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The approach to simulation of flight dynamics and numerically-analytical method of airship control algorithms 
are offered. It’s based on differential transformations of initial mathematical model of airship motion. The given 
approach allows for elimination of viewing time function for their differential spectra in the image field. It gives 
the possibility to reduce a problem of closed algorithm synthesis of vehicle control to the solution of non-linear 
equation system concerning control variable.  

Introduction 

Among significant problems of lighter-than-air 
(LTA) vehicles operation the poor efficiency of their 
low-speed control, especially during takeoff and 
landing is selected. In this connection frequent there 
are difficulties at their ground maintenance and the 
relevant restrictions for safe vehicle operation are 
inlet with gusts present. The use of the power-plant 
with thrust vector control on LTA vehicle essentially 
dilates aircraft performance characteristics, 
simplifies taking-off and landing, improves ground 
maintenance, safety and the pliability of operation 
also at active gusts [1; 2]. 
Automation of LTA vehicle motion control, 
qualitative improvement of the board and ground 
equipment are stipulated by expansion of a circle of 
problems, which such vehicles face, and growing 
requirements to quality of their solution. The control 
of LTA vehicle landing procedure is a complex 
procedure and is characterized by different modes of 
simultaneous operation of propellers and 
aerodynamic controls (elevators and rudders), 
practically by sudden change of vehicle mass at the 
moment of ballast drop. Other feature is the presence 
of restrictions on permissible descent vehicle 
velocity at the moment of touchdown, necessity of 
the registration of the external environment (gusts) 
impact. The rated path of the LTA vehicle auto-
landing is created in view of all above features and 
restrictions. It brings about the necessity of the 
solution of a multiparameter problem on the choice 
of the relevant control algorithms and their use in 
real time.  
In this paper for an evaluation of the different 
concepts of automatic control of a modern LTA 
vehicle at a landing stage (the airship of a classical 
type is considered), the approach to modeling a 
vehicle movement and a numerical - analytical 
method of control algorithm synthesis, based on 
application of the mathematical apparatus of 
differential transformations is offered. According to 
the accepted approach the path of airship auto-
landing is divided into some segments, whose 

boundaries correspond to the moments of control 
switching, changes of mass at ballast drop, moments 
of a path output or control on the relevant 
restrictions. Thus it is supposed, that the data time 
frames are given and within them a vehicle motion 
parameters have no jump changes. The resulting 
path is recovered on sites with a docking of regional 
requirements. A similar approach to vehicle control 
algorithms synthesis on the basis of differential 
transformations was already applied in solution of a 
problem of control of aerospace system get to the 
orbit [3]. 
As the used mathematical apparatus of differential 
transformations is practically new in application to 
problems of airship movement control, we shall 
briefly consider the basic properties of differential 
transformations.  

Differential transformations  
and their basic properties 
The method of differential transformations is offered 
by academician G.E. Puhov [6]. As apposed to 
known integrated Laplace and Fourier 
transformations, it is based on translation of the 
originals into the images field through the 
differentiation operation. At mathematical 
simulation of physical processes and objects 
featured by differential and integral equations, the 
differential transformations allow to replace 
operations of integration and differentiation by 
equivalent algebraic operations. 
The differential transformations allow to replace in 
the mathematical model of object dynamics the 
functions  tx  of continuous argument by their 
spectral models in the form of discrete functions 
 kX  of integer argument ,...,,k 210 . The 

differential transformations are the functional 
transformations of the type [6]:  
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where )t(x  is  the original, which represents the 
material analytical function of material argument; 
x(t)  and X(k)  are equivalent labels of the 
differential image of the original representing 
discrete function of integer argument k , which is 
termed as a differential spectra of function )t(x  in 

the point 0tt  ; h  is the scale stationary value 

having dimensionality of argument t , is usually 
chosen equal to the segment ht0  , on which 
the function )t(x is considered; the line below is the 
figure of transformation;   is the figure of 
correspondence between the original )t(x  and its 
differential image X(k) .  
The expression to the left of figure   in (1) 
defines direct transformation permitting by the 
original )t(x  to find the image )k(X , and on the 
right – inverse transformation, which recovers the 
original )t(x  by the images )k(X as a Taylor series 

with the center in the point 0t  .  
The transformations (1) are termed as differential 
Taylor transformations or Т – transformations, 
differential images )k(X  – differential Т – spectra, 

and value )k(X  at concrete values of argument are 

termed discretes. For example, )0(X  is zero 

discrete, )1(X  is the first discrete etc.  
Let's give some basic properties of differential 
transformations [4].  
The initial value of the original   )0(x)t(x 0t   

equals zero discrete   )0(X)k(X 0k   of basic 

image  kX , i.e.     0t0k )t(x)0(X)k(X)0(X   . 

The value of the original )t(x  in point ht   is 
equal to the total off all discretes of the basic 
image  kX : 
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If at 0t  original )t(x is presented by a Taylor 

series, its value in point ht  will be determined 
by expression: 
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Let's consider now a number of mathematical 
operations above Т-functions. As follows from 
expression (1) the algebraic total of the originals 
there corresponds to the algebraic totals of their  
Т-images: 

)k(Y)k(X)t(y)t(x  ,   

)k(Y)k(X)t(y)t(x   .  

Operations of multiplication of the original )t(x  by 
the constant value C corresponds to multiplication of 
the images )k(X and )k(X v by it: 

CX(k);Cx(t)     

(k)CXτ)Cx(t νν  . 

The product of two functions )t(x  and )t(y  
corresponds in the field of Т-images to the product, 
which is designated by the symbol *. 
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The operation of differentiation in the field of the 
originals corresponds to the following expression in 
the field of images: 
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where the figure D means T-derivative. 
The images of higher derivatives from )t(x  per 
t are similarly determined: 
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where m  is natural number; mD  is the figure of  
T-derivative of the m order. 
Substituting the power series 
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In the expression of particular integral from )t(x  
per t , we shall receive: 
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In that specific case, when 0ta   and htb  , we have: 
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Expressions (2) and (3) allow discovering in given 
limits a particular integral from the original )t(x  on 

discretes of the image )k(X .  
The mathematical models, converted through 
differential transformations, are termed as spectral 
models. 

Target setting of terminal control 
All controllable airship landing process is 
conditionally divided into r given time frames, 
inside which the parameters of the vehicle have no 
sudden changes:  
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,ttT 1iii  r,1,i   
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where Т is airship’s landing time from the beginning 
of descending to touchdown with ground.  
Further we shall figure, that all these changes in the 
form of given springs happen at boundaries of 
selected intervals. 
Mathematical model of an airship motion at the 
landing stage we shall present as the vector 
differential equation: 

)v,u,x,t(f
dt

dx
iiii

i  ,  ,x)t(x 0
i1ii               (4) 

r,1i  ,  

where )t(xx ii   is n -measurement of state vector; 

)t(uu ii   is m-measurement control vector; 

 tvv ii   –   a measurement vector of turbulence; if  
– continuous and continuously differentiable on plurality 
variable iii v,u,x,t  the vector function of generalized 

force;  1ii ttt  .  
The problem of terminal control consists in the vehicle 
translation from given initial state )t(x 01  to final 

(terminal) state )T(x r , which is determined in  the point 

of time Tt  by q - measurement ( nq  ) vector 
equation: 
  0T),T(xS r  .   (5)  

The quality of control procedure is estimated by the 
functional:  
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where the given functions G and i  have 
continuous partial differential coefficients on 

.v,u,x iii  Restriction on state vectors and the 
control are taken into account during the selection of 
the functional type (6). 
The conjugation boundary and starting conditions of 
sites of the process of deducing are set in the form of 
given border of requirements: 
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Program control  tx,uu  , optimizing functional 
(6), implements optimum control on the open loop 
and guarantees execution of boundary requirements 
(5) in absence of activity of turbulences. Under 
actual condition the impact of an external 
environment  tvi  on the airship landing dynamics 
is considerable. With the purpose of neutralizing 
these turbulences the law of optimum by criterion 
(6) feedback control of the type is synthesized: 

)t,x(uu  .    (8) 

Control (8), utilizing in each instant t the 
information on the current state )t(x , provides 
taking an airship from an arbitrary initial state into 
final (5) subjected to turbulences. The synthesis of 
feedback control of the type (8) can be implemented 
by the method of dynamic programming [5]. An 
essential deficiency of the given method is the 
problem of dimensionality, which consists in 
requiring very big memory of a computer even for 
problems of small dimensionality.  
The numerical-analytical method of synthesis of the 
control algorithms of the airship landing with the use 
of the mathematical apparatus of differential 
transformations of functions and equations is 
considered below. As mentioned above, the method 
does not require numerical integration of differential 
equations and allows for analytical transformations, 
which considerably reduce the volume of 
computation during obtaining the numerical solution 
and, thus, allows to find solution for computing 
complexity of the given problem of synthesis.       

Spectral model of an airship motion  

The considered method of the control algorithms 
synthesis is based on the spectral model of control 
procedure [6]. The given model is obtained from 
equations of object motion by application of 
differential transformations to them (1). As a result 
the vector differential equation of the trajectory 
motion of an airship (4) in the images field is written 
as the following spectral model: 
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Spectral model (9) has a universal character and can 
be applied for problem of airship dynamics of 
different arranging. Let's point out, that as the 
differential transformations (1) are a precise 
operating method, the spectral model (9) has no 
methodical errors and potentially allows to receive a 
precise solution of the differential equation (4). 

The method of control synthesis 

The control algorithm synthesis with feedback can 
be executed by the method of closure of program 
control )t(u  for an arbitrary current state )t(x  [7]. 
At the first stage of synthesis we shall consider a 
undisturbed airship motion and we shall select inside 
each segment of its removing program control from 
a class of analytical functions )A,(u ii  , where 
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)a,...,a,a(A in2i1ii   is the vector of free 
parameters,   is the local time argument. 
Differential transformations (1) of function 

)A,(u ii   are determined at iTh   and 0  its 
differential spectrum as: 
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  (10) 
Based on recursion expression (9) and differential 
spectra of control (4), the differential spectra 

)X,A,k(X 0
iii  of a state vector )t(x i  is formed. 

Let's take advantage of the property of the 
differential transformations [4], according to which 
the algebraic total of all a builder (discretes) 
differential spectra of any analytical function in 
point vtt  , is equal to zero discrete of a 

differential spectrum of function in point 
htt v1v   or value of the original of function in 

the same point: 
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we determine a state vector at the end of each 
landing phase of an airship: 
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Then the equation of the final state (5) in view of the 
expression for conjugation of boundary and initial 
sites of landing process (7), and also the expressions 
for a state vector at the end of each landing phase 
(11) is conversed as followed: 

0]A,...,A,A[S r21  .  (12) 
The given boundary condition in the implicit shape 
define q a builder of vectors of free parameters 

r,1i,Ai   as functions from iT  and 0
ix . 

Remaining builders of vectors of free parameters are 
determined from the requirements of optimality of 
functional (6). The differential transformations (1) of 
functional (6) in view of differential spectra (9) and 
(10) allow presenting functional (6) as the function 
of vectors of free parameters iA : 
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The necessary requirements of an optimality of the 
given function enable to receive combined equations 
for determining remaining (n-q)r of unknown 
builders of free parameters vectors  r21 A,...,A,A : 

0;
a

)A,...,A,I(A

ij

r21 



 ;r,1i  n,1qj  . (13) 

The obtained system of the nonlinear equations (12) 
and (13) in the implicit shape defines builders of a 
vector of free parameters )A,...,A,A(A r21  as 
functions from a vector of an arbitrary initial 
state )t(xx 0i0  .  

As a result of execution of the first stage of synthesis 
of the control algorithms in the implicit form, the 
nonlinear communication of optimum program 
control )]x,T(A,t[u 0  with a vector of the initial 

state )t(xx 0i0   is established. This control 

cannot be applied over all the time slice Т of airship 
landing in case disturbations effect on it. The control 

)]x,T(A,t[u 0  can be utilized only for control in 

the initial instant 0t .    

Thus, the differential transformations (1) allow to 
receive in the analytic form combined equations (12) 
and (13) for arbitrary values of the initial state 0x , 

time instant 0t  and interval Т. 

At the second stage of synthesis is considered the 
disturbed airship motion at the landing stage, which 
permanently declines from the optimum program 
trajectory. In this case control )]x,T(A,t[u 0  is 

calculated from combined equations (12) and (13) 
for current values of time t and state x (t). The 
solution of combined equations (12) and (13) for 
each current instant t and state x (t) during airship 
landing subjected to turbulence, continuously sets 
control u (t, х), linking current state x (t) with 
boundary (terminal) requirements (5).  
In the closed circuit of control only the current value 
of control )]x,T(A,t[u 0  will be utilized which in 

the following instant is calculated using equations 
(12) and (13). It provides "pliable" adaptation of the 
landing path of an airship to the action of unknown 
turbulence factors. 
Let's point out distinctive features of the offered 
method. The initial mathematical model (4)–(7) of 
an airship motion refers to multipoint nonlinear 
boundary-value problems. The solution of such 
problems by the known numerical methods demands 
considerable volume of computation, which in real 
time causes difficulties. The offered method, 
utilizing the mathematical apparatus of differential 
transformations, allows for receiving the system of 
spectral models (9), connected of boundary 
conditions, measured to given points. The models 
look like the system of recursion expressions which 
do not contain time argument, and allow yielding 
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calculations in the analytical way. The initial 
multipoint nonlinear boundary-value problem  
(4)–(7) as a result of the applied approach is put to 
the system of final equations, whose continuous 
solution allows for implementing feedback control 
in real time.  
Thus, the offered numerical – analytical method 
gives the problem of synthesis of the made control 
laws to the solution of the system of nonlinear 
equations without numerical integration and 
differentiation of the equations of the airship motion 
trajectory. The basic advantage of the designed 
method consists in that it is established in the 
implicit form (12), (13) nonlinear communication of 
control )]x,T(A,t[u  with the vector of current state 
х (t). It allows for forming control on the feedback 
from the parameters of a trajectory airship motion 
during its landing. 

Modeling 

The configuration of modeled aerostatic vehicle, 
basically, corresponded to an airship of vertical take-
off and landing of «Zeppelin NT» type. It was 
accepted, that the vehicle is fulfilled by the semi-
rigid scheme and has “”-like tail unit. Envelope 
volume is 8 225 м3, length – 75 m, width – 19,5 m 
(including a tail unit). Three reversible mid-flight 
engines with declined propellers up to 120˚ and rated 
power of 200 h.p. each supposed to be mounted on 
the airship. Two of them are mounted on each body 
side in the area of the center of application of the 
aerostatic lift and work synchronously at creating 
driving forces. The third engine is mounted in the 
rear part of the body. Apart from the direct 
assignment it also supplies the tail propeller declined 
in the horizontal plane up to 900. The given propeller 
is intended for turn realization and parrying of 
transversal forces, as well as improvement of 
directional controllability of the vehicle.  
The propellers control will be utilized alongside with 
aerodynamic control. 
The longitudinal airship motion at the landing stage 
is considered. An airship motion as the solid body 
were accepted motion equations in the vertical plane 
obtained from common nonlinear motion equations 
[8] as the initial mathematical model. In the model 
exterior forces and moments acting on the vehicle on 
behalf of gravitational and aerodynamic forces, 
aerostatic lift and control actions were taken into 
account.  
The aerodynamic airship performances are 
calculated using Johnes and De Laurier method [9]. 
The action on an airship of aerodynamic forces and 
moments depending on acceleration was taken into 
account according to [10].  

The propellers were simulated as power sources able 
to create the negative thrust up to 50 % of the rated 
one. The maximum velocity of rotational 
displacement of propellers is accepted of equal to 
5/second. The pilot simulation as device of a 
control loop has not been made. 
Making use of the equations of longitudinal airship 
motion together with differential transformations (1) 
there was obtained in the images field the spectral 
model of a vehicle motion at the landing stage, which 
then was applied to the control algorithms synthesis by 
the elevator and diversion of propellers [11].  
The solution of the problem of control algorithms 
synthesis was followed by simulation of a 
controllable airship motion at the landing stage. 
Sequentially setting integer values of argument 

210 ,,k  … the builders (discretes) of differential 
spectra of a variable trajectory airship motion were 
calculated.  
For restitution of time processes of parameters 
changes of airship dynamics by differential spectra 
was accepted computationally method of time 
restitution processes in the form of Taylor series [4]. 
According to this method, for obtaining values of 
object motion parameters in an instant htt ii  1  it 

is enough only to sum algebraically discretes of a 
differential spectrum, which are calculated for an 
instant 1it . 
Airship landing was modeled with simultaneous 
thrust vector and elevator control. On account of 
precise landing criteria absence at control algorithm 
synthesis by thrust vector it was supposed, that close 
to zero vertical speed was achieved at zero height 
over the set distance from the beginning of landing 
process. 
As entrance signals at control algorithm synthesis of 
a thrust vector, flight altitude changing, speed of 
flight altitude changing (vertical descent rate), pitch 
changing and speeds of pitch changing have been 
accepted.  
Below in figure the received airship landing 
trajectories are shown.  
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Trajectory of airship landing at thrust vector  
control and fixed deflection of an elevator 



ISSN 1813–1166. Proceedings of NАU. 2005. №2 88 

Variants horizontal direction of thrust vector ( 0 ), 

thrust vector downwards deflection at 90 ( 90 ),  

synthesized control of thrust vector ( AUT ) were 
considered. The similar trajectories of landing were 
simulated and with application of conventional 
numerical methods (standard method of Runge – 
Kutta of the fourth order) for integration of input 
equations of an airship motion.  
The matching of the obtained results has shown, that 
the application of simulation on the basis of 
differential transformations at dynamics examination 
of mobile objects allows essentially (by ~ 2–3 times) 
for reducing computing expenditures. Thus, there is 
an opportunity of realization of analytical 
examination of the problem. The obtained numerical 
simulation results wear illustrative character and 
testify to the possibility of differential 
transformations to use the problems of control 
algorithms synthesis and simulation of flight airship 
dynamics. 

Conclusion 

The approach to airship motion simulation and 
control algorithms synthesis based on differential 
transformations of initial mathematical model of the 
vehicle motion is offered. The given approach is 
formalized as the relevant mathematical model that 
allows for eliminating from viewing time functions 
and replaces them by their differential spectra in the 
images field. The offered method does not demand a 
numerical integration of differential equations of 
object motion and essentially reduces computing 
expenditures at model operation in comparison with 
the conventional numerical methods.  
The opportunity and operational effectiveness of the 
given approach is shown at modeling of airship 
motion such as «Zeppelin NT» at the landing stage.  
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А.В. Гусинін  
Застосування диференціальних перетворень до задач моделювання руху та синтезу алгоритмів керування 
аеростатичними літальними апаратами  
Запропоновано підхід до моделювання руху та синтезу алгоритмів керування дирижаблем, які основані на 
диференціальних перетвореннях вихідної математичної моделі руху апарата. Можливість та ефективність застосування 
цього підходу продемонстровано при моделюванні руху дирижабля типу “Zeppelin NT” на етапі посадки. 

А.В. Гусынин  
Применение дифференциальных преобразований к задачам моделирования движения и синтеза алгоритмов 
управления аэростатическими летательными аппаратами 
Предложен подход к моделированию движения и синтеза алгоритмов управления дирижаблем, основанный на 
дифференциальных преобразованиях исходной математической модели движения аппарата. Возможность и 
эффективность применения данного подхода продемонстрировано при моделировании движения дирижабля 
типа “Zeppelin NT” на этапе посадки. 

 


