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This paper yields a (computational) security analysis for a generic class of randomized stream ciphers based on joint employment
of encryption, error-correction coding, and dedicated random coding. We show that the security of these ciphers can be considerably
less than their designers claim. In contrast to the approach for security evaluation used before, onr technique is significantly simpler
and allows us to find out the code-theoretic sense of parameters that determine the security of these ciphers. We also propose
another possible solution (based on nonlinear random coding) for design of randomized stream ciphers with enhanced security.
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1. Introduction

M. J. Mihaljevi¢c and H. Imai [8, 9, 11, 12]
proposed a general approach for design of
randomized stream ciphers based on joint
employment of encryption, error-correction coding,
and dedicated random (or homophonic) coding. One
of the goals of designing such ciphers is to increase
the security (without substantial performance
reducing) of stream ciphers currently used in wireless
communication systems, particularly, in the GSM
standard. Another reason is to construct symmetric
encryption schemes, whose security can be reduced
to the hardness of some known mathematical
problem such as the Learning from Parity with Noise
(LPN) problem. Recall (see [0], for example) that this
problem consists in solving a system of linear
Boolean equations with equiprobable random
coefficient matrix and the right-hand side corrupted
by independent random variables taking values 0
and 1 with probabilities 1-0 and 0, respectively,
0€(0,2/2). In this case, we say that 0 is the noise
level in the right-hand side of the given system of
linear equations.

In what follows, we focus our attention on the
versions of randomized stream ciphers defined in
[11, 12] and studied in detail in [10, 11, 13].

Let’s denote by V,, the set of all n-dimensional

Boolean vectors, by F.p, the set of MxN-matrices

over the field F =GF(2), and by Fq., the group

of all invertible matrices of order M over this field.
According to [11, 12], the initial objects for a

randomized  stream cipher with  parameters

I,m,neN, pe(0,2/2), where | <m<n, and a key

space K are matrices Gy € Frpy, Gy € Fryn» and a
keystream generator that produces a sequence
fo(k), fi(k),... of n-dimensional Boolean vectors
determined by a key ke K. It is assumed that the

functions f;:K —>V,, i=0,1 ..., can depend on

b
some public parameters, for example, on
initialization vectors (IV’s). It is also assumed that

G, is a generator matrix of a binaty linear [n, m]-
code C; with an efficient decoding algorithm, which

is guaranteed to correct errors in the binary
symmetric channel with crossover probability p .

Sos S1y ey St Where
s eV, 1=0,1,..,t, with a key Ke K the sender
generates a sequence of independent random vectors
Ug, Vg, Up, Vg, ey Up, Vi

To encrypt a plaintext

where Uj is uniformly
distributed on the set Vi,_j, and V; is distributed
according to Bernoulli’s law with parameters (N, p),

and computes the ciphertext Zg, 7y, ..., Z; as follows:

Z; :(Si,ui)GzGl® fi(k)G‘)Vi 5 |=0,1,,t (1)
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The legitimate receiver, knowing f;(K), can
quickly find the message (Sj,U;)G, with the efficient
decoding algorithm for the code Cy, after that he can
recover S; using invertibility of the matrix G,. On
the other hand, the adversary in order to find the key
k will be forced to deal with a corrupted keystream
fi(K) @ (s;,4;)G,G, @V, 1=0,1,....t.

In [10, 11, 13] different variants of specified
randomized ciphers are investigated, in particular,
with the following functions f;:

fi(k)=kS', keK =V,, @)
where S is a non-secret Nxn-matrix over the field F;
fl(k)=alk> kEKanxm (3)

where 0, 04,... are independent equiprobable
random Boolean vectors of size N. Note that in the

last case, a ciphertext is by definition the sequence

(00, 20), (a1, 1), - (O, Zt)
computed by formula (1). Strictly speaking,
randomized encryption schemes of this type do not
belong to the class of stream ciphers, and are
proposed in [11] in order to generalize and to
enhance one of the earlier probabilistic private-key
encryption schemes, whose security can be reduced
to the hardness of the LPN problem [6].

Based on the condition of implementation
simplicity of the described encryption scheme, it was

where Zi are

proposed in [10] to set up the matrices G; and G,

(Ipa 0 A (0,
Gl_(o I Az]’GZ_Lm—l BJ @

where A € Fm_iyun-m)> A2 € Rx(n-m)> B€Fm-i)a>

and |}, I, are identity matrices of specified size.

as follows:

In this case the transform

S (S,U)G,G; = (U, s UB, sSA ®u(A ®BA)),
seV,,ueV,, )

used in (1) describes well-known combined random
coding scheme for the wiretap channel proposed in
fact in the fundamental paper [15] and extensively
studied later (see [1, 14] for a comprehensive survey).
Security evaluation of randomized ciphers specified
by (1), both from information-theoretic and compu-
tational points of view, was performed in [10, 11,
13]. In [11], the authors claim that under condition
(3) the secret key recovery of the proposed encryp-
tion scheme in the chosen plaintext attacking (CPA)
scenario is as hard as solving the LPN problem with

the noise level ]/2-(1—(1—2p)(m_')/2). Note that in

the proof of this result an ad hock assumption about
the matrix G,G; is used; but, this assumption is not
mentioned in the main part of the paper (see Proof
of Theorem 2 in [11]).

In [10], the authors show that under conditions
(1), (2), (4) the recovery of secret key in CPA scenar-
io is reduced to the solving a system of linear Boole-
an equations corrupted by noise, where the noise

level is at least pW=1/2-(1—(1—2p)W+1) and W de-

pends somehow on the matrices G,, G, . In the same

time, let us remark that condition rank(G')>w+1
given in [10] (together with other conditions; see
[10], p. 11) doesn’t guarantee that the noise level in
the right-hand side of obtained linear equations is
lower bounded by p,, (this can be stated directly by

analyzing an example given in [10], p. 15). Thus, the
question about real computational security of ciphers
proposed in [11, 12] is in fact open and requires fur-
ther research.

Contribution of this Paper. We investigate the
security of arbitrary ciphers specified by (1) and (4)
in various attacking scenarios and show that it can be
considerably less than it is claimed in [10 - 12]. In
particular, we show that under condition (2) the
complexity of the secret key recovery of the
considered stream cipher in CPA scenario is upper
bounded by the complexity of solving a system of
linear Boolean equations corrupted by noise with the
noise level p,, where w+1 coincide with the dual

distance of a code, determined by the matrices G,
and G, . Note that the specified system of equations

has very dedicated form and can be solved
considerably faster than the LPN problem with the
same parameters. (Let us emphasize that this is not
holds for the ciphers specified by (1) and (3).
However, also in this case the noise level in the right-
hand side of the obtained system of linear equations
can be considerably less than the

1/2-(1-(1-2p)™"?) reported in [11]).

In contrast to the approach for security
evaluation used in [10, 11], our technique is
significantly simpler and allows us to find out the
code-theoretic sense of parameters that determine
the security of the considered ciphers. It follows
from our results that to construct reasonably secure

value

randomized encryption schemes, the matrices G,
and G, should be very carefully selected, what seems

a non-trivial problem. In concluding part of the
paper we propose another possible solution (based
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on nonlinear random coding) for design of
randomized stream cipher with enhanced security.

2. Preliminaries

In what follows, standard concepts and
terminology from coding theory are used (see [4, 7]

for more details). For a linear code C cV,, the dual

code, C, and the dual distance, d(CJ‘), of C are
defined as follows:

clt={yeV,| vxeC:xy" =0},

d(C1) =min{wt(x): x e C1 \{0}},
where Wt(X) is the Hamming weight of a vector
XeV,.

Let’s consider an arbitrary cipher specified by
(1), where matrices G; and G, are defined by (4). As

above, let’s denote by C; the linear code generated

b

by the rows of the matrix Gy .
Set Cy ={(0,u)G,G;: ueVy_}. It is clear that
Cp is an [n,m—1]-sub-code of the code C;. We

denote by dy and di" the dual distances of the
codes Cp and Cj, respectively. Note that the
relation Cy < C; implies the inequality

dy- <di'. ©6)
any w=0,1...
p, =1/2-(1-@-2p)"*).

3. Main Results

Ciphertext-Only Attacks. Let us consider the
system of equations (1) and suppose that adversary

y Zt . First of

Finally, for let’s denote

can access only the ciphertext Zj, Zy, ...

all, observe that, in order to recover plaintext
symbols, the adversary is not required to have full
information about the secret key.

Statement 1. Ier H be an arbitrary parity-check

matrix of the code Cqy, then for any 1=0,1, ... and K e K

the adyersary can recover (in real time) the vector S from the

known values Z; and @;(K) = T (K)HT.

Proof. Let a€V, be an arbitrary vector such
that ¢(k)=aH'. Then g=a® f,(k)eC,, and by
(1), we have z;@a=(s,,u;)G,G, @g®V,, where the
vector (S,,U;)G,G, @9 is a codeword in C,. Hence,
the adversary can recover this codeword as well as
the vector Vv, by applying efficient decoding

algorithm for C, to corrupted codeword z;@a.

Now, knowing V,, the adversary can find the vector

(z ®a®V)H" =(s5,U,)G,GH' ®gH" =(s;,u;)G,GH".

Let’s denote by G/ and G| submatrices

contained in the first m—1 and in the last | rows of
the matrix G;, respectively. Using (4), we get

(5,,uU,)G,G, = (u;,s, Du,B)G, =u,G, @ (S, ®u,B)G/

Since H is a parity-check matrix of the code
C, ={UG, ®uBG/ ueV, ,}, we have GJH' =BG,'H".
Thus
(8,U)G,GH™ =G @ (s, ®u;B)G)HT =sG/'H".

So, the adversary can find s; from the known
vector (s;,U;)G,GH" by solving the system of linear
equations XG]'H' =sG/'H" with respect to the
unknown xeV,.

Let us remark that this system has a unique solu-
tion (equal to §;). Indeed, in the converse case there
exists a non-zero vector X €V, such that xG/'H" =0.
But then xG/'’€C,, and hence, there exists ueV, |
that XxG/'=uG/ @uBG,'. Therefore u=0,
UB@®x=0 since rows of the matrix G, are linearly
independent (see(4)). Thus, x=0 that contradicts
the above assumption.

As a result, we obtain the following algorithm for
the recovery of S, from the known values I,
4= T,(H".

1. Find (by Gaussian elimination, for example) an
arbitrary vector a€V, such that g(k)=aH".

such

and

2. Recover the vector v, by applying efficient

decoding algorithm for the code C, to
corrupted codeword z, @a.
3. Recover s, as a unique solution Xe€V, of the
system of linear equations XG'H" =(z, ®a®v,)H".
The statement is proved.
Now, let us show that key recovery in the ci-
phertext-only attacking scenario can be reduced to
solving a system of linear Boolean equations cor-

rupted by noise with the noise level equal to p_, , .

Statement 2. Under condition (1) the complexity of
recovering the secret key in the ciphertext-only attacking sce-
nario is upper bounded by the complexity of solving the follow-
ing system of linear equations corrupted by noise:

zh' = fi(k)h' &g, i=0,1,...t, (7
where heC is an arbitrary codeword of weight O,
€0:C0veen &t are independent random variables with the

distribution law
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P& =D)=1-P(& =0)= Py i=0,1..t. (8
Proof. Indeed, it follows from condition
heC that (5,4)G,Gh' =0 for any s €V,
u eV, . Thus, by (1), zh" = f,(k)h" @v,h". Since
the i
independent and take wvalues 0 and 1 with
probabilities 1-p and p, respectively, we have
P(vh' =1)=1-P(vh" =1) = Py s (see Lemma 9.49
in [4], for example). This completes the proof.

Note that in some cases, the secret key kK can be
uniquely recovered from the system (7) in time
substantially smaller than the complexity of solving
the LPN problem with the same number of
unknowns and noise level defined by (8). For
example, for the functions f, of the form (2) the

coordinates of random vector V. are

complexity of solving the system (7) depends
essentially on algebraic properties of the sequence
s'’h’, i=0,1..t.
collection of low-weight parity-check equations for
this sequence is available, the specified system of
equations can be efficiently solved by applying well-
known algorithms used in fast correlation attacks
(see [5], for example).

Chosen-Plaintext / Chosen-IV Attacks. Now,
let us consider the attack described in [10, 11], where
it is supposed that the adversary can encrypt the same

In particular, when a large

message S; =0 with an (unknown) key getting the

messages Z; of the form (1), 1=0,1,...,t. It is clear
that the considerations stated above for the
ciphertext-only attacking scenario are applicable in
this case as well, with the only difference that instead
of the code C; its subcode Cg should be considered.
In particular, the following statement holds.
Statement 3. Under conditions (1), (2) the complexity
of recovering the secret key in CPA scenario is upper bounded
by the complexity of solving the following system of linear

equations corrupted by noise:
zh' =k(S'"h")®¢;,i=0,1,...t, (9

where ' WeCy is an arbitrary codeword of weight dy,
€0:80yen &t are independent random variables with the

distribution law
P& =1)=1-P(& =0)= pdoL_l, i=0,1..t.

Let us remark that in [10], in order to recover
the secret key in CPA scenario a system of linear
equations corrupted by noise is formed as well. This
system differs from (9) and has a more complicated
form. Moreover, the noise level in the right-hand

side of this system is not less (but, can be greater)
than p e

In the case when the adversary has access to the
encryption device and can choose (on his own) pub-
lic parameters (for example, initialization vectors)
determining the functions f;, he can mount a more
powerful attack by encrypting (for some fixed i) the
same message S; =0 under the same IV. Note that
such multiple encryptions don’t give additional in-
formation about the key if an ordinary (non-
randomized) cipher is used. But, for the cipher speci-
fied by (1) the adversary can derive the following
equations:

20 = (0,uNG,G,@ f.(ky@ev, j=0,1 ..., (10

fi (k)

. are independent random vectors

where the unknown wvalue is fixed, and

U@ VO y® o
distributed as follows:

P(u(i) — Ll) = o-(m-) , P(V(j) =V) — pWt(V) (1_ p)n—wt(V) ,

uevVv, ,, vev,.

Using standard technique it is not hard to prove
the following statement.

Statement 4. Ler H be an arbitrary parity-check
matrix of the code C,, d(H)= max Wt(H,), where H,

1<r <n-m+l

15 the 1 -th row of the matrix H . Then for any 1=0,1, ...,
keK, and 6€(0,1) the adversary can recover the value
d(K) = f.(K)HT with probability at least 1- S in O(ntlogt)
bit operations from t = [12-(1-2p) "™ In(5™ (n-m+1))]

arbitrary equations of the system (10).
Proof. It follows from (10) that for any
r=12,..,n—m+l the following equalities hold:

j T T :
Z(J)Hr = fl(k)Hr‘ (—Bij,ra J:Olli"'a
where &, are independent random variables

distributed as follows:

P, =1)=1-P(;,=0) :1/2'(1—(1—2p)‘”‘(H'))’
j=0,1...

Suppose that to recover the value f,(k)H," the

majority rule is used, ie., f(K)H,™ is set in 0 iff

t
Z:Z“)HrT <t/2. Then using the Chernoff bound we
[
can estimate the error probability as follows:

P[igj,, zt/Zj = P[tl Z‘lgj,, ~Y2-(1-(-2p)" ™) > (1-2p)" ™ | <

< exp{-2t(1-2p)*" "} <exp{-2t(1-2p)**"}.
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Thus, the probability of the event that all values
fi(KH,’

., r=12,..,n—m+l, are correct recovered

is lower bounded by
1-(n—m+1)exp{-2t(Ll-2p)**}>1-5,

where the last inequality follows from the definition
of t. Finally, it is clear that the bit time complexity of
L,or=L2..,n-m+l,
with the majority rule is upper bounded by
O(ntlogt) . This completes the proof.

Note that chosen IV attacks are not considered
in [9, 10, 12], but they should be taken into account
in security analysis of randomized encryption
schemes based on real keystream generators used in
ordinary stream ciphers.

4. Conclusion. The computational security of
randomized stream ciphers specified by (1)
significantly depends on the choice of matrices G,

recovering all values f;(k)H

G,, and functions f;, which are determined by the
employed keystream generator, and can be much less
than it is claimed in [10 — 12]. In particular, some of
specified ciphers are vulnerable even to ciphertext-
only attacks.

The influence of the keystream generator is
demonstrated through the fact that systems of linear
equations with corruptions formed to recover the
key can have very dedicated form and can be solved
considerably faster than the LPN problem with the
same number of unknowns and noise level. The last
parameter depends on the dual distance of the code
C,, whose appropriate choice (for a fixed code C,),
taking into account (6), seems a non-trivial problem.
(Emphasize that the design criteria for the matrix G,
formulated in [10], pp. 11 and 15, do not guarantee
the claimed level of security).

From our point of view, to increase the security
of the considered stream ciphers it is desirable to
refuse from error-correction coding at all and use an
encryption scheme of the following form:

Zi:(ui,si(‘B(l)(Ui))P*fi(k), i:0,1,..., (11)

where z,u,,s;, f;(k) have the same sense as above,

n=m, P is a permutation matrix (for example, de-
fined by a rotation by certain number of bits), * is a
commutative group operation on the set V,, and

@V, , =V, is a mapping “with good cryptographic
properties” such as those used in modern block ci-
phers. For example, we can set a*b=(a+b)mod2",
where arbitrary vectors a,beV, are identified with

the corresponded numbers in the set {0,1,..., 2" -1},

m=2l, and @(x)=x*2, xeGF(2"). Note that in [2,

3] a similar approach for design of randomized block
ciphers with provable security against some known
cryptographic attacks was proposed. Another possi-
ble approach is to use a keyless hash function (such
as Keccak) as the function ¢. Taking into account

the fact that practically secure hash function simu-
lates a random mapping (in our case from V, |, to V,)

sufficiently well, the last variant looks more prefera-
ble with regard to providing adequate security of the
randomized cipher. The computational security of
the stream ciphers specified by (11) is a subject of
future research.
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O BBIUVMICAUTEABHOM CTOMKOCTU
PAHAOMU3HUPOBAHHBIX ITOTOUHBIX
I ®POB, IIPEAAOKEHHBIX
MUXAAEBUUEM U UMAU

B aAaHHOIT crarpe IIPOBOAHTCH AHAAU3 BBIMHCAUTEABHOM
IIUPOKOIO  KAACCA  PAHAOMH3HPOBAHHBIX
[IOTOYHBIX IH(POB, MOCTPOCHHBIX HA OCHOBE ODIIIEro
IIPIMEHEHUA UPOIEAYP IPPOBAHMA, IIOMEXOYCIOH-
YHBOIO M, COOTBETCTBEHHO, CIICLIHAABHOIO CAYYaiHOIO
koAupoBanps. [lokasaHO, YTO CTOMKOCTB — YKA3aHHBIX
mudpos 3HAYUTEABHO MCHBbIIIE,
VIBEPIKAAIOT X paspabordmku. B orAamdme oT moAxoAa K
AHAAM3Y CTOMKOCTH, HCIIOAB3YEMOIO B  IIPEABIAYIIIHX
paboTax, IPEAAOKEHO OOAee IIPOCTBIE AHAAMTHYCCKIEC
METOABI, KOTOPBIE BBIACHHTD TEOPETHKO-
KOAOBI)IEI CMBICA HapaMeTpOB, OHPCACAH}OH_H/IX BBIYYMICAU-
TEABHYIO CTOHKOCTB 9TuX mudpos. [Ipearoieno oaun us
BO3MOJKHBIX ~ 4ABTEPHATHBHBIX ~CIIOCOOOB (HA OCHOBE
HEAUHEIHOIO CAY‘IafIHOF 0] KOAI/IPOBQ.HI/U{) HOCTPOCHI/IH
PAHAOMU3UPOBAHHBIX IIOTOYHBIX IH(MPOB C IIOBBIILIEHHON
CTOHKOCTBIO.

Karouespre caoBa: cummerpraHas kpurrrorpadus, paH-
AOMU3HPOBAHHOE IN(POBAHKE, HOTOYHBINA (P, CAY-
JalifHOe KOAMPOBAaHIE, OTBOAHOHM KaHaA, 3aaada LPN,
KOPPEAALIMOHHAS ATaKa.

CTOMKOCTH

MOXKET OBITb geMm

ITIO3BOAAROT

ITPO OBUMCAFOBAABHY CTIMKICTDb
PAHAOMI3OBAHMX ITOTOKOBHMX
I PPIB, 3AITPOITOHOBAHMX
MIXAAEBUUEM TA IMAI
VYV aAamiii crarti IPOBOAHTBCA aHAAIZ OOYHCAIOBAABHOL
CTIKOCTI IIIMPOKOTO KAACy PAHAOMI3OBAHHX ITOTOKOBHX
mudpiB, TOOYAOBAHUX HA OCHOBI CIIABHOIO 3aCTOCYBAHHS
IIPOIIEAYp IPYBAHHSA, 3aBAAOCTIHKOIO Ta, BIAIIOBIAHO,
CITEIIAABHOIO BHIIAAKOBOIO KOAyBaHHA. [lokaszano, 1110
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CTIHKICTP 3a3HAYCHUX IITUMPIB MOKE OYTH 3HAYHO MEHIIIE,
HDK CTBEPAKYIOTB X po3poOHukn. Ha BiAMIHY BIiA ITAXOAY
AO aHAAI3Y CTIHKOCTI, IO BHKOPHCTOBYETHCA Y TIOITEPEAHIX
poboTax, 3aIpPOIIOHOBAHO  OIABIN IPOCTI  AHAAITHYHI
MCTOAH, fIKi AO3BOAAIOTH 3’ACYBATH TEOPETHKO-KOAOBHIH
IapamMerpiB, IO OOYHCAFOBAABHY
CTIAKICTD HUX IupiB. 3AIPOIIOHOBAHO OAUH 13 MOKAIBHX
AABTEPHATHBHUX  CIOCOOIB  (Ha HEAIHIFHOTO
BHITAAKOBOIO ~ KOAYBAHHS) IIOOYAOBH  PaHAOMI3OBAHUX
ITOTOKOBHX II(PIB 13 INABHIIIEHOIO CTIHKICTIO.

Karouosi caoBa: cumerpudra Kpumrrorpadisf, paHAOMIZO-
BaHe IH(OPYBAHHSA, IIOTOKOBHH (P, BUITAAKOBE KOAY-
BAHHY, BIABIAHHE KaHaA, 3aAa4a LPN, kopeasiiina araka.
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METOA ®OPMHUPOBAHMA NMHUTOBCTABKH HA OCHOBE ITEPECTAHOBOK

Omuap Daype, Basepnii IlIBpiaxuii, Basearnaa Illepba

Aa nocmpoenun  samutyerneix  1meaeKOMMYHUKAYUOHHBIX CUCHIEM  aKimyassHol A6ARMICA 3a0ada  KOHIPOAS YeaomiHocHIH
nepedasaempix coobuperiuitl, Komopu1il 00ecneyusaenicn 3a cuermt UeHo.Ib306arus npoyedypur umumosamyunv: dannsex. C yuemom pocma
HPOU3E00UIIEABHOCIIN BUIUUCAUINENBIHBIX CPEOCING, a 1MAKIICE COBEDILEHCINEOBANIA MEMI0006 6310Md CUCTIEM 3amyunvl UHPoOpPMayut, 6
THOM  HUCAE  SAMUIIBL O HABASBIGAHUS JIONCHBIX OdlHblX, 603DAciiaron mpebosaius K cinioiKkoomu Menodos U pedcns
unumosatyumst. B patome  paspabomara u  npedcmasiera cmpykmnypran  cxeMa yepodcnea  GpopmMuposaria  cayualinol
nocredosamensrocny nepecmarosox. Ha ocrose mpunyunos nocmpoernus danroeo yempoticmea npeoaoscer Menio0 @popmuposarius
UMUIOBCINABKI. 1 Yerpoticngo, e peanusyroupee. CyuHocns Memooda 3axalouaentcs 6 1oM, Um0 6 Kadecmse UMUmosIasKi
UCHONIB3YeMIEA BbI0PAHAA 6 HEKOMIOPOM NIOPAOKE YA CUMEOA08 NEPECNaoRU 00biotl pasmepHocm. YKasarnas nepecmarnoska
DOPMUDYENICA U3 110G1006aIIENHOINY. CUMBOIO8 COODIYEHIS, NPeOGDPA30BaHbIX 6 H0CIC008aIIENbHOIN, B3AUMOCBIANHEIX Hllces,
npedermasaeniwix 6 Parmopuansnod cucmeme cuucaeria. Aua ckpeimua 3akoHa @opPMUPOSanus UMUIOSCINABKY HCHONbI)ENIA
emenaemeitl Karoy npeobpasosania. Onpedesena cmoikosmy nepecnanosii i chopMUPOSarHom 13 Hee UMUIIOBLINAEKI U NONLINKE
63/10Ma KA10Ya ME000M «2pYboli ciuabiy.

KaroueBbIe CAOBA: 2eHepamigp  NEPecianosor, UMUMOAtumIa, UMUIIOSINABKA, PaKmOPUANEHAR  CHCINEMA  CHUCACHI,

npeobpasosariue PaKimopuanbHOL0 YUCAA 8 NEPECINANOBKY, K104 HPeoGPasosaris.

Bseaenune. HenpeprsHoe coBepiieHCTBOBaHME
CPEACTB BBIMUCAUTEABHON TEXHUKH, UX 3 PeKrTus-
HOE IIPHUMEHEHHE AAfl B3AOMA CHCTEM 3aIlUTHl HH-
dopmanuu IPUBOAUT K HEIPEPBIBHOMY IIPOIIECCY
COBEPIIIEHCTBOBAHNA METOAOB M CPEACTB 3aIlTUTBHI,
BKAFOYAfA CPEACTBA M METOABl HMHTO3AIIUTH [2].
EcrectBeHHEIM OTBETOM HA HEIPEPBHIBHBIA POCT
npousBoAuTeAbHOCTH OBM, HCIOAB3yeMBIX —AAfA
B3AOMa CHCTEM 3aIlUTE HH(OPMAITHH, SABAACTCA
TPeOOBAHUE CTOAB K€ OBICTPOIO POCTa KPHUIITO- U
HMHATOCTOMKOCTH CHCTEM 3AIUTBL. DTO OOCTOATEAD-
CTBO OOYCAABAHMBAET aKTyaABHOCTB Pa3paOOTKU HO-
BEIX METOAOB M CPEACTB HMHTO3AIUTH AAHHBIX C
IIOBBIIIIEHHON CTOMKOCTBIO.

BripeaeHue HepemneHHBIX 3apad. Hecmorps
Ha HECOMHEHHBIE VCIIEXH B ODOAACTH pa3padOTKU
TEXHOAOTHH TTOBBIITICHUAS CTOMKOCTH UMHUTO3AITIUTHI,
AFOOBIE PaOOTEI, IIPOBOAUMBIEC B 9TOM HAIIPABACHUU,
IIPEACTABASIFOT 3HAYHTEABHBI nHTEpec. B wactHO-
CTH, IPEACTABAAIOT HHTEPEC PabOTHI, CBA3ZAHHBIE C
Pa3pabOTKOM M HMCCACAOBAHHEM HOBBIX METOAOB U
CPEACTB cHHTE3a (CAVYANHBIX) IIOCAEAOBATEABHO-
CTell TIEPECTAaHOBOK, YIIPOINEHUSA AATOPHUTMOB HX
dopMupoBaHUSA (YMEHBIIIEHUE YHUCAA U CAOKHOCTH
oIeparnii, yMEHBIIIEHIE OOBbeMa TPEOYEMOIT ITaMATH
I T.IL), B TOM YHCAE€ HAa OCHOBE HCIIOAB30BAHHSA
dakroprasbHOIl cuctemsl cuncaenud [1, 3, 4].

HcnoapzoBanne  HaKTOPHAABHOW — CHCTEMBI
CUHMCACHHUSA IIPEAYCMATPUBACT IIPEACTABACHHE KaK-
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