METHODS OF OPTIMIZING THE DISTRIBUTION OF THE LOAD ON THE COMPUTING RESOURCE OF THE CLOUD SERVICE INFRASTRUCTURE
DOI:
https://doi.org/10.18372/2410-7840.25.18226Keywords:
optimization, load, cloud computing, distribution, resource, information technologyAbstract
Methods and algorithms for optimizing the distribution of the load on the computing resource of the cloud service infrastructure are investigated in the paper. It is noted that load balancing is a major challenge among cloud networks. The main purpose of load balancing is to use resources efficiently and improve performance. Along with this, it removes nodes that contain heavy load as well as nodes that are not working properly or performing a small task. It is emphasized that the following can be identified as basic criteria related to increasing the efficiency of cloud load balancing in real time: minimization of resource movement costs and task execution costs, maximization of transfer speed and task execution. The quality (efficiency) of balancing in the work is understood as an integral criterion that includes the essential parameters of the system's operation. It is emphasized that the mathematical model of dynamic distribution of virtual resources to physical machines in cloud computing, which provides accounting of the previous state of the system load and the effect of the appearance of a new resource on the load balance in the system, and is distinguished by the use of a load adjustment factor to achieve balancing. It is noted that the genetic algorithm for the optimal distribution of new virtual resources is distinguished by the implementation of a tree-like structure of chromosomes with the preservation of highly loaded nodes, which ensures an increase in the quality of load balancing and a reduction in the dynamic movement of resources. It is emphasized that the multi-criteria optimization mathematical model of task scheduling in cloud computing ensures the minimization of task transfer time, execution time and execution costs, which differs by considering the parameters of the channel between the user and the data center.
References
Про підходи дослідження системи хмарних обчи-слень / Д.І. Божуха, О.Г. Байбуз, Л.В. Мащенко // Актуальні проблеми автоматизації та інформаційних технологій. 2022. Том 26. С. 18-30.
Усік П.С. Методи підвищення ефективності розподіленої обробки даних в комп’ютерних системах операторів стільникового зв’язку. – Кваліфікаційна наукова праця на правах рукопису. Дисе-ртація на здобуття ступеня доктора філософії за спеціальністю 123 «Комп’ютерна інженерія». – Черкаський державний технологічний університет, Черкаси, 2021. с. 154.
Гребенюк Д. С. Аналіз методів розподілення ре-сурсів у середовищах віртуалізації. Системи управління, навігації та зв'язку, 2018. Випуск 6(52). С. 98-103.
Бульба С.С. Моделі і методи оброблення транзакцій композитних застосунків у розподілених комп’ютерних системах. – Кваліфікаційна науко-ва праця на правах рукопису Дисертація на здо-буття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 05.13.05 – комп’ютерні системи та компоненти (12 – інформаційні технології). – Національний технічний університет «Харківський політехнічний інститут», Міністерство освіти і науки України, Харків, 2019. с. 145.
Trivedi, Dhruvi & Parmar, Naina & Rahevar, Mru-gendrasinh. (2023). Methodological Assessment of Various Algorithm Types for Load Balancing in Cloud Computing. DOI: 10.1007/978-3-031-13577-4_16.
Vijarania, Meenu & Agrawal, Akshat & Adigun, Mat-thew & Ajagbe, Sunday & Awotunde, Joseph. (2023). Energy Efficient Load-Balancing Mechanism in Inte-grated IoT–Fog–Cloud Environment. Electronics. №12. 2543 p. DOI: 10.3390/electronics12112543.
Zhou, Chunrong & Jiang, Zhenghong. (2023). Load balancing in virtual machines of cloud environments using two-level particle swarm optimization algo-rithm. Journal of Intelligent & Fuzzy Systems. pp. 1-12. DOI: 10.3233/JIFS-230828.
Oduwole, Oludayo & Akinboro, Solomon & Lala, Olusegun & Fayemiwo, Michael & Olabiyisi, Stephen. (2022). Cloud Computing Load Balancing Techniques: Retrospect and Recommendations. FUOYE JOURNAL of ENGINEERING and TECHNOLOGY. №7. pp. 17-22. DOI: 10.46792 /fuoyejet. 7i1. 753.
Das, Sanjib & Bal, Prasanta & Sahoo, Sankarsan. (2022). GA-Based Load Balancing in Cloud with OS-level Virtualization. DOI: 10.1109/ICACCS54159. 2022.9785325.
Tasneem, Rayeesa & Akhil, Jabbar. (2022). An Insight into Load Balancing in Cloud Computing. DOI: 10.1007/978-981-19-2456-9_113.
George, Shelly & Pramila, R. Suji. (2023). An efficient load balancing technique using CAViaR-HHO enabled VM migration and replica management in cloud computing. Web Intelligence. pp. 1-21. 10.3233 / WEB-220081.
Ajil, A. & Kumar, E. (2023). A Comprehensive Study of LB Technique in Cloud Infrastructure. SN Computer Science. №4. DOI: 10.1007/s42979-022-01588-x.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).