• Liudmyla Pogrebniak Department of telecommunication systems and networks of the Military Institute of Telecommunications and In-formatization named after the Heroes of Kruty
  • Mariia Romanenko Department of Construction of telecommunication systems of the Military Institute of Telecommunications and Informatization named after the Heroes of Kruty
  • Yuliia Bolotiuk Department of the Military Institute of Telecommunications and Informatization named after the Heroes of Kruty



technical diagnostics, transmission channel, optical fiber line, embedded software, energy-time parameter


Today, several physical media are used to transmit information between network components based on embedded software, namely: radio channel, fiber optic, and wire lines. The paper considers the possibility of changing the main parameters of the optical fiber line from the time of operation. At the same time, it is considered that the operating conditions of these lines correspond to the conditions established by the manufacturers. In the process of operation, optical fiber information transmission lines are exposed to various external influences (heating, cooling, solar radiation, mechanical and electrical load). The permissible degree of these influences is determined by technical and operational documentation and depends on the design of optical fiber products, climatic performance, method, installation and laying. The parameters used for evaluation can be: operational (measured by standard devices without decommissioning the equipment); technical condition parameters (measured by external equipment with equipment stop, partial or complete disassembly). On the basis of the analysis of existing methods of assessing changes in the main parameters of optical fiber lines over time, one of the methods for solving the problems of technical diagnostics of networks with built-in software is considered in depth. In their works, the authors consider a non-contact induction method of technical diagnostics for a control object in the form of a software-hardware complex based on the energy-time parameter of diagnostics. This parameter allows, without interfering with the system, to measure and quantify the internal physico-chemical aging processes of the component parts of the control object. The proposed approaches can be used, including, to control the physical integrity of the object of control.


G. P. Agrawal. Fiber-Optic Communication Systems. New York: John Wiley & Sons, 2010. 630 p.

M. Kucera. Thermal aging of optical fibers under cyclic loading. Optics Express, 2017. 25(14). P. 15801-15810.

А. В. Петров, А. В. Латушкин. Моделирование старения оптических кабелей с учетом возможности деградации гидрофобного наполнителя. Радиотехника и электроника. М.: Радиотехни¬ка, 2016. Т. 21. С. 49-54.

А. А. Жиглов, С. Ю. Максимов, Е. А. Титова. Моделирование старения оптических кабелей. Системы связи и информатики. 2016. № 1 (17). С. 104-111.

K. Gerd, S. Tarek, El-Bawab. Optical Fiber Communications. New York: McGraw - Hill, 2010. 688 p.

В. В. Кузавков, П. В. Хусаінов, О. Г. Янковський. Методи прогнозування технічного стану однотипних програмно-апаратних засобів. Збірник наукових праць ОДАТРЯ № 1(12). 2018. С. 59-65.

В. В. Кузавков, Г. І. Гайдур, С. О. Сєрих, Є. В. Редзюк. Безконтактний індукційний метод визначення технічного стану цифрового блока: розрахунок потужності випромінювання провідника. Зв’язок. К.: Державний університет телекомунікацій, 2016. № 1. С. 32-39.

J. Liu. Analysis and modeling of optical fiber aging with hydrogen under high temperature and pressure. Optics Express. 2015. 23(7). P. 9030-9044.

A. Singh, B. Singh, A. Pandey, S. Dhar Design of plasmonic nanoantennas for high performance photovoltaic devices using an effective medium theory. Optics Communications. 2018. Vol. 407. P. 141-147.

Z. Wang. Investigation of optical fiber aging under high temperature and pressure. Journal of Lightwave Technology. 2013. 31(16). P. 2784-2790.

J. Crispin, B. Elliott. Introduction to Fiber Optics. Amsterdam: Newnes, 2005. 245 p.

C. Wu, X. Pan, X. Shi. A Nonlinear Distributed Feedback Control Method for Laser Diode to Compensate for the Aging Effect in Optical Fiber Communication Systems. Photonics Journal. 2020. Vol. 12. No. 1. P. 1-13.

L. G. Cohen, W. L. Mammel, S. H. Wemple. Lifetime predictions for glass optical waveguides. Bell System Technical Journal. U.S.A.: American Telephone and Telegraph Company. 1975. Vol. 54 No.6 P. 971-984.

D. L. Bisbee, P. W. Smith, S. H. Wemple. Optical-Fiber Tapes. Bell System Technical Journal. U.S.A.: American Telephone and Telegraph Company. 1975. Vol. 54 No.2 P. 479-484.