JUSTIFICATION OF DIRECTIONS FOR IMPROVING AUTHENTICATION PROTOCOLS IN INFORMATION AND COMMUNICATION SYSTEMS

Authors

DOI:

https://doi.org/10.18372/2410-7840.25.17593

Keywords:

authentication, TLS protocols, cyber threats, NIST, methods of implementing cyber threats

Abstract

The analysis of information about the conducted cyber-threats makes it possible to identify modern information security problems when transmitted through unprotected communication channels. When conducting such an analysis, various components of the methods of implementing cyber threats are considered, but in this paper, it is proposed to pay attention to the motivational component of the emergence of threats and the existing effective tools for countering them. Such a comprehensive approach will make it possible to predict various modes of cyberattacks that cybercriminals can use against certain systems and to prepare the necessary digital security systems for the implementation of future threats. The influence of the exponential growth of the capacities of computing devices on the growth of the possibilities of implementing attacks by cybercriminals on cryptographic algorithms was also revealed. In this regard, the work considered the possibilities of increasing the level of resistance to such interventions, which are ensured by the NIST requirements for stability and security in the conditions of the post-quantum period. To determine the level of security of data transmission over an insecure network with privacy, integrity and authentication, a comparative analysis of the capabilities of information transmission protocols was conducted. The results of the analysis are presented in the form of a scheme of security and stability of protocols and algorithms that made it to the finals of the NIST competition. To ensure the integrity and authenticity of users when establishing communication sessions with websites, it is recommended to use TLS protocols. A scheme of the process of authenticated encryption and verification of the authenticity of an encrypted message transmitted using a TLS connection has been developed. The process diagram of authentication encryption and decryption of information when establishing a communication session in TLS protocols has been developed. A comparative analysis of different versions of TLS protocols was carried out.

References

Havrylova Alla, Khokhlachova Yulia, Pohorelov Volodymyr. Analiz zastosuvanna hibrydnyh krypto-kodovyh konstruktsiy dlia pidvyshenna rivna stiykosti hesh-kodiv do zlamu // Bezpeka informacii, 2022. Т. 28, № 2. pp. 87-101. DOI: 10. 18372/2225-5036.28.16953.

Viyna v Ukraine. Puls Kiberzahystu // Derjavna slujba spetczviazku ta zahystu informacii, serpen 2022. URL: https: / / www. ppl. org. ua / wp-content/uploads/2022/09/1662392024242416. pdf.

Guide for Cybersecurity Event Recovery, 2022. URL: https: // nvlpubs. nist. gov / nistpubs /.../ NIST.SP.800-184.pdf.

Security requirements for cryptographic modules, 2020. URL: https://csrc.nist. gov/publications/ fips/fips140-2/fips1402. pdf.

Guide to LTE Security, 2020. URL: https: // csrc.nist.gov /publications/ drafts / 800-187/ sp-800_187_draft.pdf.

Yevseiev S., Ponomarenko V., Laptiev O., Milov O. and others. Synergy of building cybersecurity systems: monograph. // PC TECHNOLOGY CENTER, Kharkiv, 2021. 188 p.

Tsyhanenko O. Development of digital signature algorithm based on the Niederreiter crypto-code system. // Information Processing Systems, 2020. Issue 3 (162), pp. 86-94.

Havrylova А. А. Analiz kryptografichnyh algory-tmiv podanyh do tretiogo turu konkursy NIST // Artualni pytannia zabezpechennia slujbovo-boyovoi diyalnosti syl sectoru bezpeky i oborony: materialy vseukr. krug. stolu (m. Kharkiv, 23 kvit. 2021 r.), FOP Brovin О.V., 2021. Vyp. 5, pp. 361 - 365.

Report on Post-Quantum Cryptography, 2022. URL: https://csrc.nist.gov /publications/detail/ nistir/8105/final.

Post-Quantum Cryptography, 2018. URL: https:/ /csrc. nist. gov/ Projects / postquantum-cryptography/round-3-submissions.

FIPS PUB 180-4, Secure Hash Standard (SHS), 2019. URL: https: // nvlpubs. nist. gov / nistpubs /FIPS/NIST.FIPS.180-4.pdf.

Yesina M. V. Model bezpeky postkvantovyh protokoliv inkapsuliacii kluchiv // Prykladna radioelektronika, 2018. Т. 17, № 3, 4. pp. 160-167.

Ciphertext indistinguishability. URL: http://cse. iitkgp.ac.in/~debdeep/courses_iitkgp/FCrypto/scribes/scribe8.pdf.

Yesina М. V. Modeli bezpeky postkvantovyh kryptografichnyh prymityviv // Matematychne ta komputerne modeluvannia. Seriya: Tehnichni naury, 2019. Vyp. 19. С. 49-55. DOI: 10.32626/ 2308-5916.2019-19.49-55

Horbenko Yu. І., Potiy О. V., Onoprienko V. V., Yesina М. V., Maleyeva H. А. Osnovni polojennia shodo modeli bezpeky dlia asymetrychnyh peretvoren typu z urahuvanniam vymoh ta zagroz postkvantovogo periodu // Radiotehnika. 2020. Vyp. 202. pp. 28-36 DOI:10.30837 / rt.2020.3. 202.02 EUF-CMA and SUF-CMA.

Haitner I., Holensteiny T. On the (im) possibility of key dependent encryption, in: TCC’09 // Theory of Cryptography, 6th Theory of Cryptography Conference, San Francisco, CA, USA, 2009, Lecture Notes in Comput. Sci. Vol. 5444, Springer, Berlin, 2009, pp. 202–219.

Hofheinz D., Unruh D. Towards key-dependent message security in the standard model. EUROCRYPT’08 // Advances in Cryptology, 27th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul, Turkey, 2008, Lecture Notes in Comput. Sci. Vol. 4965, Springer, Berlin, 2008, pp. 108-126.

Applebaum B., Cash D., Peikert C., Sahai A. Fast cryptographic primitives and circular-secure encryption based on hard learning problems// Advances in Cryptology – CRYPTO’09, 29th An-nual International Cryptology Conference, Santa Barbara, CA, USA, 2009. Lecture Notes in Com-put. Sci. – Vol. 5677, Springer, Berlin, 2009. pp. 59-618.

Bellare M. Symmetric encryption. URL: https:// cseweb.ucsd.edu/~mihir/-cse207/w-se.pdf.

Ran Canetti, Hugo Krawczyk Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels. URL: http://iacr.org/archive/ eurocrypt2001/20450451.pdf.

BIKE: Bit Flipping Key Encapsulation, 2022. URL: https: // bikesuite. org / files /v4.1/ BIKE_ Spec.2020.10.22.1.pdf.

Classic McEliece: conservative code-based cryptography, 2020. URL: https:// classic. mceliece. org /nist/mceliece-20201010.pdf.

Hamming Quasi-Cyclic (HQC), 2020. URL: http://pqc-hqc.org/doc/hqcspecification_2020-10-01.pdf.

David Jao. Supersingular Isogeny Key Encapsulation. URL: https: // csrc. nist. gov / csrc / media/ Projects / post - quantum - cryptography / documents/round-4/submissions/SIKE-spec.pdf.

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé. CRYSTALS-Kyber: a CCA-secure module-lattice-based KEM // 2018 IEEE European Symposium on Security and Privacy, 2018, pp. 353-367 URL: https: //research.ibm.com /publications/crystals-kyber-a-cca-secure-module-lattice-based-kem DOI 10. 1109/EuroSP. 2018.00032.

Yesina М. V., Vdovenko S. H., Horbenko І. D. Modeli bezpeky postkvantovyh asymetrychnyh shyfriv na osnovi nerozriznuvasti // Zbirnyk naukovyh prac JVI, Kharkiv, 2019. Vyp. 16. С. 15-26. DOI: 10.46972/2076-1546.2019.16.02.

Horbenko І. D., Kachko О. H., Ponomar V. А., Yesina М. V., Askolzina О. S., Kulibaba V. А. Analiz sutnosti ta modeli protokolu inkapsuliacii kluchiv u kilci polinomiv nad skinchenym polem // Prykladna radioelektronika, 2018. Т. 17, № 3, 4. С. 127-137.

Sara Ricci, Lukas Malina, Petr Jedlicka, David Smékal, Jan Hajny, Peter Cibik, Petr Dzurenda, Patrik Dobias Implementing CRYSTALS-Dilithium Signature Scheme on FPGAs // ARES 21: Proceedings of the 16th International Conference on Availability, Reliability and SecurityAugust 2021 Article No.: 1, pp. 1-11 URL: https://dl.acm.org/ doi/fullHtml/10.1145/3465481.3465756.

Fouque P. A. et al. Falcon: Fast-fourier lattice-based compact signatures over NTRU URL: https: //eprint.iacr.org/2021/772.pdf.

Bernstein D., Dobraunig Christoph, Eichlseder Maria, Fluhrer Scott R., Gazdag S., Hülsing Andreas, Kampanakis Panos, Kölbl Stefan, Lange T., Lauridsen Martin M., Mendel Florian, Niederhagen R., Rechberger Christian, Rijneveld J., Schwabe P. SPHINCS + Submission to the NIST post-quantum project URL: https://www. semanticscholar.org/paper/SPHINCS-%2B-Submission -to-the-NIST-post-quantum-Bernstein-Dobraunig /d87c9542622bf5345da856959a0ae959d55ed6b6.

Downloads

Published

2023-05-25