УДК 629.7.015:533.7

СПЕЦІАЛІЗОВАНІ ПРОФІЛІ ДЛЯ ЛІТАЛЬНИХ АПАРАТІВ СХЕМИ «ЛІТАЮЧЕ КРИЛО»

¹Аерокосмічний інститут НАУ, e-mail: ischenko@nau.edu.ua ²Науковий центр Повітряних сил Збройних сил України, e-mail: lemko@i.com.ua

Розглянуто результати чисельних досліджень, проведених з метою створення високонесучих профілів з позитивними значеннями коефіцієнта подовжнього моменту при нульовій піднімальній силі. Такі профілі призначені для літальних апаратів схеми «літаюче крило».

Вступ

Для літальних апаратів (ЛА), побудованих за аеродинамічною схемою «літаюче крило», необхідні профілі, що мають як можна більше значення коефіцієнта піднімальної сили c_{ymax} при виконанні умови $m_{z0} \ge 0$ [1].

Аналіз досліджень і публікацій

Для розрахунку аеродинамічних характеристик профілів крила в даний час використовують чисельні методи розрахунку з моделюванням розвитого діфузорного відриву примежового шару [2; 3]. Розрахунок зовнішнього потенційного обтікання здійснюється з використанням поверхневого розподілу особливостей.

Форма відривної зони визначається ітераційним шляхом на підставі ряду емпіричних умов, однією з яких є сталість тиску на профілі від точки відриву до задньої кромки профілю.

Постановка завдання

Для одержання серії профілів зі збільшеним, у порівнянні з класичними S-подібними профілями, значенням коефіцієнта сутах при заданому позитивному значенні подовжнього моменту при нульовій піднімальній силі *m*_{z0} ≥ 0 використовується метод розрахунку розподілу тиску, сил і моментів для довільного крилового профілю на критичних режимах обтікання при малих швидкостях польоту, опис якого наведено в праці [2]. Задача розв'язується в процесі ітерацій в'язконев'язкої взаємодії. У кожному ітераційному циклі розраховується «зовнішній» нев'язкий плин, потім на кожнім елементі профілю проводяться нарощення примежового шару, до точок відриву і побудова ефективних ліній струму, що моделюють зони відриву і сліду. Для побудови ефективних ліній струму розв'язується замкнута система лінійних алгебричних рівнянь щодо приросту геометричних параметрів, які визначають форму ефективних ліній струму і швидкостей у контрольних точках. При цьому враховуються варіації першого порядку малості. Ітераційний процес продовжується доти, поки не будуть виконані умови збіжності щодо положення точок відриву турбулентного примежового шару.

Вплив зони відривного плину і сліду моделюється введенням ефективних ліній струму з заданим законом розподілу тиску на них.

Слід за профілем передбачається кінцевим, тобто дві ефективні лінії струму збігаються в одній точці.

Вузлові точки в області відриву і сліду розташовуються рівномірно по координаті *х*. Абсциси нижніх вузлових точок у сліді збігаються з абсцисами верхніх точок.

Між парами точок розташовуються плоскі панелі, потім складається і розв'язується замкнута система лінійних алгебричних рівнянь щодо невідомих особливостей у контрольних точках обтічних контурів. При цьому на задній кромці зберігаються кінцеві значення швидкості.

Система рівнянь являє собою дискретний аналог неоднорідного інтегрального рівняння Фредгольма 1-го роду для межових значень швидкості на поверхні обтічних контурів та інтерпретується як сукупність умов непротікання [2].

Використовувана програма розрахунку характеристик ламінарного і турбулентного примежових шарів, розроблена в ЦАГІ.

Точкою відриву вважалася точка, в якій коефіцієнт тертя на поверхні профілю досягав заданого скінченного значення. Корекція положення точки відриву в процесі ітерацій в'язко-нев'язкої взаємодії здійснювалася за методикою, наведеною в працях [2; 3].

Використовуючи розрахунковий метод шляхом модифікації сімейства профілів RAF-34, отримали профілі серії ЛК, що за деякими, найбільш важливими аеродинамічними характеристиками перевершують такі класичні *S*-подібні профілі, як RAF-34 і D-2 ЦАГІ.

Модифікація профілів проводилася за допомогою програми WING SEP, основаної на панельному методі з урахуванням відриву примежового шару, і полягала в зміні координат верхньої $\overline{y}_{\hat{a}}$ і нижньої \overline{y}_{i} твірних відповідно до заданого розподілу коефіцієнта тиску \tilde{n}_{p} уздовж хорди профілю \overline{x} .

¹С.О. Іщенко, д-р техн. наук ²О.Л. Лемко, канд. техн. наук

Розрахунок геометричних і аеродинамічних характеристик профілів

Модифікації піддалися геометричні характеристики профілів сімейства RAF-34. Одержання заданих характеристик проводилося ітераційним методом. На кожній ітерації цілеспрямовано змінювалися координати верхньої твірної кожного з профілів, що розраховуються, доти, поки аеродинамічні характеристики профілів не ставали близькими шуканим.

На рис. 1 показано процедуру зміни форми верхньої твірної профілю RAF-34-16 для декомпозиції його в профіль ЛК-1-16.

Рис. 1. Порівняння профілів ЛК-1-16 і RAF-34-16

Серія профілів ЛК-1 була отримана з вихідного профілю RAF-34 з відносною товщиною $\overline{c} = 0.2$ шляхом пропорційної зміни координат його верхньої твірної. Основними геометричними параметрами серії в частинах хорди є положення максимальної відносної товщини $\overline{x}_{c} = 0,215$, положення максимальної ввігнутості $\bar{x}_{\bar{t}_{i}} = 0,1525$, положення зворотної ввігнутості $\overline{x}_{\overline{f_2}}$ = 0,893. Значення відносної ввігнутості $\overline{f_1}$ і зворотної ввігнутості \bar{f}_2 змінюються залежно від товщини профілю за законом прямої пропорційності. Серія зображена трьома профілями з відносною товщиною $\overline{c} = 0.12$, $\overline{c} = 0.16\%$ i $\bar{c} = 0.20$.

Серія профілів ЛК-2 також отримана з вихідного профілю RAF-34 з відносною товщиною $\overline{c} = 0,16$ шляхом зміни його ординат. Основними геометричними параметрами серії в частинах хорди є положення максимальної товщини $\overline{x}_{\overline{c}} = 0,22$, положення максимальної ввігнутості $\overline{f}_1 = 0,158$, положення зворотної ввігнутості $\overline{x}_{\overline{f}_2} = 0,836$. Серія зображена трьома профілями з відносною товщиною $\overline{c} = 0,12$, $\overline{c} = 0,16$ і $\overline{c} = 0,20$.

Значення відносної ввігнутості \bar{f}_1 і зворотної ввігнутості залежно від товщини профілю \bar{f}_2 змінюються за законом прямої пропорційності.

На рис. 2, 3 як приклад наведено графічні залежності c_{va} , $m_z = f(\alpha)$ і поляри для профілів RAF-34-16 і ЛК-1-16, що характеризують основні аеродинамічні особливості модифікованих профілів.

Рис. 2. Залежності c_{ν} , $m_z = f(\alpha)$ профілів: 1 - RAF-34-16; 2 - ЛK-1-16

Разом з розрахунками за програмою WING SEP були проведені дослідження з панельної програми SUB-2D з урахуванням в'язкості, що дозволили поряд з чисельними результатами, одержати візуалізацію картини обтікання вищезазначених класичних профілів і профілів ЛК-1 з однаковою відносною товщиною: $\overline{c} = 0.16$ (рис. 4).

Рис. 4. Візуалізація картини обтікання профілів: a - RAF-34-16 ($c_y = 0,4$; $c_x = 0,011$); $\delta - \text{ЛK-1-16}$; ($c_y = 0,51$; $c_x = 0,0108$)

При цих дослідженнях число Рейнольдса відповідало Re = $1,7\cdot10^6$. Аналіз векторних діаграм розглянутих профілів з відносною товщиною $\overline{c} = 0,16$ на кутах атаки $\alpha = 5^\circ$ показав, що профілі ЛК-1-16 за основними параметрами істотно перевершують класичні профілі RAF-34-16.

З векторних діаграм випливає, що в модифікованих профілях більш навантажена носова частина, що в сукупності з піднятою хвостовою частиною профілю сприяє виникненню кабрувального моменту. Характер розподілу тиску по верхній і нижній поверхнях модифікованих профілів якісно підтверджує результати розрахунку коефіцієнта подовжнього моменту при нульовій піднімальній силі ($m_{z0} > 0$).

Порівняння серій профілів

Найбільш оптимальним параметром [4] для порівняння профілів, використовуваних для ЛА, є відношення максимального коефіцієнта піднімальної сили профілю до коефіцієнта мінімального профільного опору:

$$\vec{\partial} = \frac{n_{y \max}}{c_{\min}} \cdot$$

На рис. 5 показано залежності $\vec{\sigma} = (\vec{c})$.

Рис. 5. Порівняння профілів за параметром *ð* : *1* – ЛК-1–16; *2* – ЛК-2–16; *3* – RAF-34-16; *4* – D-2

Крім порівняння серій профілів за параметром \overline{p} , порівнювалися коефіцієнти подовжнього моменту при нульовій піднімальній силі m_{z0}

С.А. Ищенко, О.Л. Лемко

Специализированные профили для летательных аппаратов схемы «летающее крыло»

Рассмотрены результаты численных исследований, проводимых с целью создания высоконесущих профилей с положительными значениями коэффициента продольного момента при нулевой подъемной силе. Такие профили предназначены для летательных аппаратов схемы «летающее крыло».

S.A. Ischenko, O.L. Lemko

The specialized profiles for aircraft designed with "flying wing" scheme

There results of quantitative researches are considered, that were accomplished for high-lifting profiles with positive values of along moment and zero-values lifting force development. That profiles intended for aircrafts with "flying wing" scheme.

і максимальні коефіцієнти піднімальної сили c_{ymax} для чотирьох розглянутих серій профілів. Найкращими характеристиками за параметром $\vec{\sigma} \in$ серії спеціалізованих профілів ЛК-1 і ЛК-2. Модифіковані профілі відрізняються в кращій бік від класичних позитивними значеннями коефіцієнта m_{z0} і великими значеннями коефіцієнта c_{ymax} (див. таблицю).

Характеристики профілів

Профіль	$c_{xp\min}$	$c_{y \max}$	m_{z0}	\overline{p}
RAF-34-16	0,0072	1,225	-0,0110	170
ЛК-1-16	0,0082	1,490	0,0124	183
ЛК-2-16	0,0079	1,390	0,0280	175

Висновки

Для проектування аеродинамічного компонування нових типів авіаційної техніки необхідно мати профілі з заданими аеродинамічними характеристиками.

Розроблена методика дозволяє розрахувати геометричні параметри профілів, що відповідають заданим аеродинамічним характеристикам. За допомогою цієї методики розраховано високонесучі профілі серії ЛК-1, ЛК-2 для ЛА схеми "літаюче крило".

Наведено критерії, що дозволили показати здобутки розрахованих профілів.

Список літератури

1. Лемко О.Л. Летающие крылья. История и возможные пути развития. – Донецк: ДИПО ИПР, 2002. – 90 с.

2. Степанов Ю.Г. Расчет отрывного обтекания крылового профиля на малых скоростях на больших углах атаки // Тр. ЦАГИ. – М. – 1980. – Вып. 2089. – С. 19–31.

3. Павловец Г.А., Самознаев Н.Д. Численный метод построения контура крылового профиля по заданному распределению скоростей на его поверхности // Тр. ЦАГИ. – М. – 1970. – Вып. 1271. – 15 с.

4. *Атлас* аэродинамических характеристик профилей крыльев / Б.А. Ушаков, П.П. Красильщиков, А.К. Волков и др. – М.: ЦАГИ, 1940. – 339 с.

Стаття надійшла до редакції 02.09.04.