stipulated by expansion of a circle of
problems, which such vehicles face, and growing
requirements to quality of their solution. The control
of LTA wvehicle landing procedure is a complex
procedure and is characterized by different modes of
simultaneous  operation of propellers and
acrodynamic controls (elevators and rudders),
practically by sudden change of vehicle mass at the
moment of ballast drop. Other feature is the presence
of restrictions on permissible descent vehicle
velocity at the moment of touchdown, necessity of
the registration of the external environment (gusts)
impact. The rated path of the LTA vehicle auto-
landing is created in view of all above features and
restrictions. It brings about the necessity of the
solution of a multiparameter problem on the choice
of the relevant control algorithms and their use in
real time.

In this paper for an evaluation of the different
concepts of automatic control of a modern LTA
vehicle at a landing stage (the airship of a classical
type is considered), the approach to modeling a
vehicle movement and a numerical - analytical
method of control algorithm synthesis, based on
application of the mathematical apparatus of
differential transformations is offered. According to
the accepted approach the path of airship auto-
landing is divided into some segments, whose

boundaries correspond to the moments of control
switching, changes of mass at ballast drop, moments
of a path output or control on the relevant
restrictions. Thus it is supposed, that the data time
frames are given and within them a vehicle motion
parameters have no jump changes. The resulting
path is recovered on sites with a docking of regional
requirements. A similar approach to vehicle control
algorithms synthesis on the basis of differential
transformations was already applied in solution of a
problem of control of aerospace system get to the
orbit [3].

As the used mathematical apparatus of differential
transformations is practically new in application to
problems of airship movement control, we shall
briefly consider the basic properties of differential
transformations.

Differential transformations
and their basic properties

The method of differential transformations is offered
by academician G.E. Puhov [6]. As apposed to
known  integrated  Laplace and  Fourier
transformations, it is based on translation of the
originals into the images field through the
differentiation =~ operation. = At  mathematical
simulation of physical processes and objects
featured by differential and integral equations, the
differential transformations allow to replace
operations of integration and differentiation by
equivalent algebraic operations.

The differential transformations allow to replace in
the mathematical model of object dynamics the

functions x(t) of continuous argument by their
spectral models in the form of discrete functions

X(k) of integer argument k=0,1.2,... The
differential transformations are the functional
transformations of the type [6]:

k[ 4k
@zX(k)z%{ddet)} -

! t (=0 )

k=00
& x(t)= z(ﬁ)kX(k),
k=0
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where x(t) is the original, which represents the

material analytical function of material argument;
x(t) and X(k) are equivalent labels of the

differential image of the original representing
discrete function of integer argument k , which is
termed as a differential spectra of function x(t) in
the point t=t,; h is the scale stationary value
having dimensionality of argument t , is usually
chosen equal to the segment 0 <t<h, on which
the function X(t)is considered; the line below is the
figure of transformation, <> 1is the figure of
correspondence between the original x(t) and its
differential image X(k).

The expression to the left of figure < in (1)
defines direct transformation permitting by the
original x(t) to find the image X(k), and on the
right — inverse transformation, which recovers the
original X(t) by the images X(k) as a Taylor series
with the center in the pointt = 0.

The transformations (1) are termed as differential
Taylor transformations or T — transformations,
differential images X(k) — differential T — spectra,
and value X(k) at concrete values of argument are
For example, X(0) is zero
discrete, X(1) is the first discrete etc.

Let's give some basic properties of differential
transformations [4].

The initial value of the original [x(t)]l:0 =x(0)
equals zero discrete [X(k)]k:0 = X(0) of basic
image X(k), i.e. X(0)=[XK)|_, =X(0)=[x(t)].; -
The value of the original X(t) in point t=h is

equal to the total off all discretes of the basic
imageX(k):

termed discretes.

k=00

x(t=h) = X(0) + X(1) + X(2) +..= > X(k).

k=0

If at t > 0 original Xx(t)is presented by a Taylor

series, its value in point t = —h will be determined
by expression:

k=w
x(-h)=X(0)-X(1)+ X(2)-X(3) +...= Z(—l)kX(k)

k=0
Let's consider now a number of mathematical
operations above T-functions. As follows from
expression (1) the algebraic total of the originals
there corresponds to the algebraic totals of their
T-images:

x(t) £ y(t) < X(k) £ Y(k),
x(t, + )t y(t, +1) < X, (k)= Y, (K).

Operations of multiplication of the original x(t) by
the constant value C corresponds to multiplication of
the images X(k) and X (k) by it:

Cx(t) & CX(k);

Cx(t, +1) = CX, (k).

The product of two functions x(t) and y(t)

corresponds in the field of T-images to the product,
which is designated by the symbol *.

k k
x(Oy(t) < X(K) * Y(k) = }11(' {M} _
' dt* (=0

= Z X(k=DY().

The operation of differentiation in the field of the
originals corresponds to the following expression in
the field of images:

y() = dxit)

where the figure D means T-derivative.

The images of higher derivatives from x(t) per

t are similarly determined:

dmx(t) (k + m)
dt™

where m is natural number; D"
T-derivative of the m order.
Substituting the power series

k=00, t k
x(t) = z(—j X(k) .
k=o\ h
In the expression of particular integral from x(t)
per t, we shall receive:

| k=oo k
x(t)dt = j z(ij X(k) dt =
f o @
3 hki (t_b k+1 _(t_a k+1 X(k)
koo Lh h k+1
In that specific case, when t, =0 and t, =h , we have:
h k=00
X(k
j x(t)dt = h X
0 ik +1°
Expressions (2) and (3) allow discovering in given
limits a particular integral from the original x(t) on
discretes of the image X (k) .

The mathematical models,
differential transformations,
models.

Target setting of terminal control
All controllable airship landing process is
conditionally divided into r given time frames,

inside which the parameters of the vehicle have no
sudden changes:

Y(k) = DX(k)—%X(k +1),

D"X(k) = — 2 X(k +m),

is the figure of

)

converted  through
are termed as spectral
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T

T =t —t_,i=Lr, DT, =T,
i=1

1 1

where T is airship’s landing time from the beginning
of descending to touchdown with ground.

Further we shall figure, that all these changes in the
form of given springs happen at boundaries of
selected intervals.

Mathematical model of an airship motion at the
landing stage we shall present as the vector
differential equation:

dx, 0

dtl =fi(tx,u,vy), x(t,)=x;, (4)
i=Lr,
where x; =X, (t) is n -measurement of state vector;

u. =u,(t) is m-measurement control vector;
v, =V, (t) — ¢ a measurement vector of turbulence; f;
— continuous and continuously differentiable on plurality
variable t,Xx;,u,, v, the vector function of generalized
force; t € (ti - tH).

The problem of terminal control consists in the vehicle

translation from given initial state X,(t,) to final

(terminal) state x . (T) , which is determined in the point
of time t=T by q - measurement (q <n ) vector
equation;

S[x,(T),T]=0. (5)
The quality of control procedure is estimated by the
functional:

;T

1=Gx, (1), T[+ Y [@;(t,x;,u;, v, )dt, (6)
i=1 to

where the given functions G and @,; have

continuous partial differential

X;,u;,Vv;. Restriction on state vectors and the

control are taken into account during the selection of
the functional type (6).

The conjugation boundary and starting conditions of
sites of the process of deducing are set in the form of
given border of requirements:

?; [Xi (T)), X?+1 su, (T, )auio+1 ; T, ]= 0,

i=Lr. (7)

Program control uzu(x,t) , optimizing functional

coefficients on

(6), implements optimum control on the open loop
and guarantees execution of boundary requirements
(5) in absence of activity of turbulences. Under
actual condition the impact of an external
environment v, (t) on the airship landing dynamics

is considerable. With the purpose of neutralizing
these turbulences the law of optimum by criterion
(6) feedback control of the type is synthesized:

u=u(x,t). (8)

Control (8), utilizing in each instant t the
information on the current state X(t) , provides

taking an airship from an arbitrary initial state into
final (5) subjected to turbulences. The synthesis of
feedback control of the type (8) can be implemented
by the method of dynamic programming [5]. An
essential deficiency of the given method is the
problem of dimensionality, which consists in
requiring very big memory of a computer even for
problems of small dimensionality.

The numerical-analytical method of synthesis of the
control algorithms of the airship landing with the use
of the mathematical apparatus of differential
transformations of functions and equations is
considered below. As mentioned above, the method
does not require numerical integration of differential
equations and allows for analytical transformations,
which considerably reduce the volume of
computation during obtaining the numerical solution
and, thus, allows to find solution for computing
complexity of the given problem of synthesis.

Spectral model of an airship motion

The considered method of the control algorithms
synthesis is based on the spectral model of control
procedure [6]. The given model is obtained from
equations of object motion by application of
differential transformations to them (1). As a result
the vector differential equation of the trajectory
motion of an airship (4) in the images field is written
as the following spectral model:

Xi(k+1,Ai,X?)=—T f, x
k+1— )
<, X, (k, A, X)), U (k, A)];

X;(0)= X?(Ai—I’Ai—Z"“’Ai);
X, (0)=X?=x,;i=1,r.

Spectral model (9) has a universal character and can
be applied for problem of airship dynamics of
different arranging. Let's point out, that as the
differential transformations (1) are a precise
operating method, the spectral model (9) has no
methodical errors and potentially allows to receive a
precise solution of the differential equation (4).

The method of control synthesis

The control algorithm synthesis with feedback can
be executed by the method of closure of program
control u(t) for an arbitrary current state x(t) [7].
At the first stage of synthesis we shall consider a
undisturbed airship motion and we shall select inside
each segment of its removing program control from

a class of analytical functions u;(z,A;), where
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A, =(a;,a,,..,a;,,) is the vector of free
parameters, T is the local time argument.

Differential transformations (1) of function
u.(1,A;) are determined at h=T, and t1=0 its
differential spectrum as:

Tk d*u. (t. A.
u;(tA;)=U;(k,A;) = {d Uit + 1)}
t=t,

k! dt*
(10)

Based on recursion expression (9) and differential
spectra of control (4), the differential spectra

X, (k,A,,X?) of a state vector x,(t) is formed.
Let's take advantage of the property of the
differential transformations [4], according to which

the algebraic total of all a builder (discretes)
differential spectra of any analytical function in

point t=t , is equal to zero discrete of a
differential
t

the same point:

¥ X, (k) =X,,,(0)=x(t, +h).
k=0

spectrum of function in point

=t, +h or value of the original of function in

v+l

From the obtained relation at t =t, , and h=T,,

we determine a state vector at the end of each
landing phase of an airship:

x, (kA x0) = X, (kA X", i=Lr. (1)
k=0

Then the equation of the final state (5) in view of the
expression for conjugation of boundary and initial
sites of landing process (7), and also the expressions
for a state vector at the end of each landing phase
(11) is conversed as followed:

SIALA,,...,A ]=0. (12)
The given boundary condition in the implicit shape
define q a builder of vectors of free parameters
A,,i=1,r as functions from T, and x_.
Remaining builders of vectors of free parameters are
determined from the requirements of optimality of
functional (6). The differential transformations (1) of
functional (6) in view of differential spectra (9) and
(10) allow presenting functional (6) as the function
of vectors of free parameters A ; :

I[A,A,,...A, ]=G[A,A,,...,A ]+

20X (ALXOLU (A,

+ZTiZ_] k+1

i=l  r=0
The necessary requirements of an optimality of the
given function enable to receive combined equations
for determining remaining (n-q)r of unknown

builders of free parameters vectors A, A,,..., A :

Ol(A,A,,...,A))
oa.

y

=0; izﬁj:q+l,n.

(13)

The obtained system of the nonlinear equations (12)
and (13) in the implicit shape defines builders of a

vector of free parameters A =(A,,A,,...,A,) as
functions from a vector of an arbitrary initial
statex, =X, (t,).

As a result of execution of the first stage of synthesis
of the control algorithms in the implicit form, the
nonlinear communication of optimum program
control uft, A(T,x,)] with a vector of the initial

state X, =X;(t,) is established. This control

cannot be applied over all the time slice T of airship
landing in case disturbations effect on it. The control

uft,A(T,x,)] can be utilized only for control in

the initial instant t ;.

Thus, the differential transformations (1) allow to
receive in the analytic form combined equations (12)
and (13) for arbitrary values of the initial state x,

time instant t, and interval T.

At the second stage of synthesis is considered the
disturbed airship motion at the landing stage, which
permanently declines from the optimum program

trajectory. In this case control u[t,A(T,x,)] is

calculated from combined equations (12) and (13)
for current values of time t and state x (t). The
solution of combined equations (12) and (13) for
each current instant t and state x (t) during airship
landing subjected to turbulence, continuously sets
control u (t, x), linking current state x (t) with
boundary (terminal) requirements (5).

In the closed circuit of control only the current value

of control uft, A(T,x )] will be utilized which in

the following instant is calculated using equations
(12) and (13). It provides "pliable" adaptation of the
landing path of an airship to the action of unknown
turbulence factors.

Let's point out distinctive features of the offered
method. The initial mathematical model (4)—~(7) of
an airship motion refers to multipoint nonlinear
boundary-value problems. The solution of such
problems by the known numerical methods demands
considerable volume of computation, which in real
time causes difficulties. The offered method,
utilizing the mathematical apparatus of differential
transformations, allows for receiving the system of
spectral models (9), connected of boundary
conditions, measured to given points. The models
look like the system of recursion expressions which
do not contain time argument, and allow yielding
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calculations in the analytical way. The initial
multipoint nonlinear boundary-value problem
(4)—~(7) as a result of the applied approach is put to
the system of final equations, whose continuous
solution allows for implementing feedback control
in real time.

Thus, the offered numerical — analytical method
gives the problem of synthesis of the made control
laws to the solution of the system of nonlinear
equations without numerical integration and
differentiation of the equations of the airship motion
trajectory. The basic advantage of the designed
method consists in that it is established in the
implicit form (12), (13) nonlinear communication of
control u[t, A(T,x)] with the vector of current state

x (t). It allows for forming control on the feedback
from the parameters of a trajectory airship motion
during its landing.

Modeling

The configuration of modeled aerostatic vehicle,
basically, corresponded to an airship of vertical take-
off and landing of «Zeppelin NT» type. It was
accepted, that the vehicle is fulfilled by the semi-
rigid scheme and has “A”-like tail unit. Envelope
volume is 8 225 M3, length — 75 m, width — 19,5 m
(including a tail unit). Three reversible mid-flight
engines with declined propellers up to 120 and rated
power of 200 h.p. each supposed to be mounted on
the airship. Two of them are mounted on each body
side in the area of the center of application of the
aerostatic lift and work synchronously at creating
driving forces. The third engine is mounted in the
rear part of the body. Apart from the direct
assignment it also supplies the tail propeller declined
in the horizontal plane up to 90°. The given propeller
is intended for turn realization and parrying of
transversal forces, as well as improvement of
directional controllability of the vehicle.

The propellers control will be utilized alongside with
aerodynamic control.

The longitudinal airship motion at the landing stage
is considered. An airship motion as the solid body
were accepted motion equations in the vertical plane
obtained from common nonlinear motion equations
[8] as the initial mathematical model. In the model
exterior forces and moments acting on the vehicle on
behalf of gravitational and aerodynamic forces,
aerostatic lift and control actions were taken into
account.

The aerodynamic airship performances are
calculated using Johnes and De Laurier method [9].
The action on an airship of aerodynamic forces and
moments depending on acceleration was taken into
account according to [10].

The propellers were simulated as power sources able
to create the negative thrust up to 50 % of the rated
one. The maximum velocity of rotational
displacement of propellers is accepted of equal to
5°/second. The pilot simulation as device of a
control loop has not been made.

Making use of the equations of longitudinal airship
motion together with differential transformations (1)
there was obtained in the images field the spectral
model of a vehicle motion at the landing stage, which
then was applied to the control algorithms synthesis by
the elevator and diversion of propellers [11].

The solution of the problem of control algorithms
synthesis was followed by simulation of a
controllable airship motion at the landing stage.
Sequentially setting integer values of argument
k=0,1,2 ... the builders (discretes) of differential

spectra of a variable trajectory airship motion were
calculated.

For restitution of time processes of parameters
changes of airship dynamics by differential spectra
was accepted computationally method of time
restitution processes in the form of Taylor series [4].
According to this method, for obtaining values of

object motion parameters in an instant ¢, = ¢, , + A it

is enough only to sum algebraically discretes of a
differential spectrum, which are calculated for an
instant ¢, , .

Airship landing was modeled with simultaneous
thrust vector and elevator control. On account of
precise landing criteria absence at control algorithm
synthesis by thrust vector it was supposed, that close
to zero vertical speed was achieved at zero height
over the set distance from the beginning of landing
process.

As entrance signals at control algorithm synthesis of
a thrust vector, flight altitude changing, speed of
flight altitude changing (vertical descent rate), pitch
changing and speeds of pitch changing have been
accepted.

Below in figure the received airship
trajectories are shown.

landing

Reference altitude, in

0 200 400 600 800
Ground distance, in

Trajectory of airship landing at thrust vector
control and fixed deflection of an elevator
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Variants horizontal direction of thrust vector (¢ =0"),

thrust vector downwards deflection at 90° (@ =90"),
synthesized control of thrust vector ( ¢, ) were

considered. The similar trajectories of landing were
simulated and with application of conventional
numerical methods (standard method of Runge —
Kutta of the fourth order) for integration of input
equations of an airship motion.

The matching of the obtained results has shown, that
the application of simulation on the basis of
differential transformations at dynamics examination
of mobile objects allows essentially (by ~ 2—3 times)
for reducing computing expenditures. Thus, there is
an opportunity of realization of analytical
examination of the problem. The obtained numerical
simulation results wear illustrative character and
testify to the possibility of differential
transformations to use the problems of control
algorithms synthesis and simulation of flight airship
dynamics.

Conclusion

The approach to airship motion simulation and
control algorithms synthesis based on differential
transformations of initial mathematical model of the
vehicle motion is offered. The given approach is
formalized as the relevant mathematical model that
allows for eliminating from viewing time functions
and replaces them by their differential spectra in the
images field. The offered method does not demand a
numerical integration of differential equations of
object motion and essentially reduces computing
expenditures at model operation in comparison with
the conventional numerical methods.

The opportunity and operational effectiveness of the
given approach is shown at modeling of airship
motion such as «Zeppelin NT» at the landing stage.

A.B. T'ycunin
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3acTocyBaHHs IuepeHIiaIbHIX IMEPEeTBOPEHb MO0 3a7ad MOJEIIOBAaHHSA PyXy Ta CHHTE3y AJITOPUTMIB KepYBaHHSI
AepOCTaTUYHUMHU JIITATBHUMH arapaTaMmu

3arpornoHoBaHo MiAXiA 0 MOJENIOBaHHS PyXy Ta CHHTE3y ajrOPUTMIB KepyBaHHS IUpHXKaOlieM, siki OCHOBaHI Ha
Jr(epeHIiaTbHIX EPETBOPEHHSX BUXIAHOT MaTeMaTHIHOI MOJIeNi pyXy arapara. Mo>KIHMBICTb Ta e(peKTUBHICTb 3aCTOCYBaHHS
LIBOT'O ITiJIXO/Ty POJIEMOHCTPOBAHO NP MOAEIIOBAHHI pyXy Iuprkadist tumy “Zeppelin NT” Ha erarti mocaakm.

A.B. T'ycbiHuH

[Mpumenenne auddepeHInaTbHBIX Tpeodpa3oBaHuil K 3ajadaM MOCIMPOBAHUS JBUKECHHS U CHHTE3a aJrOPUTMOB
YIPaBICHUS a9POCTATUYCCKUMU JICTATSIbHBIMY allllapaTaMu

[peanoxeH MoaXo/ K MOJCIUPOBAHHIO JBMKCHHS M CUHTE3a aJIrOPUTMOB YIPABJICHHUS JAUPHKAOIEM, OCHOBAHHBIN Ha
nuddepeHnnanbHpIX MPeoOpa3oBaHUSIX HCXOJHOW MATEMaTHYECKOW MOJEIM JBIIKEHHUS ammaparta. Bo3MOXHOCTh u
3¢ PEKTUBHOCTh MPUMEHEHHUSI JAHHOTO I10JIX0/1a MPOAEMOHCTPUPOBAHO MPU MOJCIUPOBAHUM JABHKEHUS JUPIKAOIIs
tuna “Zeppelin NT” Ha sTane mocaaku.



