УДК 629,735.33.015.001.57(45)

002.08

Е.П. Ударцев, Л.А. Журавлева

КОНЦЕПЦИЯ ИССЛЕДОВАНИЯ ОТКАЗОБЕЗОПАСНОСТИ СИСТЕМЫ «ВОЗДУШНОЕ СУДНО-ЭКИПАЖ-СРЕДА» С УЧЕТОМ ФАКТОРА НЕОПРЕДЕЛЕННОСТИ

Предложен новый подход к оценке отказобезопасности "воздушное судно-экипажсреда", базирующийся на современных средствах и методах моделирования, с учетом фактора старения парка ВС Украины, находящихся в длительной эксплуатации.

Отказобезопасность системы «воздушное судно-экипаж-среда» может быть определена как способность системы обнаруживать и локализовать события, которые способны привести к авиационному происшествию (АП). В настоящее время особую актуальность приобретает эксплуатация воздушных судов (ВС), связанная с продлением их ресурса и длительной эксплуатацией. Как свидетельствуют данные о летных происшествиях (ЛП), количество происшествий, связанных с усталостными разрушениями конструкций ВС, занимают значительное место среди общего числа происшествий [1]. Имели также место ЛП, связанные с развитием индивидуальных особенностей ВС, приводящих к изменению балансировки и, как следствие, неадекватной реакции пилотов. Поэтому большое внимание как за рубежом, так и в странах СНГ уделяется разработке фундаментальных принципов и мер по обеспечению безопасности полетов [2-5].

В последнее десятилетие в Украине также происходит потеря летной годности самолето-вертолетного парка как за счет налета, так и за счет исчерпания календарных сроков техники. Данные о состоянии самолетного парка Украины на 1995 год приведены в табл. 1.

Таблица 1

Тип ВС	Норма исправности, %	Фактическая исправность на 1995 год
Боинг-737	b.	-
Ил-62	68	55
Ил-76	55	50
Ty-154	68	70
Ty-134	82	66
Як-42	82 82 82	86 86 64
Як-40		
Ан-24		
Ан-26	80	77
Ан-32	65	33
Л-410	70	15

Помимо физического старения авиационной техники, серьезной проблемой является ухудшение состояния исправности ВС, которое вместо принятых 65-82 % для некоторых типов ВС снижается до 15-55 % [6]. Срок службы ВС ограничивается главным образом

экономическими соображениями; хорошо спроектированное BC имеет практически неограниченный срок службы при условии правильного обслуживания и своевременного выполнения профилактических мер, предложенных конструкторами. Следовательно, диагностика реального состояния, качество технического обслуживания и его своевременность являются важнейшими из тех определяющих факторов условий эксплуатации, от которых зависит срок службы BC.

Как известно, усталостное разрушение элемента конструкции ВС - конечное событие в цепочке предшествующих событий, приводящих к разрушению. Последовательность таких предшествующих событий может содержать:

возникновение дефекта либо конструктивного недостатка (в процессе изготовления самолета или в процессе его эксплуатации);

последовательность событий, способствующих развитию дефекта, которые могут быть вызваны грубыми посадками, попаданием в неблагоприятные погодные условия и др.;

несвоевременное или некачественное техническое обслуживание или ремонт и др. 2 .

Так, например, по мере эксплуатации самолета Ту154Б развивается деформация планера, что приводит к необходимости балансировать самолет элеронами и элеронинтерцептором. Это увеличивает расходование ресурса планера. Реальное балансировочное состояние в горизонтальном полете, определяемое по специальной программе экспрессанализа данных полетных регистраторов с помощью системы «Луч-74», приведено в табл 2.

Таблица 2

Номер самолета	Год	Балансировочные углы	
		Элеронов	руля направления
85269	1986	+6	-1.8
	1987	+6	-1.8
85288	1986	-5	M
	1987	-5	M
85316	1986	-3	M
	1987	-3	M
85350	1986	-1.8	-1.7
	1987	-2.4	-1.5
85379	1986	-5.5	M
	1987	-5.5	M
85395	1986	+4	M
	1987	+2.3	M
85476	1986	-1.5	M
	1987	-1.5	M
85490	1986	5.5	-0.5
	1987	-5.5	-0.5 ·
85499	1986	+2.5	-1.4
	1987	+2.5	-1.4
85513	1986	M	-1.4
	1987	M	-1.4
85526	1986	-1.5	-1.3
	1987	-1.5	-1.3
85535	1986	-2.1	M
	1987	-2.2	-1.5

Как свидетельствуют данные об АП, одним из серъезных недостатков организации процесса эксплуатации авиационной техники является то, что летный состав не всегда имеет исчерпывающую информацию о фактическом состоянии ВС, и, как правило, не обладая достаточной подготовкой для диагностики состояния ВС, не обращает внимания на развивающиеся индивидуальные особенности планера, ассиметрию тяги и другие, а, обнаружив какой-либо недостаток в полете, не ставит в известность соответствующие инстанции [4].

По мнению специалистов, усталостные изменения конструкции ВС в значительной степени влияют на его эксплуатационные характеристики, в частности, на устойчивость и управляемость. При этом также следует учитывать специфику подготовки летного состава как операторов высокой квалификации. Пилотам необходимо знать основы диагностики вероятных изменений в конструкции по косвенным признакам, например, особой балансировке, чрезмерному триммированию и т.п.

С точки зрения системно-информационного подхода оборудование пилотской кабины представляет собой множество информационных объектов, каждый из которых генерирует сигнал определенного вида. Эти сигналы могут быть условно разбиты на четыре группы:

сигналы, несущие хорошо формализованную (числовую) информацию;

сигналы, несущие текстовую или образную (лингвистическую) информацию;

сигналы, несущие смешанную информацию, образуемую в процессе наложения или совмещения сигналов первой и второй группы;

сигналы, несущие неформализуемую и(или) плохо формализуемую информацию.

В свою очередь экипаж как звено эргатической системы является блоком, который принимает, перерабатывает и передает все перечисленные выше виды сигналов. По результатам исследований эффективности взаимодействия летчиков с бортовым оборудованием установлен тот факт, что летчики не всегда правильно, своевременно и в полной мере воспринимают и используют информацию, предоставляемую бортовым оборудованием. Этот факт позволяет говорить о введении элемента неопределенности (нечеткости) сигналов, принимаемых, обрабатываемых и передаваемых экипажем [4].

Следует отметить, что в большинстве случаев усталостные изменения конструкции относятся к неформализуемой или плохо формализуемой информации. В некоторых случаях характеристики деформированной конструкции находятся близко к границе или на границе допусков. В данном случае ни одна инстанция не может принять решение о прекращении эксплуатации ВС, как, например, самолетов Ту154Б, балансируемых элеронами. При возникновении сложной ситуации и(или) проявлении последствий деформации конструкции экипаж не в состоянии ее парировать, следуя предписаниям руководящих документов. Например, самолет Ан10 в свое время был списан после катастрофы с потерей крыла. У других самолетов этого типа были обнаружены трещины в конструкции крыла. Естественно, что при наличии трещины одно крыло деформировалось больше и необходимо было балансировать самолет элероном.

Практика исследований в области безопасности аэрокосмических систем свидетельствует, что одним из целесообразных средств проведения исследований являются различные виды моделирования, а в последние десятилетия получили развитие новые информационные и компьютерные технологии, позволяющие говорить о качественно новом подходе к проблеме исследования и обеспечения безопасности транспортных систем, в том числе системы «ВС-экипаж-среда». Об этом свидетельствует количество и разнообразие различных разработок, выполненных в различных странах [5,7-14].

Рассмотрим следующий подход к исследованию безопасности системы «ВС-экипажсреда». Допустим, что K - множество расчетных характеристик информационного объекта (BC), а O_i - множество параметров, характеризующих поведение объекта при возникновении і-го отказа. Пусть также S_i - стратегия поведения экипажа при возникновении отказа данного вида (собственно, это множество действий по парированию данной ситуации, выполняемых в заранее определенной последовательности) (рис.1). Вследствие деформации множество K расчетных параметров претерпевает смещение, образуя нечеткую область K^* . При возникновении сложной ситуации множество O_i также образует нечеткую область под влиянием K^* , и поведение объекта становится труднопредсказуемым, тогда как множество S_i сохраняет жесткие границы в соответствии с предписаниями руководящих документов.

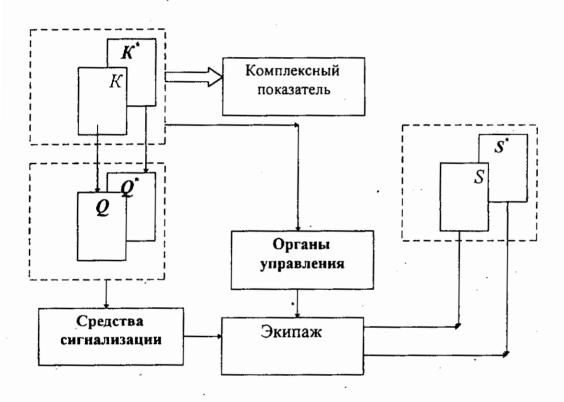


Рис. 1. Нечеткие зоны характеристик

Если в качестве меры эффективности функционирования объекта был выбран некоторый показатель эффективности Q, то ситуация будет иметь благоприятный исход, если границы параметров этого показателя сохранятся четкими. В рассматриваемом случае эти границы не могут быть сохранены, так как множество предписанных экипажу действий не содержит их требуемого набора поскольку границы этого множества также смещаются и появляется нечеткий элемент, обусловливающий требуемые, но неизвестные или недозволенные экипажу действия (область S*).

Проблема, связанная с длительной эксплуатацией объектов авиационной техники (АТ), решается и за рубежом и в странах СНГ. В настоящее время разработаны методы диагностики и прогнозирования развития усталостных деформаций и изменения аэродинамического состояния ВС. Эти методы могут быть использованы при моделировании процесса летной эксплуатации ВС и разработке соответствующих

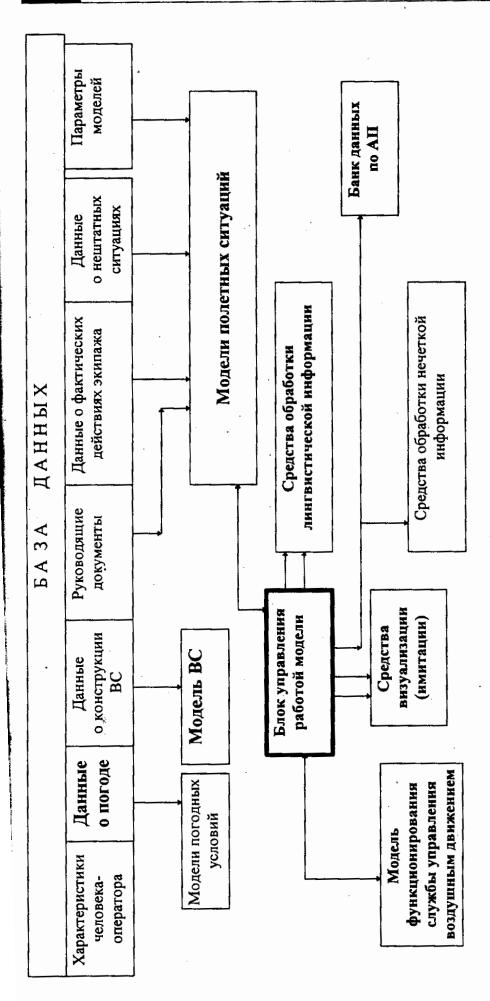


Рис. 2. Обобщенная структура модели системи «ВС-экипаж-среда»

рекомендаций конкретно для каждого BC в совокупности с существующей системой эксплуатации BC по реальному состоянию. Таким образом, при моделировании системы «BC-экипаж-среда» целесообразно учитывать следующие требования:

- 1) наличие цели, заключающейся в обеспечении способности системы сохранять четкими границы комплексного показателя эффективности функционирования (в качестве такого показателя может быть выбрана отказобезопасность системы «ВС экипаж-среда»);
- 2) исследование информационной структуры системы «ВС-экипаж-среда» и классификация информационных объектов и потоков»;
- 3) введение фактора неопределенности в структуру модели в виде различных видов нечеткостей;
- 4) обеспечение средств и методов сбора, обработки, передачи, хранения информации о фактическом состоянии объекта;
- 5) введение в структуру объекта современных средств и методов обработки нечеткой информации, обеспечивающих экипажу необходимый уровень информационного комфорта

Обобщенная структура модели системы «ВС-экипаж-среда» показана на рис. 2.

Проведение моделирования средствами и методами, предлагаемыми современными информационными технологиями, теорией принятия решений, а также использование средств и методов обработки нечеткой информации позволит оценить функциональное состояние системы «ВС-экипаж-среда» и осуществить его прогнозирование на новом уровне, обеспечивающем безопасность полетов по принципу предотвращенеия ЛП на основе результатов диагностики реального состояния системы в целом и ВС в частности.

Список литературы

- 1. *Рассел* П, Авиационные происшествия статистика и методы предупреждения. // Проблемы безопасности полетов:Обзорная информация /ВИНИТИ, 1995.- №5.-С.5-18.
 - 2. Комаров А.А. Надежность воздушных судов.-К.:КМУГА, 1995.-414с.
- 3. Журавлева Л.А., Комаров А.А.. Отказобезопасность как процесс интеграции функционирования экипажа и техники.// III международная научно-техническая конференция «Методы управления системами эффективного функционирования электрифицированных и пилотажно-навигационных комплексов «Авионика-95»»: Тезисы докладов. К.: КИИГА, 17-19 мая 1995 года. С.12-15.
- 4. Huges D. Studies highlight automation «surprises»/ Aviat. Week and Space Technol, 1995, Vol. 142, No6. P.48-49.
- 5. Chiang Chi-Yuan, Yuang Yyh-Ching, Yosset Hussein M. Neural network approach to aircraft fault detection. Isolation and estimation design//AIAA Pap,-1994.-N 273.- P.1-6.
- 6. Состояние парка воздушных судов УКРАВИАТРАНСА/ АВИАбизнес. 1996. №2.- С.38-39.