Upper bounds of block ciphers resistance with randomized nodes change to linear and differential cryptanalysis methods
DOI:
https://doi.org/10.18372/2410-7840.15.4212Keywords:
cryptography, block cipher, linear cryptanalysis, differential cryptanalysis, randomized replacement nodesAbstract
The theory analysis and basis of block ciphers resistance with fixed replacement nodes regard to the linear and differential cryptanalysis is quite developed.There are also block ciphers in which the nodes are defined by replacing the round key. It is clear that the using of randomized replacement nodes in ciphers makes difficult cryptanalysis for them, but it is difficult to assess quantitatively. Given this, the urgent task is to take the analytical expressions that allow to prove the practical resistance of block ciphers with randomized replacement nodes regard to the linear and differential cryptanalysis and will make a quantitative assessment of their effectiveness. In this paper obtain analytical upper bounds for the parameters characterizing the practical resistance of block ciphers with randomized replacement nodes regard to the linear and differential cryptanalysis. These estimates generalize previously known to block ciphers with randomized replacement nodes can explain increase resistance regard to these methods of cryptanalysis.
References
Biham E., Shamir A. Differential cryptanalysis of DES-like cryptosystems // Journal of Cryptology, 1991, V. 4, № 1, P. 3 – 72.
Lai X., Massey J.L., Murphy S. Markov ciphers and differential cryptanalysis // Advances in Cryptology – EUROCRYPT’91, Proceedings, Springer Verlag, 1991, P. 17 – 38.
Matsui M. Linear cryptanalysis methods for DES cipher // Advances in Cryptology – EUROCRYPT’93, Proceedings, Springer Verlag, 1994, P. 386 – 397.
Vaudenay S. Decorrelation: a theory for block cipher security // J. of Cryptology, 2003, V. 16, № 4, P. 249 – 286.
Daemen J., Rijmen V. Statistics of correlation and differentials in block ciphers // http://eprint.iacr.org/ 2005/212.
Kanda M. Practical security evaluation against differential and linear cryptanalyses for Feistel ciphers with SPN round function // Selected Areas in Cryptography. – SAC 2000, Proceedings, Springer Verlag, 2001, P. 324 – 338.
Алексейчук А.Н. Оценки практической стойкости блочного шифра «Калина» относительно методов разностного, линейного криптоанализа и алгебраических атак, основанных на гомоморфизмах / А.Н. Алексейчук, Л.В. Ковальчук, Е.В. Скрынник, А.С. Шевцов // Прикладная радио-электроника. – 2008. – Т.7, № 3. – С. 203-209.
Алексейчук А.Н. Верхние оценки несбалансированности билинейных аппроксимаций раундовых функций блочных шифров ГОСТ и “Калина” / А.Н. Алексейчук, А.С. Шевцов // Сучасний захист інформації. – 2010. – № 2. – С. 23 – 30.
Aлексейчук А.Н., Koвальчук Л.В. Верхние границы максимальных значений вероятностей дифференциальных и линейных характеристик шифра Фейстеля, содержащего сумматор по модулю 2m // Прикладная радиоэлектроника. – 2006. – Т. 5. – № 1. – С. 74 – 82.
ГОСТ 28147-89. Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования. – М.: Госстандарт СССР, 1989.
Горбенко І.Д., Долгов В.І., Олійников Р.В., Руженцев В.І., Михайленко М.С., Горбенко Ю.І., Тоцький О.С., Казьміна С.В. Перспективний блоковий симетричний шифр “Калина” – основні положення та специфікації // Прикладная радиоэлектроника. – 2007. – Т. 6. – № 2. – С. 195 – 208.
Кузнецов А.А. Симметричный криптографический алгоритм ADE (Algorithm of Dynamic Encryption) / А.А. Кузнецов, Р.В. Сергиенко, А.А. Наумко. // Прикладная радиоэлектроника. – 2007. – Т. 6, № 2. – С. 241-249.
Vaudenay S. On the security of CS-cipher // Fast Software Encryption. – FSE’99, Proceedings. – Springer Verlag, 1999, P. 260 – 274.
Daemen J. Cipher and hash function design strategies based on linear and differential cryptanalysis. – Doctoral Dissertation, 1995.
Biham E., Shamir A. Differential cryptanalysis of DES-like cryptosystems // Journal of Cryptology., 1991, V. 4, № 1, P. 3 – 72.
Lai X., Massey J.L., Murphy S. Markov ciphers and differential cryptanalysis // Advances in Cryptology – EUROCRYPT’91, Proceedings, Springer Verlag, 1991, P. 17 – 38.
Matsui M. Linear cryptanalysis methods for DES cipher // Advances in Cryptology, EURO-CRYPT’93, Proceedings, Springer Verlag, 1994, P. 386 – 397.
Vaudenay S. Decorrelation: a theory for block cipher security // J. of Cryptology., 2003, V. 16, № 4, P. 249 – 286.
Daemen J., Rijmen V. Statistics of correlation and differentials in block ciphers //
http://eprint.iacr.org/ 2005/212.
Kanda M. Practical security evaluation against differential and linear cryptanalyses for Feistel ciphers with SPN round function // Selected Areas in Cryptography., SAC 2000, Proceedings, Springer Verlag, 2001, P. 324 – 338.
Alekseychuk A.N. Evaluate the feasibility of "Kalina" block cipher strength on the methods of difference, linear cryptanalysis and algebraic attacks based on homomorphisms / A.N. A.N. Alekseychuk, L.V.Kovalchuk, E.V.Skrinnik, A.S. Shevtsov // Applied radio-electronics, 2008, V.7, № 3, P. 203-209.
Alekseychuk A.N. Upper bounds imbalance of bilinear approximations of round function block cipher GOST and "Kalina" / A.N. Alekseychuk, A.S. Shevtsov // Modern information security, 2010, № 2, P. 23 - 30.
Alekseychuk A.N., Kovalchuk L.V. The upper boundary of the maximum values of the probabilities of differential and linear characteristics of the Feistel cipher containing the adder modulo 2m / / Applied radio-electronics, 2006, V. 5, № 1, P. 74 - 82.
GOST 28147-89. Information processing systems. Cryptographic Security. Cryptographic transfo-rmation algorithm. - Moscow: State Standard of the USSR, 1989.
Gorbenko І.D., Dolgov V.І., Olіynikov R.V., Ruzhentsev V.І., Mikhaylenko M.S, Gorbenko Yu.І., Totsky O.S., Kazmіna S.V. Promising symmetric block cipher "Kalina" - main provisions and specifications/ Applied radio-electronics, 2007, V. 6, № 2., P. 195 - 208.
Kuznetsov A.A. Symmetric encryption algorithm ADE (Algorithm of Dynamic Encryption) / A.A. Kuznetsov, R.V. Sergienko, A.A. Naumko // Applied radio-electronics., 2007, V. 6, № 2, P. 241-249.
Vaudenay S. On the security of CS-cipher // Fast Software Encryption. – FSE’99, Proceedings, Springer Verlag, 1999, P. 260 – 274.
Daemen J. Cipher and hash function design strategies based on linear and differential cryptanalysis, Doctoral Dissertation, 1995.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).