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Результати синтезу функціонально стійкої структури комплексу авіоніки 
D-42 в умовах дестабілізуючих впливів

Представлено результати синтезу функціонально стійкої структури
комплексу авіоніки D-42 в умовах дестабілізуючих впливів.

Інтелектуалізація сучасних комплексів бортового обладнання (КБО) 
насамперед повинна передбачати керування значними за обсягами 
інформаційними потоками, їх швидку обробку та використання для 
забезпечення безпеки польотів і ефективності повітряних суден, підтримання 
їх функціональності в умовах різних дестабілізуючих впливів [1]. Тому 
забезпечення функціональної стійкості комплексів бортового обладнання 
літальних апаратів є частковим завданням проблеми забезпечення безпеки 
польотів та одним з пріоритетних напрямків наукових досліджень.  

Методологія теорії функціональної стійкості (ФС) була розвинута в 
роботах Машкова О.А. [2], Барабаша О.В. [3], Кравченка Ю.В. [4] та ін. 
Дослідження показників, ознак і критеріїв ФС свідчать про те, що основним 
методом підвищення функціональної стійкості розподіленої структури 
комплексу авіоніки є підвищення зв’язності його структури [5]. 

Проведене нами дослідження ефективності вихідної структури 
комплексу авіоніки D-42 за структурними параметрами графа та 
топологічними показниками ФС підтвердили висновок про недостатній рівень 
ФС окремих елементів цього комплексу [6]. Орієнтований граф вихідної 
структури комплексу авіоніки D-42 з візуалізацією ваг компонентів графа 
представлений на рис.1. 

Рис. 1. Орієнтований граф вихідної структури комплексу авіоніки D-42 з 
візуалізацією ваг компонентів графа 
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Аналіз вихідного графа комплексу авіоніки D-42 (рис. 1) дозволив 
визначити, що максимальний ступінь вершинної зв’язності ( )Gmaxχ дорівнює 8, 
а мінімальний ступінь вершинної зв’язності ( )Gminχ – 1. Максимальний 
ступінь реберної зв’язності ( )Gmaxλ  дорівнює 8, а мінімальний ступінь реберної 
зв’язності ( )Gminλ  дорівнює 1 (рис. 2). Кількість вершин графа комплексу 
авіоніки D-42 зі ступенем зв’язності вершин, що дорівнює 1, досягає 15 
(рис. 2). 

 
Рис. 2. Визначення максимального ступеня вершинної зв’язності графа 

комплексу авіоніки D-42 
 

У структурі комплексу авіоніки D-42 (рис. 2) для 15 модулів 
вершинний запас ФС VZ та реберний запас ФС LZ рівні 0=VZ  і 0=LZ . Таким 
чином, структура комплексу авіоніки D-42 за рядом вузлів знаходиться на 
межі ФС. Пошкодження єдиного з'єднання для таких вузлів призведе до 
виникнення двокомпонентного графа та часткової несправності окремих 
вузлів у системі. 

Імовірність зв'язності ijP  окремих пар вузлів структури вихідного 

графа ( )LVG ,0  комплексу авіоніки D-42 не відповідає вимозі ,reqij PP ≥  де reqP  

було задано 9,0=reqP . Графіки залежності ймовірнісної зв'язності ijP для 

найбільш важливих вузлів зв’язку окремих модулів щодо ймовірності передачі 
інформації p для вихідної структури ( )LVG ,0  між будь-якою парою модулів 

,iv  jv  95,0,...5,0=p  представлені на рис. 3. 
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Рис. 3. Залежність ймовірностей зв’язності 5,1P , 31,1P , 20,1P , 37,1P від ймовірності 

передачі інформації p  для вихідної структури ( )LVG ,0  комплексу D-42  
 

Таким чином, для підвищення ФС комплексу авіоніки D-42 під впливом 
потоку дестабілізуючих факторів необхідно оптимізувати його вихідну 
структуру. 

Визначимо умови математичного моделювання вихідної структури 
комплексу авіоніки D-42. 

Задано. Вихідна структура D-42 представлена у вигляді графа ( )LVG ,0 , 
який складається з 40=N  вершин (рис. 1). Нехай ймовірність передачі 
інформації між будь-якою парою модулів ,iv jv  дорівнює 9,0=p . 

Потрібно визначити. Оптимальну структуру комплексу авіоніки D-42, 
( )LVG ,ε , 4...,,2,1=ε , згідно з формулою (1) з накладеними на неї обмеженнями. 

( ) jiNjiРfF ijAIRCRAFTIMA ≠→= ,,...,,max,   (1) 

з обмеженнями [7]: 
( ) ,,, εε ρ аijijij

i j
ij CqlCC ≤=∑∑

 ,reqijij PP ≥∀π  

( ) 2≥Gχ ; ( ) 3≥Gλ , 
( ){ } ( ){ },1>21>2 kGkG  ≥≥ µω  

( ) ( )LVGLVG ,,0 ε⊆ , 

ijρ > ,ijq   maxTaver ≤τ , 

Для цього необхідно попередньо виконати математичне моделювання 
кількох оптимізованих структур комплексу авіоніки D-42 для різних значень 
вартості побудови системи εaС : 
для 1=ε : визначити ( )LVG ,1  з 1aС  =10000 умовних одиниць (у.о.); 
для 2=ε : визначити ( )LVG ,2  з 2aС  = 20000 у.о.; 
для 3=ε : визначити ( )LVG ,3  з 3aС  = 50000 у.о.; 
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для 4=ε : визначити ( )LVG ,4  з 4aС  = 100000 у.о. 
і для різних значень ймовірності передачі інформації між будь-якою парою 
елементів ,iv  jv  з наступним вибором найбільш оптимального варіанта 

оптимально розподіленої структури комплексу авіоніки D-42. 
Припущення задачі синтезу. Синтез комплексу авіоніки здійснюється 

за наступних припущень: 1) синтезовані структури комплексу авіоніки D-42 не 
повинні мати кратних ребер; 2) усі лінії зв'язку вихідної структури ( )LVG ,0  
повинні зберігатися в синтезованих структурах ( )LVG ,ε ; 3) синтезовані 
структури не повинні мати заборонених ліній зв'язку; 4) пропускна здатність 
одного каналу передачі інформації ijρ приймається ijρ > ,ijq  де ijq – 

інтенсивність обміну інформацією між елементами ,iv  jv . 

Умови експерименту. Синтез комплексу авіоніки D-42 здійснюється 
при різних допустимих значеннях вартості побудови системи εаС , наведених в 
умовних одиницях (у.о.): 10000; 20000; 50000; 100000. Значення ймовірності 
передачі інформації p  приймається однаковим для всіх каналів обміну 
інформацією і дорівнює p  =0,9. За результатами експертного опитування 
отримано експериментальні умови та припущення для задачі синтезу 
структури комплексу авіоніки.  

Рішення задачі синтезу. Розраховані структурні показники 
оптимізованих структур, обраних для комплексу авіоніки D-42, наведені в 
табл. 1. 

Таблиця 1 
Структурні показники вихідної та оптимізованих структур комплексу D-42 

Структура 
( )LVG ,ε  

εaС , у.о. M  D  centrK  rK  С , у.о. 

( )LVG ,0  0 220 13 0,842 4,641 1007 
( )LVG ,1  10,000 229 13 0,711 4,872 9954 
( )LVG ,2  20,000 245 12 0,503 5,282 19975 
( )LVG ,3  50,000 281 12 0,417 6,205 50217 
( )LVG ,4  100,000 395 10 0,308 9,128 117562 

Примітки: εaС , у.о. – допустима вартість, M  – кількість ліній зв’язку, D  – 

діаметр графа, centrK  – коефіцієнт централізації, rK  – коефіцієнт 
надлишковості зв'язків графа, С , у.о. – розрахована вартість  

 
Аналіз структурних показників (табл. 1) оптимізованих структур та 

динаміка їх змін дозволяє зробити наступні висновки: 1) при збільшенні 
встановленої вартості εaС  збільшується кількість ліній зв’язку M  і водночас 

коефіцієнт надлишковості rK  пропорційно збільшується; 2) зменшення 
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діаметра графа оптимізованих структур не пропорційно витраченим витратам, 
для найбільш розгалуженої структури ( )LVG ,4  діаметр графа досягає значення 
D =10; 3) коефіцієнт централізації також зменшується зі збільшенням аС  і 
досягає допустимого значення centrK  ≤ 0,5 при вартості ≥20000 у.о. 

Наведені на рис. 4 розраховані діаграми залежностей ймовірності 
зв’язності ijP від ймовірності передачі інформації p для вихідної структури 

комплексу D-42 та синтезованих структур ( )LVG ,ε  з вартістю 10000 у.о., 
20000 у.о., 50000 у.о., 100000 у.о. дозволяють зробити висновок, що для всіх 
оптимізованих структур величина ijP також зростає зі збільшенням параметра 

p . Для синтезованих структур ( )LVG ,2 , ( )LVG ,3 , і ( )LVG ,4 , діаграми 
залежностей ймовірності зв’язності ijP від імовірності передачі інформації p  

мають сильний характер насичення: для вихідних ( )LVG ,2 , починаючи зі 
значень показника p ≥ 0,9, для ( )LVG ,3 , починаючи з значення показника 
p ≥0,8, а для структури ( )LVG ,4 , починаючи зі значень показника p  ≥0,65.  

 

 
Рис. 4. Залежність ймовірностей зв’язності 5,1P , 31,1P , 20,1P , 37,1P  від ймовірності 

передачі інформації p  для синтезованих структур ( )LVG ,ε , ε =1,2,3,4 
комплексу D-42 з обмеженнями на вартість: A – 1aС =10000 у.о., B – 

2aС =20000  у.о., C – 3aС =50000 у.о., D – 4aС =100000 у.о. 
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Аналіз показників ефективності отриманих оптимізованих структур 
комплексу D-42 ( )LVG ,ε  ε = 1,2,…,4, дозволив зробити висновок, що 
структуру досліджуваного комплексу авіоніки в прийнятну зону експлуатації 
можна вивести лише після оптимізації з розміром вартості aС  ≥ 20 000 у.о. 
(табл. 2). 

Таблиця 2 
Показники ФС вихідної та оптимізованих структур комплексу авіоніки D-42 
Структура 

( )LVG ,ε  
εaС , 

у.о. 
)(Gχ

 
)(Gλ

 
VZ  LZ  Область функціональної стійкості 

(ФС) 

( )LVG ,0  0 1 1 0 0 ФС обмежена (не прийнятно) 
( )LVG ,1  10,000 2 3 1 0 ФС обмежена (не прийнятно) 
( )LVG ,2  20,000 5 5 4 3 ФС (прийнятна) 

( )LVG ,3  50,000 11 11 10 9 ФС (прийнятна) 

( )LVG ,4  100,000 15 15 13 11 ФС (прийнятна) 
 

Розрахункові значення узагальненого показника ФС ( )jiAIRCRAFTIMA PF ,  

представлені в табл. 3. 
Таблиця 3  

Значення узагальненого показника ФС ( )jiAIRCRAFTIMA PF ,  

Структура 
( )LVG ,ε  

εaС , 
у.о. 

Для значень ймовірності, p  

p = 0,5 p  = 0,6 p  = 0,7 p = 0,8 p = 0,9 p = 0,95 

( )LVG ,0  0 80,1 112,7 150,2 221,3 294,2 336,5 
( )LVG ,1  10,000 81,2 129,5 200,1 270,7 346,6 373,9 
( )LVG ,2  20,000 176,9 277,1 348,9 383,2 384,9 385,0 
( )LVG ,3  50,000 325,0 377,5 384,8 385,0 385,0 385,0 
( )LVG ,4  100,000 373,4 382,7 384,9 385,0 385,0 385,0 

 
Найбільш прийнятним для узагальненого показника ФС 

( )jiAIRCRAFTIMA PF ,  як пріоритетного (табл. 3) з додатковим врахуванням 

структурних показників графа (табл. 1) і структурних показників ФС (табл. 2) 
є оптимізація структури вибраного комплекс авіоніки D-42 на задану умовну 
вартість aС =20 000 у.о. Оптимізація структури комплексу авіоніки для умови 

9,0=p  та заданої умовної вартості aС =20 000 у.о. дозволило отримати приріст 
узагальненого показника ФС ( )jiAIRCRAFTIMA PF ,  на 30,8 % порівняно з 

вихідною структурою (з 294,2 до 384,9). Він є найбільш прийнятним за 
узагальненим показником ФС ( )jiAIRCRAFTIMA PF , , як критерію переваги при 
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заданих обмеженнях витрат та з урахуванням обмежень інших параметрів 
ефективної роботи комплексу. 

Висновки.  
Для підвищення ефективності інтегрованого комплексу авіоніки в 

умовах дестабілізуючих впливів синтезовано оптимальну структуру комплексу 
авіоніки літака D-42 за критерієм максимального показника ФС обмеженням 
вартості побудови системи. При розрахунках досягнуто приріст узагальненого 
показника ФС у порівнянні з вихідною структурою на 30,8 % (з 294,2 до 384,9) 
для заданої умовної вартості aС =20 000 у.о. Подальші дослідження спрямовані 
на структурно-параметричний синтез інтегрованого модульного комплексу 
авіоніки літака, окрім встановлення факту ФС. Необхідно зосередитися на 
визначенні запасу стійкості за конкретною ознакою.  
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