PRACTICAL USE OF THE MODEL FOR EVALUATING CHANGES IN THE PARAMETERS OF THE OPTICAL FIBER DATA TRANSMISSION MEDIUM
DOI:
https://doi.org/10.18372/2410-7840.25.17934Keywords:
technical diagnostics, transmission channel, optical fiber line, embedded software, energy-time parameterAbstract
Today, several physical media are used to transmit information between network components based on embedded software, namely: radio channel, fiber optic, and wire lines. The paper considers the possibility of changing the main parameters of the optical fiber line from the time of operation. At the same time, it is considered that the operating conditions of these lines correspond to the conditions established by the manufacturers. In the process of operation, optical fiber information transmission lines are exposed to various external influences (heating, cooling, solar radiation, mechanical and electrical load). The permissible degree of these influences is determined by technical and operational documentation and depends on the design of optical fiber products, climatic performance, method, installation and laying. The parameters used for evaluation can be: operational (measured by standard devices without decommissioning the equipment); technical condition parameters (measured by external equipment with equipment stop, partial or complete disassembly). On the basis of the analysis of existing methods of assessing changes in the main parameters of optical fiber lines over time, one of the methods for solving the problems of technical diagnostics of networks with built-in software is considered in depth. In their works, the authors consider a non-contact induction method of technical diagnostics for a control object in the form of a software-hardware complex based on the energy-time parameter of diagnostics. This parameter allows, without interfering with the system, to measure and quantify the internal physico-chemical aging processes of the component parts of the control object. The proposed approaches can be used, including, to control the physical integrity of the object of control.
References
G. P. Agrawal. Fiber-Optic Communication Systems. New York: John Wiley & Sons, 2010. 630 p.
M. Kucera. Thermal aging of optical fibers under cyclic loading. Optics Express, 2017. 25(14). P. 15801-15810.
А. В. Петров, А. В. Латушкин. Моделирование старения оптических кабелей с учетом возможности деградации гидрофобного наполнителя. Радиотехника и электроника. М.: Радиотехни¬ка, 2016. Т. 21. С. 49-54.
А. А. Жиглов, С. Ю. Максимов, Е. А. Титова. Моделирование старения оптических кабелей. Системы связи и информатики. 2016. № 1 (17). С. 104-111.
K. Gerd, S. Tarek, El-Bawab. Optical Fiber Communications. New York: McGraw - Hill, 2010. 688 p.
В. В. Кузавков, П. В. Хусаінов, О. Г. Янковський. Методи прогнозування технічного стану однотипних програмно-апаратних засобів. Збірник наукових праць ОДАТРЯ № 1(12). 2018. С. 59-65.
В. В. Кузавков, Г. І. Гайдур, С. О. Сєрих, Є. В. Редзюк. Безконтактний індукційний метод визначення технічного стану цифрового блока: розрахунок потужності випромінювання провідника. Зв’язок. К.: Державний університет телекомунікацій, 2016. № 1. С. 32-39.
J. Liu. Analysis and modeling of optical fiber aging with hydrogen under high temperature and pressure. Optics Express. 2015. 23(7). P. 9030-9044.
A. Singh, B. Singh, A. Pandey, S. Dhar Design of plasmonic nanoantennas for high performance photovoltaic devices using an effective medium theory. Optics Communications. 2018. Vol. 407. P. 141-147.
Z. Wang. Investigation of optical fiber aging under high temperature and pressure. Journal of Lightwave Technology. 2013. 31(16). P. 2784-2790.
J. Crispin, B. Elliott. Introduction to Fiber Optics. Amsterdam: Newnes, 2005. 245 p.
C. Wu, X. Pan, X. Shi. A Nonlinear Distributed Feedback Control Method for Laser Diode to Compensate for the Aging Effect in Optical Fiber Communication Systems. Photonics Journal. 2020. Vol. 12. No. 1. P. 1-13.
L. G. Cohen, W. L. Mammel, S. H. Wemple. Lifetime predictions for glass optical waveguides. Bell System Technical Journal. U.S.A.: American Telephone and Telegraph Company. 1975. Vol. 54 No.6 P. 971-984.
D. L. Bisbee, P. W. Smith, S. H. Wemple. Optical-Fiber Tapes. Bell System Technical Journal. U.S.A.: American Telephone and Telegraph Company. 1975. Vol. 54 No.2 P. 479-484.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).